
Socket Programming: Part 1

Socket Programming: Part 1

Spring 22 TAs: Lakiotakis Manos, Plevridi Eleftheria,

manoslak@csd.uoc.gr, plevridi@csd.uoc.gr
Computer Science Department, University of Crete



Goal of this lab

• Learn to create programs that communicate over a network

• Create TCP and UDP sockets using the POSIX Socket API

• Support of multiple connections within a program

• Change the default behavior of sockets

1



Introduction



Protocol Families - TCP/IP

• TCP/IP provides end-to-end connectivity specifying how data
should be

• formatted

• addressed

• transmitted

• routed, and

• received at the destination

• can be used in the internet and in stand-alone private networks

• it is organized into layers

2



TCP/IP

3



Internet Protocol (IP)

• provides a datagram service (packets are handled and

delivered independently)

• best-effort protocol (may loose, reorder or duplicate packets)

• each packet must contain an IP address of its destination

4



TCP vs UDP

• Both use port numbers

• 16-bit unsigned integer, thus ranging from 0 to 65535

• provide E2E transport

UDP: UserDatagram Protocol

• no acknowledgments , no retransmissions

• out of order, duplicates are possible

• connection-less

TCP: Transmission Control Protocol

• reliable byte-stream channel (in order, all arrive, no duplicates)

• flow control

• connection-oriented

• bidirectional

5



Sockets

Uniquely identified by:

• an internet address

• an end-to-end protocol (e.g. TCP or UDP)

• a port number

Two types of (TCP/IP) sockets

• Stream Sockets provide reliable byte-stream service

• Datagram sockets provide best-effort datagram service

6



The POSIX Socket API



The POSIX Socket API

What is POSIX?
Portable Operating System Interface, is a family of standards

specified by the IEEE for maintaining compatibility between

operating systems.

• There are several Sockets implementations (e.g Berkeley,

BSD)

• POSIX Socket API, provides a cross-platform and reliable way

for network and inter-process communication

7



Creating a Socket

Prototype

• socket() creates a socket of a certain domain, type and

protocol specified by the parameters

• Possible domains:

• AF INET for IPv4 internet protocols

• AF INET6 for IPv6 internet protocols

8



Creating a Socket

Prototype

• Possible types:

• SOCK STREAM provides reliable two way

connection-oriented byte streams (TCP)

• SOCK DGRAM provides connection-less, unreliable messages

of fixed size (UDP)

• protocol depends on the domain and type parameters. In

most cases 0 can be passed

9



Creating a Socket

SOCK STREAM
Sockets of this type are full-dublex data streams that do not rely

on a known data length. Before sending or receiving the socket

must be in a connected state. To send and receive data, send()

and recv() system calls may be used. By default, socket of this

type are blocking, meaning that a call of recv() may block until

data arrive from the other side. At the end, close() should be used

to properly indicate the end of the communication session.

SOCK DGRAM
This kind of sockets allowing to send messages of a specific size

without the guarantee that they will be received from the other

side. To send and receive messages sendto() and recvfrom() calls

may be used.

10



TCP Sockets



TCP: Creating the socket

• Lets try to create our first TCP socket!

• Always check for errors! Using perror() printing a useful and

meaningful message is very easy!

• Opening a TCP socket is exactly the same for both server and

client side

11



Bind a Socket

Prototype

• bind() assigns an open socket to a specific network interface

and port

• bind() is very common in TCP servers because they should

waiting for client connections at specific ports

12



TCP: Bind the socket

• Always reset the struct sockaddr in before use

• Addresses and ports must be assigned in Network Byte

Order

• INADDR ANY tells the OS to bind the socket at all the

available network interfaces

13



Listening for incoming connections

Prototype

• After binding to a specific port a TCP server can listen at this

port for incoming connections

• backlog parameter specifies the maximum possible

outstanding connections

• Clients can connect using the connect() call

Hint!
For debugging you can use the netstat utility!

or

14



Trivia

Think!
Which of the calls of the previous slides cause data to be

transmitted or received over the network?

15



Trivia

Think!
Which of the calls of the previous slides cause data to be

transmitted or received over the network? NONE!

16



TCP: Accepting connections

Prototype

• accept() is by default a blocking call

• It blocks until a connection arrives to the listening socket

• On success a new socket descriptor is returned, allowing the

listening socket to handle the next available incoming

connection

• The returned socket is used for sending and receiving data

• If address is not NULL, several information about the remote

client are returned

• address len before the call should contain the size of the

address struct. After the call should contain the size of the

returned structure

17



TCP: Connecting

Prototype

• Connects a socket with a remote host

• Like bind(), zero the contains of address before use and

assign remote address and port in Network Byte Order

• If bind() was not used, the OS assigns the socket to all the

available interfaces and to a random available port

18



TCP: Sending Data

Prototype

• send() is used to send data using a connection oriented

protocol like TCP

• Returns the actual number of bytes sent

• Always check the return value for possible errors or to handle

situations where the requested buffer did not sent completely

Question!
Does this call block?

YES!

19



TCP: Sending Data

Prototype

• send() is used to send data using a connection oriented

protocol like TCP

• Returns the actual number of bytes sent

• Always check the return value for possible errors or to handle

situations where the requested buffer did not sent completely

Question!
Does this call block? YES!

19



TCP: Receiving Data

Prototype

• recv() is by default a blocking call that receives data from a

connection-oriented opened socket

• length specifies the size of the buffer and the maximum

allowed received data chunk

• Returns the number of bytes received from the network

• recv() may read less bytes than length parameter specified,

so use only the return value for your logic

• If you do not want to block if no data are available, use

non-blocking sockets (hard!) or poll()

20



TCP Overview 1/3

21



TCP Overview 2/3

22



TCP Overview 3/3

• TCP Server:

• 1. using create(), Create TCP socket.

• 2. using bind(), Bind the socket to server address.

• 3. using listen(), put the server socket in a passive mode,

where it waits for the client to approach the server to make a

connection

• 4. using accept(), At this point, connection is established

between client and server, and they are ready to transfer data.

• 5. Go back to Step 3.

• TCP Client:

• 1. Create TCP socket.

• 2. Connect newly created client socket to server.

23



Client - Server Communication

24



UDP Sockets



UDP: Creating the socket

• Creating a UDP socket is quite the same as with TCP

• Only type and protocol parameters are different

• bind() is also exactly the same for UDP too

25



UDP: Connection-less

UDP is connection-less!!!

No need to call accept() or connect()!!!

26



UDP: Receiving data

Prototype

• length specifies the length of the buffer in bytes

• address if not NULL, after the call should contain information

about the remote host

• address len is the size of the struct address

• Returns the number of bytes actually read. May be less that

length

27



UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

• Use poll()

• What if the message sent is greater that your buffer?

• Use recvfrom() in a loop with poll()

28



UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

• Use poll()

• What if the message sent is greater that your buffer?

• Use recvfrom() in a loop with poll()

28



UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

• Use poll()

• What if the message sent is greater that your buffer?

• Use recvfrom() in a loop with poll()

28



UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

• Use poll()

• What if the message sent is greater that your buffer?

• Use recvfrom() in a loop with poll()

28



UDP: Sending data

Prototype

• length is the number of the bytes that are going to be sent

from buffer message

• dest addr contains the address and port of the remote host

• Returns the number of bytes sent. May be less that length so

the programmer should take care of it

Trivia!
Does sendto() block? NO!

29



UDP: Sending data

Prototype

• length is the number of the bytes that are going to be sent

from buffer message

• dest addr contains the address and port of the remote host

• Returns the number of bytes sent. May be less that length so

the programmer should take care of it

Trivia!
Does sendto() block?

NO!

29



UDP: Sending data

Prototype

• length is the number of the bytes that are going to be sent

from buffer message

• dest addr contains the address and port of the remote host

• Returns the number of bytes sent. May be less that length so

the programmer should take care of it

Trivia!
Does sendto() block? NO!

29



Endianness



Endianness

• Networks are heterogenous with many

different OS’s, architectures, etc

• Endianess is a serious problem when sending

data to other hosts

• When sending entities that are greater that a

byte, always convert them in Network Byte

Order

• By default Network Byte Order is Big-Endian

• Use nthohs(), nthohs(), htonl(), ntohl()

Trivia!
When sending large strings do we have to convert

in Network Byte Order? NO!

30



Endianness

• Networks are heterogenous with many

different OS’s, architectures, etc

• Endianess is a serious problem when sending

data to other hosts

• When sending entities that are greater that a

byte, always convert them in Network Byte

Order

• By default Network Byte Order is Big-Endian

• Use nthohs(), nthohs(), htonl(), ntohl()

Trivia!
When sending large strings do we have to convert

in Network Byte Order?

NO!

30



Endianness

• Networks are heterogenous with many

different OS’s, architectures, etc

• Endianess is a serious problem when sending

data to other hosts

• When sending entities that are greater that a

byte, always convert them in Network Byte

Order

• By default Network Byte Order is Big-Endian

• Use nthohs(), nthohs(), htonl(), ntohl()

Trivia!
When sending large strings do we have to convert

in Network Byte Order? NO!
30



Customize sockets

Prototype

• Default settings of a socket can be changed with

setsockopt()

• The list of the available options can be found at the manpage

of socket(7)

31



Accurate time measurements

• Most of the network experiments require accurate time

measurements

• What can go wrong?

• Low accuracy on time retrieval (e.g gettimeofday())

• Time adjustments during the experiment (NTP, PTP, e.t.c )

• Solution:

• clock gettime()

• Use the CLOCK MONOTONIC RAW option

32



Useful man pages

• socket(7)

• ip(7)

• setsockopt(3p)

• tcp(7)

• udp(7)

33



Questions??

34


	Introduction
	The POSIX Socket API
	TCP Sockets
	UDP Sockets
	Endianness

