
Network Technology and Programming Lab
Assignment 2

Stefanos Papadakis
Deadline: 3 April 23:59

March 19, 2024



General Information

The goal of this assignment is to become familiar with socket programming and the
challenges of measuring the end-to-end performance of a network. The implementation
language is up to your choice, but we strongly recommend to choose a low-level one
(preferably C/C++ and POSIX sockets) that will allow you to get a deep understanding
of network programming.

1. Introduction

In this assignment you have to implement a network measuring tool. The tool will
measure the end-to-end throughput of the network, jitter and an estimation of the
one-way latency.

The tool works in a client-server model. The server waits for connections and the
clients connect to the remote server to begin the experiment. There are two communication
channels between each client and the server.

• The signaling one, which is used for information exchange and signaling between
the server and the client. This communication channel uses TCP

• The experiment channel. This channel transfers data over UDP that are part of
the network measurement process

Your are free to create additional channels depending the runtime parameters of your
program.

2. Parameters

Your program should be able to receive the following command line parameters. Note
that you have to support exactly the syntax below.

Server/Client parameters:

• -a: In server mode, this argument specifies the IP address of the network interface
that the program should bind. If none given the program binds in all available
interfaces. In client mode this argument provides the IP address of the server to
connect to

• -p: In server mode this argument indicates the listening port of the primary
communication TCP channel of the server. In client mode, the argument specifies
the server port to connect to

• -i: The interval in seconds to print information for the progress of the experiment.
The information displayed maybe different depending on the experiment setup.
You are free to produce any kind of meaningful result.

1



• -f : Specifies the file that the results will be stored. This option is for your own
convenience. Use an output format that will help for plotting the results

Server parameters

• -s: The program acts like server

Client parameters

• -c: The program acts like client

• -l: UDP packet size in bytes

• -b: The bandwidth in bits per second of the data stream that the client should
sent to the server. The program should take into consideration the overhead of the
lower TCP/IP stack layers in order the measurement to be as accurate as possible

• -n: Number of parallel data streams that the client should create. For each one of
these streams a new thread is assigned in both server and client

• -t: Experiment duration in seconds The client should send for the specified amount
of time and the stop the data stream. Before it exits, it informs properly the server
in order the later to print the measurement results. If this argument is not specified,
the data stream should be continuously sending data until a user termination signal
occurs

• -d: Measure the one way delay, instead of throughput, jitter and packet loss

• -w: Wait duration in seconds before starting the data transmission

3. Network Measurements

At each run the tool should perform either the one way delay or the throughput,
goodput, jitter and packet loss measurement, depending on the argument specified.
The measurement process is performed at the server and stops when the client sends
appropriate message through the communication TCP channel. Then the results are
printed to the server and are sent back to the client for printing to the terminal.

• Average throughput: The server measures the data that receives from the client
until a termination signal from the control channel is received. When this happens
it computes the effective throughput. As the tool can measure only the payload
on the UDP packets, proper adjustments should be made to take into account the
headers overhead of the different layers. Try these adjustments to be as accurate
as possible.

• Average goodput: Same as throughput, but measuring only the bytes received
from the UDP packets.

2



• Packet loss percentage: The tool should be able to report the percentage of lost
packets. To achieve this each packet should contain a header with an appropriate
counter. The server uses this counter to extract the packet loss. Special attention
should be given in edge cases such as the change for packets to be lost at the end
of the transmission. To overcome this problem, the client can send among with the
termination signal and the counter of the last packet sent.

• Average jitter: Jitter is the difference between the inter-arrival times of consecu-
tive packets.

• Standard deviation of jitter: Except the average, the tool should be able to
specify the standard deviation of the jitter during the experiment.

• One way delay: In this type of measurement the tool exchange data in a different
way. The most common technique to measure the one way delay is the RTT/2. We
discussed in the class why this measurement is not so accurate. Extra bonus points
will be given to teams that will try to estimate more accurately the one way delay
using their tool.

4. Implementation considerations

Measuring accurately the time is quite critical in such type of applications. The timing
function should provide enough precision and should be not subjected to timing adjust-
ments from external sources (NTP, PTP, etc). Prefer monotonic reference clocks (e.g
clock gettime(CLOCK MONOTONIC, ...))

Remember that the goal of this tool, is to extract accurate results about the network.
Filling the data buffers with random data, or allocate and de-allocate continuously
memory can severely affect the precision of your measurements. Fill only the necessary
minimal information and use pre-allocated buffers.

Another common issue that can destroy your measurements is the blocking nature of
some network functions. You should identify these corner cases and deal with them. For
example, you should not start measuring time before a blocking call, that you do not
known for how much time will block.

4.1 Roadmap

Below there is a roadmap for your implementation. Try to follow it as much as possible,
as it will help you to incrementally build the application.

1. Create a single executable file containing the main() of your program and the
argument parsing

2. Create two different files one for the server and one for the client

3. Start the implementation of the TCP communication channel

3



(a) As you may recall, TCP is a stream oriented transport protocol and there is no
notion of a packet from the application point of view. Therefore, you should
implement a proper communication protocol between the two endpoints

(b) Start by defining a header of constant size. The constant sized header is
crucial for the receiver FSM. The rest of the application layer packet can be
variable

(c) Populate the necessary fields into this header. For example, message type,
message length etc.

(d) Make sure that the two endpoints can communicate properly and exchange
all the necessary information without issues

4. Start with the implementation of the UDP data transfer. At this point, you should
not yet integrate it into the rest of your application, just to keep it simple. Test
the data transfer as stand alone routines and without any throttling. Assume that
port number and IP of the remote host are known

5. Implement the throughput/goodput measurement mechanism

6. Without any throttling make sure that the results of your measurement are in par
with those reported by tools like iftop

7. Start implementing the throttling mechanism. Again use iftop to check if the
reported and the actual throughput matches the intended one

8. Implement the rest of the measurements required

9. Start the integration of the UDP experiments into the main application. Parameters,
start/stop and anything else should now be instructed by the TCP communication
channel. The server and the client should exchange vital information for establishing
the UDP transfer

10. Support parallel streams, by properly assigning each stream to a separate thread

11. Conduct the experiments, plot the results and document them into your report

5. Experiments

Make some experiments similar to the experiments that you have done in the assignment
1 in order to demonstrate the full functionality of your tool. You can use the lab hosts or
your own. If you use the lab, do not forget to allocate a timeslot!

Make a report showing the plots of your experiments and if you spot any abnormal
behavior try to provide a reasonable explanation.

4



Oral Examination

All the students who have submitted their exercises are requested to attend the oral
exam session, in order to present their solutions. A short quiz will also take place during
that time. You will need to choose a timeslot for the oral exam using Doodle. More
details will be sent to you via email.

Attention

• Each team will only be examined during the timeslot choosed.

• During this session both the Assignments 1 and 2 will be examined.

• Both the timely submission and the oral exam session will contribute to the grading
of the assignments.

5


	Introduction
	Parameters
	Network Measurements
	Implementation considerations
	Roadmap

	Experiments

