Cisco IOS Command Reference for Cisco Aironet Access Points and Bridges

Cisco IOS Release 12.4(25d)JA and 12.3(8)JEE
December 2010
CONTENTS

Preface v

Using the Command-Line Interface 1-1
 Type of Memory 1-1
 CLI Command Modes 1-1
 User EXEC Mode 1-2
 Privileged EXEC Mode 1-2
 Global Configuration Mode 1-3
 Interface Configuration Mode 1-3

Cisco IOS Commands for Access Points
 and Bridges 2-1

List of Supported Cisco IOS Commands A-1
Preface

Audience

This guide is for the networking professional using the Cisco IOS command-line interface (CLI) to manage Cisco Aironet access points and bridges that run Cisco IOS software. Before using this guide, you should have experience working with Cisco IOS commands and access point and bridge software features. You also need to be familiar with the concepts and terminology of Ethernet and local area networking.

Purpose

This guide provides information about new and revised Cisco IOS commands. For information about the standard Cisco IOS commands, refer to the IOS documentation set available from the Cisco.com home page at:

This guide does not provide procedures for configuring your access point or bridge. For detailed configuration procedures, refer to the Cisco IOS Software Configuration Guide for Cisco Aironet Access Points, the Cisco Aironet 1300 Series Outdoor Access Point/Bridge Software Configuration Guide, or the Cisco Aironet 1400 Series Bridge Software Configuration Guide for this release.

Organization

This guide is organized into these sections:

Chapter 1, “Using the Command-Line Interface,” describes how to access the command modes and use the command-line interface (CLI) to configure software features.

Chapter 2, “Cisco IOS Commands for Access Points and Bridges,” describes in alphabetical order the Cisco IOS commands that you use to configure and monitor your access point or bridge.

Appendix A, “List of Supported Cisco IOS Commands,” lists the Cisco IOS commands that access points and bridges support. Cisco IOS commands that are not in this list have not been tested on access points and bridges and might not be supported.
Conventions

This publication uses these conventions to convey instructions and information:

Command descriptions use these conventions:

• Commands and keywords are in boldface text.
• Arguments for which you supply values are in italic.
• Square brackets ([]) means optional elements.
• Braces ({ }) group required choices, and vertical bars (|) separate the alternative elements.
• Braces and vertical bars within square brackets ({{ | }}) mean a required choice within an optional element.

Notes, cautions, and warnings use these conventions and symbols:

Note

Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.

Caution

Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Warning

The warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents.

Related Publications

These documents provide complete information about the access point and are available from this Cisco.com site:

• Getting Started Guide: Cisco Aironet 1260 Series Access Points; Getting Started Guide: Cisco Aironet 1040 Series Access Points; Quick Start Guide: Cisco Aironet 1250 Series Access Points; and Quick Start Guide: Cisco Aironet 1400 Series Wireless Bridges describe how to attach cables, mount the access point or bridge, and how to obtain product documentation. A quick start guide is included in the shipping box with your access point or bridge.

• Release Notes for Cisco Aironet Access Points for Cisco IOS Release 12.4(23c)JA and Release Notes for Cisco Aironet Access Points and Bridges for Cisco IOS Release 12.4(21a)JY describe features, important notes, and caveats for access points and bridges running this release.
Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Using the Command-Line Interface

This chapter describes how to use the Cisco IOS command-line interface (CLI) for configuring software features on your access point or bridge.

For a complete description of the new and revised Cisco IOS commands supported by access points and bridges, see Appendix A, “List of Supported Cisco IOS Commands.”

For more information on Cisco IOS commands, refer to the Cisco IOS Release 12.3 Command Summary.

For task-oriented configuration steps, refer to the Cisco IOS Software Configuration Guide for Cisco Aironet Access Points or the Cisco Aironet 1400 Series Wireless Bridge Software Configuration Guide.

Type of Memory

The access point and bridge Flash memory stores the Cisco IOS software image, the startup configuration file, and helper files.

CLI Command Modes

This section describes the CLI command mode structure. Command modes support specific Cisco IOS commands. For example, the `interface interface-id` command works only when entered in global configuration mode.

These are the main command modes for access points and bridges:
- User EXEC
- Privileged EXEC
- Global configuration
- Interface configuration

Table 1-1 lists the main command modes, how to access each mode, the prompt you see in that mode, and how to exit that mode. The prompts listed use the default name `ap`.
Table 1-1 Command Modes Summary

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>This is the first level of access. Change terminal settings, perform basic tasks, and list system information.</td>
<td>AP></td>
<td>Enter the logout command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, enter the enable command.</td>
<td>AP#</td>
<td>To exit to user EXEC mode, enter the disable command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, enter the configure command.</td>
<td>AP(config)#</td>
<td>To exit to privileged EXEC mode, enter the exit or end command, or press Ctrl-Z.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, specify terminal then specify an interface by entering the interface command followed by the interface type and number.</td>
<td>AP(config-if)#</td>
<td>To exit to privileged EXEC mode, enter the end command, or press Ctrl-Z. To exit to global configuration mode, enter the exit command.</td>
</tr>
</tbody>
</table>

User EXEC Mode

After you access the device, you are automatically in user EXEC command mode. The EXEC commands available at the user level are a subset of those available at the privileged level. In general, use the EXEC commands to temporarily change terminal settings, perform basic tests, and list system information.

The supported commands can vary depending on the version of Cisco IOS software in use. To view a comprehensive list of commands, enter a question mark (?) at the prompt.

AP> ?

Privileged EXEC Mode

Because many of the privileged commands configure operating parameters, privileged access should be password-protected to prevent unauthorized use. The privileged command set includes those commands contained in user EXEC mode, as well as the configure privileged EXEC command through which you access the remaining command modes.

If your system administrator has set a password, you are prompted to enter it before being granted access to privileged EXEC mode. The password does not appear on the screen and is case sensitive.

The privileged EXEC mode prompt is the device name followed by the pound sign (#):

AP#

Enter the enable command to access privileged EXEC mode:

AP> enable
AP#
The supported commands can vary depending on the version of Cisco IOS software in use. To view a comprehensive list of commands, enter a question mark (?) at the prompt.

AP# ?

To return to user EXEC mode, enter the disable privileged EXEC command.

Global Configuration Mode

Global configuration commands apply to features that affect the device as a whole. Use the configure privileged EXEC command to enter global configuration mode. The default is to enter commands from the management console.

When you enter the configure command, a message prompts you for the source of the configuration commands:

AP# configure
Configuring from terminal, memory, or network [terminal]?

You can specify the terminal or memory as the source of configuration commands.

This example shows you how to access global configuration mode:

AP# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
AP(config)#

The supported commands can vary depending on the version of Cisco IOS software in use. To view a comprehensive list of commands, enter a question mark (?) at the prompt:

AP(config)# ?

To exit global configuration command mode and to return to privileged EXEC mode, enter the end or exit command, or press Ctrl-Z.

Interface Configuration Mode

Interface configuration commands modify the operation of the interface. Interface configuration commands always follow a global configuration command, which defines the interface type.

Use the interface interface-id command to access interface configuration mode. The new prompt means interface configuration mode:

AP(config-if)#

The supported commands can vary depending on the version of Cisco IOS software in use. To view a comprehensive list of commands, enter a question mark (?) at the prompt:

AP(config-if)# ?

To exit interface configuration mode and to return to global configuration mode, enter the exit command. To exit interface configuration mode and to return to privileged EXEC mode, enter the end command, or press Ctrl-Z.
Cisco IOS Commands for Access Points and Bridges

This chapter lists and describes Cisco IOS commands in Cisco IOS Release 12.3(8)JA that you use to configure and manage your access point, bridge, and wireless LAN. The commands are listed alphabetically. Refer to Appendix A, “List of Supported Cisco IOS Commands,” for a complete list of Cisco IOS commands supported by access points and bridges.
aaa authentication login default local cache

To set a local login cache for authentication, authorization, and accounting (AAA) authentication, use the `aaa authentication login default local cache` command in global configuration mode. To disable the local login cache, use the `no` form of this command:

```
[no] aaa authentication login default local cache [word | radius | tacacs+]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>word</code></td>
<td>Character string used to name the local login cache used for AAA authentication login.</td>
</tr>
<tr>
<td><code>radius</code></td>
<td>(Optional) Specifies the RADIUS host used for the AAA authentication login.</td>
</tr>
<tr>
<td><code>tacacs+</code></td>
<td>(Optional) Specifies the TACACS+ host used for the AAA authentication login.</td>
</tr>
</tbody>
</table>

Command Default

There is no default for this command.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example creates a local cache for an AAA authentication list called `tac_admin` set as the default list used for all login authentications. This authentication checks the local cache first, and if the information is not available, the authentication server (group `tac_admin`) is contacted and the information is also stored in the local cache.

```
AP(config)# aaa authentication login default cache tac_admin group tac_admin
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa authorization exec default local cache</code></td>
<td>Sets the local cache for AAA exec authorization</td>
</tr>
<tr>
<td><code>aaa cache profile</code></td>
<td>Sets the AAA cache profile name</td>
</tr>
<tr>
<td><code>aaa group server</code></td>
<td>Sets the AAA group server name</td>
</tr>
<tr>
<td><code>cache authorization profile</code></td>
<td>Sets the cache authorization profile name</td>
</tr>
<tr>
<td><code>cache expiry</code></td>
<td>Sets the expiration time for the local cache</td>
</tr>
<tr>
<td><code>server</code></td>
<td>Sets the IP address for the server</td>
</tr>
</tbody>
</table>
aaa authorization exec default local cache

To set a local cache for AAA exec authorization, use the `aaa authorization exec default local cache` command in global configuration mode. To disable the local cache, use the `no` form of this command:

```
[no] aaa authorization exec default local cache [word | radius | tacacs+]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>Character string used to name the local cache for exec AAA authorization.</td>
</tr>
<tr>
<td>radius</td>
<td>(Optional) Specifies the RADIUS server used for the exec AAA authorization.</td>
</tr>
<tr>
<td>tacacs+</td>
<td>(Optional) Specifies the TACACS+ server used for the exec AAA authorization.</td>
</tr>
</tbody>
</table>

Command Default

There is no default for this command.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example creates a local exec mode cache for an AAA authorization list called `tac_admin` set as the default list used for all login authorizations. This authorization checks the local cache first, and if the information is not available, the authorization server (group `tac_admin`) is contacted and the information is also stored in the local cache.

```
AP(config)# aaa authorization exec default cache tac_admin group tac_admin
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa authentication login default local cache</code></td>
<td>Sets local cache for AAA authentication login</td>
</tr>
<tr>
<td><code>aaa cache profile</code></td>
<td>Sets the AAA cache profile name</td>
</tr>
<tr>
<td><code>aaa group server</code></td>
<td>Sets the AAA group server name</td>
</tr>
<tr>
<td><code>cache authentication profile</code></td>
<td>Sets the cache authentication profile name</td>
</tr>
<tr>
<td><code>cache expiry</code></td>
<td>Sets the expiration time for the local cache</td>
</tr>
<tr>
<td><code>server</code></td>
<td>Sets the IP address for the server</td>
</tr>
</tbody>
</table>
aaa cache profile

To set storage rules for the AAA cache, use the **aaa cache profile** command in global configuration mode. To disable the AAA cache profile, use the **no** form of this command:

```
[no] aaa cache profile name
    [no] profile exact match [no-auth]
    [no] regexp match expression [any | only] [no-auth]
    [no] all [no-auth]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Character string used to name the AAA cache profile.</td>
</tr>
<tr>
<td>profile exact match</td>
<td>Specifies a username that must exactly match the AAA server response before the information is saved in the cache.</td>
</tr>
<tr>
<td>no-auth</td>
<td>Specifies that password authentication is not performed.</td>
</tr>
<tr>
<td>regexp match expression</td>
<td>Specifies a regular expression that must match the AAA server response before the information is included in the cache.</td>
</tr>
<tr>
<td>any</td>
<td>Specifies that any AAA server response that matches <code>regexp match expression</code> is saved in the cache.</td>
</tr>
<tr>
<td>only</td>
<td>Specifies that only 1 AAA server response that matches <code>regexp match expression</code> is saved in the cache.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies that all AAA server responses are saved in the cache.</td>
</tr>
</tbody>
</table>

Command Default

There is no default for this command.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example sets a name of admin_cache for the AAA cache profile and only stores AAA server responses with the username *administrator* in the cache.

```
AP(config)# aaa cache admin_cache
AP(config-profile-map)# profile administrator
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authentication login default local cache</td>
<td>Sets local cache for AAA authentication login</td>
</tr>
<tr>
<td>aaa authentication login default local cache</td>
<td>Sets local cache for AAA authentication login</td>
</tr>
<tr>
<td>aaa group server</td>
<td>Sets the AAA group server name</td>
</tr>
<tr>
<td>cache authentication profile</td>
<td>Sets the cache authentication profile name</td>
</tr>
<tr>
<td>cache authorization profile</td>
<td>Sets the cache authorization profile name</td>
</tr>
<tr>
<td>cache expiry</td>
<td>Sets the expiration time for the local cache</td>
</tr>
<tr>
<td>server</td>
<td>Sets the IP address for the server</td>
</tr>
</tbody>
</table>
aaa pod server

To enable inbound user sessions to be disconnected when specific session attributes are presented, use the aaa pod server global configuration command. To disable this feature, use the no form of this command.

Packet of Disconnect (POD) consists of a method of terminating a session that has already been connected. The POD is a RADIUS disconnect_request packet and is intended to be used in situations where the authenticating agent server wants to disconnect the user after the session has been accepted by the RADIUS access_accept packet.

```
aaa pod server {
    auth-type [all | any | session-key] |
    clients IP-address |
    ignore [server-key | session-key] |
    port number |
    server-key string }
```

no aaa pod server

Syntax Description

- `auth-type` (Optional) Specifies the type of authorization required for disconnecting sessions. For 802.11 sessions, the Calling-Station-ID [31] RADIUS attribute must be supplied in the POD request. This is the MAC address of the client. No other attributes are used; therefore all and any have the same effect.

 Note session-key is not supported for 802.11 sessions.

- `any` (Optional) Specifies that the session that matches all attributes sent in the POD packets are disconnected. The POD packet can contain one or more of four key attributes (user-name, framed-IP-address, session-ID, and session-key).

- `all` (Optional) Only a session that matches all four key attributes is disconnected. All is the default.

- `clients address` (Optional) Specifies the IP addresses for up to four RADIUS servers that may be nominated as clients. If this configuration is present and a POD request originates from a device that is not on the list, it is rejected.

- `ignore` (Optional) When set to server-key, the shared secret is not validated when a POD request is received.

- `port number` (Optional) Specifies the unsolicited data packet (UDP) port on which the access point listens for packet of disconnect (POD) requests. If no port is specified, the default 1700 port is used.

- `session-key` (Optional) Specifies that the session that has a matching session-key attribute is disconnected. All other attributes are ignored.

 Note This option is not supported for 802.11 sessions.

- `server-key string` Configures the secret text string that is shared between the network access server and the client workstation. This secret string must be the same on both systems.

Command Default

The POD server function is disabled.
aaa pod server

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(3)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.3(8)JA</td>
<td>The clients and ignore keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines
For a session to be disconnected, the values in one or more of the key fields in the POD request must match the values for a session on one of the network access server ports. Which values must match depends on the auth-type attribute defined in the command. If no auth-type is specified, all four values must match. If no match is found, all connections remain intact and an error response is returned. The key fields are as follows:

- User-Name
- Framed-IP-Address
- Session-Id
- Server-Key

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authentication</td>
<td>Enables authentication.</td>
</tr>
<tr>
<td>aaa accounting</td>
<td>Enables accounting records.</td>
</tr>
<tr>
<td>aaa accounting delay-start</td>
<td>Delays generation of the start accounting record until the user IP address is established.</td>
</tr>
<tr>
<td>debug aaa pod</td>
<td>Displays debug messages related to POD packets.</td>
</tr>
<tr>
<td>radius-server host</td>
<td>Identifies a RADIUS host.</td>
</tr>
</tbody>
</table>
accounting (SSID configuration mode)

Use the `accounting` SSID configuration mode command to enable RADIUS accounting for the radio interface (for the specified SSID). Use the `no` form of the command to disable accounting.

```
[no] accounting list-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>list-name</code></td>
<td>Specifies the name of an accounting list.</td>
</tr>
</tbody>
</table>

| Defaults | This command has no defaults. |

| Command Modes | SSID configuration interface |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.2(4)JA</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

| Usage Guidelines | You create accounting lists using the `aaa accounting` command. These lists indirectly reference the server where the accounting information is stored. |

Examples	This example shows how to enable RADIUS accounting and set the RADIUS server name:
----------------------	AP(config-if-ssid)# `accounting radius1`
	This example shows how to disable RADIUS accounting:
	AP(config-if-ssid)# `no accounting`

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ssid</code></td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
</tbody>
</table>
admission-control (QOS Class interface configuration mode)

Use the `admission-control` QOS Class interface configuration mode command to require call admission control (CAC) traffic for a radio interface. Use the `no` form of the command to remove the setting.

```
[no] admission-control
```

Note
This command is not supported on c1200 and c1100 platforms.

Note
This command is not supported when operating in repeater mode.

Syntax Description
This command has no arguments or keywords.

Defaults
This command has no defaults.

Command Modes
QOS Class interface configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to configure CAC admission control as a requirement for the radio interface:

```
AP(config)# interface dot11radio 0
AP(config-if)# dot11 qos class voice
AP(config-if-qosclass)# admission-control
```

This example shows how to remove the CAC admission control requirement on the radio interface:

```
AP(config-if-qosclass)# no admission-control
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit-traffic (QOS Class interface configuration mode)</td>
<td>Specifies that CAC traffic is enabled for the radio interface.</td>
</tr>
<tr>
<td>cw-max (QOS Class interface configuration mode)</td>
<td>Specifies the CAC maximum contention window size for the radio interface.</td>
</tr>
<tr>
<td>cw-min (QOS Class interface configuration mode)</td>
<td>Specifies the CAC minimum contention window size for the radio interface.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>fixed-slot (QOS Class interface configuration mode)</td>
<td>Specifies the CAC fixed fallback slot time for the radio interface.</td>
</tr>
<tr>
<td>transmit-op (QOS Class interface configuration mode)</td>
<td>Specifies the CAC transmit opportunity time for the radio interface.</td>
</tr>
</tbody>
</table>
admit-traffic (SSID configuration mode)

Use the `admit-traffic` SSID configuration mode command to enable or disable call admission control (CAC) traffic for an SSID. Use the `no` form of the command to disable all CAC traffic for the SSID.

```
[no] admit-traffic
```

Note
This command is not supported when operating in repeater mode.

Syntax Description
This command has no arguments or keywords.

Defaults
By default, the admission control is disabled on all SSIDs.

Command Modes
SSID configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to enable CAC traffic support for the test SSID:

```
AP(config)# dot11 ssid test
AP(config-ssid)# admit-traffic
```

This example shows how to disable CAC traffic on the test SSID:

```
AP(config)# dot11 ssid test
AP(config-ssid)# no admit-traffic
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit-traffic (QOS Class interface configuration mode)</td>
<td>Configures CAC admission control on the access point.</td>
</tr>
<tr>
<td>show dot11 cac</td>
<td>Displays admission control information on the access point.</td>
</tr>
<tr>
<td>traffic-stream</td>
<td>Configures CAC traffic data rates and priorities on the access point.</td>
</tr>
<tr>
<td>debug cac</td>
<td>Provides debug information for CAC admission control on the access point.</td>
</tr>
</tbody>
</table>
admit-traffic (QOS Class interface configuration mode)

Use the admit-traffic QOS Class interface configuration mode command to enable CAC traffic for a radio interface. Use the no form of the command to disable all CAC traffic for the access point.

```
admit-traffic {narrowband | signaling} {infinite | max-channel percent} [roam-channel roam]
no admit-traffic
```

Note
This command is not supported when operating in repeater mode.

Syntax Description
- **narrowband** Specifies that narrowband codecs are allowed on the radio interface.
- **signaling** Specifies that signaling only is allowed on the radio interface.
- **infinite** Specifies unlimited channel utilization is allowed for the CAC traffic on the radio interface.
- **max-channel percent** Specifies the maximum percentage (1 to 100) of channel utilization allowed for CAC traffic on the radio interface.
- **roam-channel roam** Specifies the maximum percentage (1 to 100) of channel utilization that is reserved for roaming CAC traffic on the radio interface.

Defaults
This command has no defaults.

Command Modes
QOS Class interface configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to configure CAC voice traffic parameters for the radio interface:

```
AP(config)# interface dot11radio 0
AP(config-if)# dot11 qos class voice
AP(config-if-qosclass)# narrowband max-channel 30 roam-channel 10 channel-min 10
```

This example shows how to disable CAC traffic on the radio interface:

```
AP(config-if-qosclass)# no admin-traffic
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit-traffic (SSID interface configuration mode)</td>
<td>Enables CAC admission control for an SSID on the access point.</td>
</tr>
<tr>
<td>show dot11 cac</td>
<td>Displays admission control information for the access point.</td>
</tr>
</tbody>
</table>
anonymous-id (dot1x credentials configuration mode)

Use the anonymous-id dot1x credentials configuration mode command to configure an anonymous username for the dot1x credentials. Use the no form of the command to disable anonymous-id.

Syntax: [no] anonymous-id name

Syntax Description

- name: Specifies the anonymous username for the dot1x credentials.

Defaults

This command has no defaults.

Command Modes

SSID configuration interface

Command History

Release | Modification
12.3(8)JA | This command was introduced.

Examples

This example shows how to configure a dot1x certificate anonymous username:

```
AP(config-dot1x-creden)# anonymous-id user1
```

This example shows how to disable the anonymous username:

```
AP(config-dot1x-creden)# no anonymous-id
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x credentials</td>
<td>Configures the dot1x credentials on the access point.</td>
</tr>
<tr>
<td>show dot1x credentials</td>
<td>Displays the configured dot1x credentials on the access point.</td>
</tr>
</tbody>
</table>
antenna

Use the antenna configuration interface command to configure the radio receive or transmit antenna settings. Use the no form of this command to reset the receive antenna to defaults.

```plaintext
[no] antenna
    {gain gain | receive | transmit {diversity | left | middle | right}}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gain gain</td>
<td>Specifies the resultant gain of the antenna attached to the device. Enter a value from –128 to 128 dB. If necessary, you can use a decimal in the value, such as 1.5. Note: This setting does not affect the behavior of the wireless device; it only informs the WLSE on your network of the device's antenna gain.</td>
</tr>
<tr>
<td>receive</td>
<td>Specifies the antenna that the access uses to receive radio signals</td>
</tr>
<tr>
<td>transmit</td>
<td>Specifies the antenna that the access uses to transmit radio signals</td>
</tr>
<tr>
<td>diversity</td>
<td>Specifies the antenna with the best signal</td>
</tr>
<tr>
<td>left</td>
<td>Specifies the left antenna</td>
</tr>
<tr>
<td>middle</td>
<td>Specifies the middle antenna for devices so equipped</td>
</tr>
<tr>
<td>right</td>
<td>Specifies the right antenna</td>
</tr>
</tbody>
</table>

Defaults

The default antenna configuration is diversity.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to specify the right receive antenna option:

```
AP(config-if)# antenna receive right
```

This example shows how to set the receive antenna option to defaults:

```
AP(config-if)# no antenna receive
```

This example shows how to enter an antenna gain setting:

```
AP(config-if)# antenna gain 1.5
```
ampdu

Use the `ampdu` command to allow or disallow the use of 802.11n AMPDU aggregation for a particular class of service. The command should be used on classes of service that have considerable traffic (such as best effort or video) where the packets are transmitted close together in time so that they can be aggregated. The command applies only to the 802.11n radio interfaces.

Use the `no` form of this command to reset the receive antenna to defaults.

```
[no] ampdu
    {transmit |
    {priority [0-7]}
```

Syntax Description

- `ampdu transmit priority [0-7]` Assigns a class of service transmit priority to the selected 802.11n radio interface as follows:
 - Best Effort (0)
 - Background (1)
 - Spare (2)
 - Excellent (3)
 - Control Lead (4)
 - Video <100ms Latency (5)
 - Voice <100ms Latency (6)
 - Network Control (7)

Defaults

AMPDU priority 0 is enabled default.

Command Modes

Configuration interface.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(10b)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to specify AMPDU transmit priority 7 to an 802.11n radio interface:

```
AP(config-if)# ampdu transmit priority 7
```

This example shows how to disable AMPDU transmit priority to the 802.11 radio interface:
authentication (local server configuration mode)

Use the **authentication** local server configuration command to specify the authentication types that are allowed on the local authenticator. By default, a local authenticator access point performs LEAP, EAP-FAST, and MAC-based authentication for up to 50 client devices. You use the **no** form of the authentication command to limit the local authenticator to one or more authentication types.

```
[no] authentication [eapfast] [leap] [mac]
```

Note
This command is not supported on bridges.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eapfast</td>
<td>Specifies that the local authenticator performs EAP-FAST authentication for client devices.</td>
</tr>
<tr>
<td>leap</td>
<td>Specifies that the local authenticator performs LEAP authentication for client devices.</td>
</tr>
<tr>
<td>mac</td>
<td>Specifies that the local authenticator performs MAC-address authentication for client devices.</td>
</tr>
</tbody>
</table>

Defaults
By default, a local authenticator access point performs LEAP, EAP-FAST, and MAC-based authentication. To limit the local authenticator to one or two authentication types, use the **no** form of the command to disable unwanted authentication types.

Command Modes
Local server configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to limit the local authenticator to perform only LEAP authentications for client devices:

```
AP(config-radsrv)# no authentication eapfast
AP(config-radsrv)# no authentication mac
```
Use the `authentication client` configuration interface command to configure a LEAP username and password that the access point uses when authenticating to the network as a repeater.

```
authentication client username username password password
```

Syntax Description
- `username`: Specifies the repeater’s LEAP username
- `password`: Specifies the repeater’s LEAP password

Defaults
This command has no defaults.

Command Modes
SSID configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to configure the LEAP username and password that the repeater uses to authenticate to the network:

```
AP(config-if-ssid)# authentication client username ap-north password buckeye
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ssid</code></td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
authentication key-management

Use the `authentication key-management` SSID configuration mode command to configure the radio interface (for the specified SSID) to support authenticated key management. Cisco Centralized Key Management (CCKM) and Wi-Fi Protected Access (WPA) are the key management types supported on the access point.

`authentication key-management { [wpa version] [cckm] } [optional]`

Note

This command is not supported on bridges.

Syntax Description

- `wpa version {1 | 2}` Specifies WPA MFP version authenticated key management for the SSID
 - Version 1—WPAv1 handshake for TKIP encryption
 - Version 2—WPAv2 handshake for AES-CCMP encryption
- `cckm` Specifies CCKM authenticated key management for the SSID
- `optional` Specifies that client devices that do not support authenticated key management can use the SSID

Defaults

This command has no defaults.

Command Modes

SSID configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(13)JA</td>
<td>This command was modified to allow you to enable both WPA and CCKM for an SSID.</td>
</tr>
<tr>
<td>12.4(3g)JA & 12.3(8)JEB</td>
<td>This command was modified to allow you to specify MFP versions 1 or 2 usage.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to enable authenticated key management for client devices.

- To enable authenticated key management, you must enable a cipher suite using the `encryption mode ciphers` command.
- To support WPA on a wireless LAN where 802.1x-based authentication is not available, you must use the `wpa-psk` command to configure a pre-shared key for the SSID.
- When you enable both WPA and CCKM for an SSID, you must enter `wpa` first and `cckm` second in the command. Any WPA client can attempt to authenticate, but only CCKM voice clients can attempt to authenticate. Only 802.11b and 802.11g radios support WPA and CCKM simultaneously.
To enable both WPA and CCKM, you must set the encryption mode to a cipher suite that includes TKIP.

Examples

This example shows how to enable both WPA and CCKM for an SSID:

```
AP(config-if-ssid)# authentication key-management wpa cckm
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encryption mode ciphers</td>
<td>Specifies a cipher suite</td>
</tr>
<tr>
<td>ssid</td>
<td>Specifies the SSID and enters SSID configuration mode</td>
</tr>
<tr>
<td>wpa-psk</td>
<td>Specifies a pre-shared key for an SSID</td>
</tr>
</tbody>
</table>

authentication network-eap (SSID configuration mode)

Use the `authentication network-eap` SSID configuration mode command to configure the radio interface (for the specified SSID) to support network-EAP authentication with optional MAC address authentication. Use the `no` form of the command to disable network-eap authentication for the SSID.

```
[no] authentication
    network-eap list-name
    [mac-address list-name]
```

Note

The `mac-address` option is not supported on bridges.

Syntax Description

<table>
<thead>
<tr>
<th>list-name</th>
<th>Specifies the list name for EAP authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address list-name</td>
<td>Specifies the list name for MAC authentication</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

SSID configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
authentication open (SSID configuration mode)

Usage Guidelines

Use this command to authenticate clients using the network EAP method, with optional MAC address screening. You define list names for MAC addresses and EAP using the `aaa authentication login` command. These lists define the authentication methods activated when a user logs in and indirectly identify the location where the authentication information is stored.

Note

Using the CLI, you can configure up to 2,048 MAC addresses for filtering. Using the web-browser interface, however, you can configure only up to 43 MAC addresses for filtering.

Examples

This example shows how to set the authentication to open for devices on a specified address list:

```
AP(config-if-ssid)# authentication network-eap list1
```

This example shows how to reset the authentication to default values:

```
AP(config-if-ssid)# no authentication network-eap
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication open (SSID configuration mode)</td>
<td>Specifies open authentication</td>
</tr>
<tr>
<td>authentication shared (SSID configuration mode)</td>
<td>Specifies shared-key authentication</td>
</tr>
<tr>
<td>ssid</td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>

authentication open (SSID configuration mode)

Use the `authentication open` SSID configuration mode command to configure the radio interface (for the specified SSID) to support open authentication and optionally EAP authentication or MAC address authentication. Use the `no` form of the command to disable open authentication for the SSID.

```
[no] authentication open
  [[optional] eap list-name]
  [mac-address list-name [alternate] ]
```

Note

The `mac-address` and `alternate` options are not supported on bridges.

Syntax Description

- `eap list-name` Specifies the list name for EAP authentication
- `optional` Specifies that client devices using either open or EAP authentication can associate and become authenticated. This setting is used mainly by service providers that require special client accessibility.
- `mac-address list-name` Specifies the list name for MAC authentication
- `alternate` Specifies the use of either EAP authentication or MAC address authentication
Defaults

This command has no defaults.

Command Modes

SSID configuration interface

Command History

Release Modification
12.2(4)JA This command was introduced.

Usage Guidelines

Use this command to authenticate clients using the open method, with optional MAC address or EAP screenings. If you use the alternate keyword, the client must pass either MAC address or EAP authentication. Otherwise, the client must pass both authentications. Use the optional keyword to allow client devices using either open or EAP authentication to associate and become authenticated. You define list names for MAC addresses and EAP using the aaa authentication login command. These lists define the authentication methods activated when a user logs in and indirectly identify the location where the authentication information is stored.

Examples

This example shows how to enable open authentication with MAC address restrictions:

AP(config-if-ssid)# authentication open mac-address mac-list1

This example shows how to disable open authentication for the SSID:

AP(config-if-ssid)# no authentication open

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication shared</td>
<td>Specifies shared key authentication</td>
</tr>
<tr>
<td>(SSID configuration mode)</td>
<td></td>
</tr>
<tr>
<td>authentication network-eap</td>
<td>Specifies network EAP authentication</td>
</tr>
<tr>
<td>(SSID configuration mode)</td>
<td></td>
</tr>
<tr>
<td>dot11 ssid</td>
<td>Creates an SSID and enters SSID configuration mode</td>
</tr>
</tbody>
</table>

authentication shared (SSID configuration mode)

Use the authentication shared SSID configuration mode command to configure the radio interface (for the specified SSID) to support shared authentication with optional MAC address authentication and EAP authentication. Use the no form of the command to disable shared authentication for the SSID.

[no] authentication shared
[mac-address list-name]
[eap list-name]

Note

The mac-address option is not supported on bridges.
Cisco IOS Commands for Access Points and Bridges

Chapter 2

beacon

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address list-name</td>
<td>Specifies the list name for MAC authentication</td>
</tr>
<tr>
<td>eap list-name</td>
<td>Specifies the list name for EAP authentication</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

SSID configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to authenticate clients using the shared method, with optional MAC address or EAP screenings. You define list names for MAC addresses and EAP using the `aaa authentication login` command. These lists define the authentication methods activated when a user logs in and indirectly identify the location where the authentication information is stored.

Examples

This example shows how to set the authentication to shared for devices on a MAC address list:

```
AP(config-if-ssid)# authentication shared mac-address mac-list1
```

This example shows how to reset the authentication to default values:

```
AP(config-if-ssid)# no authentication shared
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication open (SSID configuration mode)</td>
<td>Specifies open authentication</td>
</tr>
<tr>
<td>authentication network-eap (SSID configuration mode)</td>
<td>Specifies network EAP authentication</td>
</tr>
<tr>
<td>ssid</td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>

beacon

Use the `beacon` configuration interface command to specify how often the beacon contains a Delivery Traffic Indicator Message (DTIM). Use the `no` form of this command to reset the beacon interval to defaults.

```
[no] beacon { period Kms | dtim-period count }
```
beacon

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period Kms</td>
<td>Specifies the beacon time in Kilomicroseconds (Kms). Kms is a unit of measurement in software terms. K = 1024, m = 10⁻⁶, and s = seconds, so Kms = 0.001024 seconds, 1.024 milliseconds, or 1024 microseconds.</td>
</tr>
<tr>
<td>dtim-period count</td>
<td>Specifies the number of DTIM beacon periods to wait before delivering multicast packets.</td>
</tr>
</tbody>
</table>

Defaults

The default period is 100.
The default dtim-period is 2.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Clients normally wake up each time a beacon is sent to check for pending packets. Longer beacon periods let the client sleep longer and preserve power. Shorter beacon periods reduce the delay in receiving packets.

Controlling the DTIM period has a similar power-saving result. Increasing the DTIM period count lets clients sleep longer, but delays the delivery of multicast packets. Because multicast packets are buffered, large DTIM period counts can cause a buffer overflow.

Examples

This example shows how to specify a beacon period of 15 Kms (15.36 milliseconds):

```
AP(config-if)# beacon period 15
```

This example shows how to set the beacon parameter to defaults:

```
AP(config-if)# no beacon
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
beacon privacy guest-mode

This command must be configured if you wish the beacon frames to use the privacy settings of the guest-mode SSID. If there is no guest-mode SSID configured, the command has no effect. If there is a guest-mode SSID and the command is configured, the privacy bit present in the beacon frames are set to ON/OFF according to how the security (encryption) settings of the guest-mode SSID are configured. The command has no effect in MBSSID mode.

Syntax Description

The complete syntax is [no] beacon privacy guest-mode.

Defaults

This command has no defaults.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is a sample showing how the command is used.

 ap#conf terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 ap(config)#int d0
 ap(config-if)#beacon
 ap(config-if)#beacon ?
 dtim-period dtim period
 period beacon period
 privacy Privacy bit
 ap(config-if)#beacon privacy
 ap(config-if)#beacon privacy ?
 guest-mode Use privacy bit setting of Guest ssid
 ap(config-if)#beacon privacy g
 ap(config-if)#beacon privacy guest-mode ?
 ap(config-if)#beacon privacy guest-mode
 ap(config-if)#end
 ap#
 *Mar 1 23:34:45.583: %SYS-5-CONFIG_I: Configured from console by console
 ap#sh run in d0
 Building configuration...

 Current configuration : 365 bytes
 !
 interface Dot11Radio0
 no ip address
 no ip route-cache
 shutdown
 speed basic-1.0 basic-2.0 basic-5.5 basic-11.0
 station-role root
boot buffersize

To modify the buffer size used to load configuration files, use the **boot buffersize** global configuration command. Use the **no** form of the command to return to the default setting.

```
[ no ] boot buffersize bytes
```

Syntax Description

bytes
Specifies the size of the buffer to be used. Enter a value from 4 KB to 512 KB.

Defaults

The default buffer size for loading configuration files is 32 KB.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Increase the boot buffer size if your configuration file size exceeds 512 KB.

Examples

This example shows how to set the buffer size to 512 KB:

```
AP(config)# boot buffersize 524288
```

boot ios-break

Use the **boot ios-break** global configuration command to enable an access point or bridge to be reset using a **send break** Telnet command.

After you enter the boot ios-break command, you can connect to the access point console port and press Ctrl-[] to bring up the Telnet prompt. At the Telnet prompt, enter **send break**. The access point reboots and reloads the image.

```
[ no ] boot ios-break
```
Syntax Description
This command has no arguments or keywords.

Defaults
This command is disabled by default.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to enable an access point or bridge to be reset using a `send break` Telnet command:

```
AP(config)# boot ios-break
```
boot mode-button

Use the `boot mode-button` global configuration command to enable or disable the operation of the mode button on access points with a console port. This command can be used to prevent password recovery and to prevent unauthorized users from gaining access to the access point CLI.

Use the `no` form of the command to disable the access point mode button.

```
[ no ] boot mode-button
```

⚠️ **Caution**
This command can be used to disable password recovery. If you lose the privileged EXEC password for the access point after entering this command, you need to contact Cisco Technical Assistance Center (TAC) to regain access to the access point CLI.

Syntax Description
This command has no arguments or keywords.

Defaults
This command is enabled by default.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Note
This command requires the 12.3(2)JA or later access point boot loader.

Examples
This example shows how to disable the Mode button on an access point with a console port:

```
AP(config)# no boot mode-button
```

This example shows how to reenable the Mode button on an access point with a console port:

```
AP(config)# boot mode-button
```

⚠️ **Note**
You must know the privileged EXEC password for your access point to access the CLI.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Displays the current boot configuration.</td>
</tr>
<tr>
<td>show boot mode-button</td>
<td>Displays the current status of the mode-button.</td>
</tr>
</tbody>
</table>
boot upgrade

Use the **boot upgrade** global interface command to configure access points and bridges to automatically load a configuration and use DHCP options to upgrade system software.

When your access point renews its IP address with a DHCP request, it uses the details configured on the DHCP server to download a specified configuration file from a TFTP server. If a **boot system** command is part of the configuration file and the unit’s current software version is different, the access point or bridge image is automatically upgraded to the version in the configuration. The access point or bridge reloads and executes the new image.

```
[ no ] boot upgrade
```

Syntax Description
This command has no arguments or keywords.

Defaults
This command is enabled by default.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to prevent an access point or bridge from automatically loading a configuration and upgrading system software:

```
AP(config)# no boot upgrade
```
bridge aging-time

Use the `bridge aging-time` global configuration command to configure the length of time that a dynamic entry can remain in the bridge table from the time the entry is created or last updated.

```
bridge group aging-time seconds
```

Note
This command is supported only on bridges.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Specifies the bridge group</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>Specifies the aging time in seconds</td>
</tr>
</tbody>
</table>

Defaults
The default aging time is 300 seconds.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to configure the aging time for bridge group 1:
```
bridge(config)# bridge 1 aging-time 500
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge forward-time</td>
<td>Specifies a forward delay interval on the bridge</td>
</tr>
<tr>
<td>bridge hello-time</td>
<td>Specifies the interval between the hello BPDUs</td>
</tr>
<tr>
<td>bridge max-age</td>
<td>Specifies the interval that the bridge waits to hear BPDUs from the spanning tree root</td>
</tr>
<tr>
<td>bridge priority</td>
<td>Specifies the bridge STP priority</td>
</tr>
</tbody>
</table>
bridge forward-time

Use the `bridge forward-time` global configuration command to configure the forward delay interval on the bridge.

```
bridge group aging-time seconds
```

Note

This command is supported only on bridges.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Specifies the bridge group</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>Specifies the forward time in seconds</td>
</tr>
</tbody>
</table>

Defaults

The default forward time is 30 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the forward time for bridge group 2:

```
bridge(config)# bridge 2 forward-time 60
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge aging-time</td>
<td>Specifies the length of time that a dynamic entry can remain in the bridge table from the time the entry is created or last updated</td>
</tr>
<tr>
<td>bridge hello-time</td>
<td>Specifies the interval between the hello BPDUs</td>
</tr>
<tr>
<td>bridge max-age</td>
<td>Specifies the interval that the bridge waits to hear BPDUs from the spanning tree root</td>
</tr>
<tr>
<td>bridge priority</td>
<td>Specifies the bridge STP priority</td>
</tr>
</tbody>
</table>
bridge hello-time

Use the **bridge hello-time** global configuration command to configure the interval between hello bridge protocol data units (BPDUs).

```
bridge group hello-time seconds
```

Note

This command is supported only on bridges.

Syntax Description

- **group** Specifies the bridge group
- **seconds** Specifies the hello interval in seconds

Defaults

The default hello time is 2 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the hello time for bridge group 1:

```
bridge(config)# bridge 1 hello-time 15
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge aging-time</td>
<td>Specifies the length of time that a dynamic entry can remain in the bridge table from the time the entry is created or last updated</td>
</tr>
<tr>
<td>bridge forward-time</td>
<td>Specifies a forward delay interval on the bridge</td>
</tr>
<tr>
<td>bridge max-age</td>
<td>Specifies the interval that the bridge waits to hear BPDUs from the spanning tree root</td>
</tr>
<tr>
<td>bridge priority</td>
<td>Specifies the bridge STP priority</td>
</tr>
</tbody>
</table>
bridge max-age

Use the bridge max-age global configuration command to configure the interval that the bridge waits to hear BPDUs from the spanning tree root. If the bridge does not hear BPDUs from the spanning tree root within this specified interval, it assumes that the network has changed and recomputes the spanning-tree topology.

bridge group max-age seconds

Note
This command is supported only on bridges.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>Specifies the bridge group</td>
</tr>
<tr>
<td>seconds</td>
<td>Specifies the max-age interval in seconds (enter a value between 10 and 200 seconds)</td>
</tr>
</tbody>
</table>

Defaults

The default max-age is 15 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the max age for bridge group 1:

bridge(config)# bridge 1 max-age 20

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge aging-time</td>
<td>Specifies the length of time that a dynamic entry can remain in the bridge table from the time the entry is created or last updated</td>
</tr>
<tr>
<td>bridge forward-time</td>
<td>Specifies a forward delay interval on the bridge</td>
</tr>
<tr>
<td>bridge hello-time</td>
<td>Specifies the interval between the hello BPDUs</td>
</tr>
<tr>
<td>bridge priority</td>
<td>Specifies the bridge STP priority</td>
</tr>
</tbody>
</table>
bridge priority

Use the **bridge priority** global configuration command to configure the spanning tree priority for the bridge. STP uses the bridge priority to select the spanning tree root. The lower the priority, the more likely it is that the bridge will become the spanning tree root.

The radio and Ethernet interfaces and the native VLAN on the bridge are assigned to bridge group 1 by default. When you enable STP and assign a priority on bridge group 1, STP is enabled on the radio and Ethernet interfaces and on the primary VLAN, and those interfaces adopt the priority assigned to bridge group 1. You can create bridge groups for sub-interfaces and assign different STP settings to those bridge groups.

```
bridge group priority priority
```

Note
This command is supported only on bridges.

Syntax Description
- `group` Specifies the bridge group to be configured
- `priority` Specifies the STP priority for the bridge

Defaults
The default bridge priority is 32768.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the priority for the bridge:

```
bridge(config-if)# bridge 1 priority 900
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge aging-time</td>
<td>Specifies the length of time that a dynamic entry can remain in the bridge table from the time the entry is created or last updated</td>
</tr>
<tr>
<td>bridge forward-time</td>
<td>Specifies a forward delay interval on the bridge</td>
</tr>
<tr>
<td>bridge hello-time</td>
<td>Specifies the interval between the hello BPDUs</td>
</tr>
<tr>
<td>bridge max-age</td>
<td>Specifies the interval that the bridge waits to hear BPDUs from the spanning tree root</td>
</tr>
</tbody>
</table>
bridge protocol ieee

Use the `bridge number protocol ieee` global configuration command to enable Spanning Tree Protocol (STP) on the bridge. STP is enabled for all interfaces assigned to the bridge group that you specify in the command.

The radio and Ethernet interfaces and the native VLAN on the bridge are assigned to bridge group 1 by default. When you enable STP and assign a priority on bridge group 1, STP is enabled on the radio and Ethernet interfaces and on the primary VLAN, and those interfaces adopt the priority assigned to bridge group 1. You can create bridge groups for sub-interfaces and assign different STP settings to those bridge groups.

```
bridge number protocol ieee [ suspend ]
```

Note
This command is supported only on bridges.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>Specifies the bridge group for which STP is enabled</td>
</tr>
<tr>
<td><code>suspend</code></td>
<td>Suspends STP on the bridge until you re-enable it.</td>
</tr>
</tbody>
</table>

Defaults
STP is disabled by default.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to enable STP for bridge group 1:

```
bridge(config)# bridge 1 protocol ieee
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge aging-time</code></td>
<td>Specifies the length of time that a dynamic entry can remain in the bridge table from the time the entry is created or last updated</td>
</tr>
<tr>
<td><code>bridge forward-time</code></td>
<td>Specifies a forward delay interval on the bridge</td>
</tr>
<tr>
<td><code>bridge hello-time</code></td>
<td>Specifies the interval between the hello BPDUs</td>
</tr>
<tr>
<td><code>bridge max-age</code></td>
<td>Specifies the interval that the bridge waits to hear BPDUs from the spanning tree root</td>
</tr>
</tbody>
</table>
bridge-group block-unknown-source

Use the **bridge-group block-unknown-source** configuration interface command to block traffic from unknown MAC addresses on a specific interface. Use the **no** form of the command to disable unknown source blocking on a specific interface.

For STP to function properly, **block-unknown-source** must be disabled for interfaces participating in STP.

bridge-group group block-unknown-source

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>Specifies the bridge group to be configured</td>
</tr>
</tbody>
</table>

Defaults

When you enable STP on an interface, block unknown source is disabled by default.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to disable block unknown source for bridge group 2:

```
bridge(config-if)# no bridge-group 2 block-unknown-source
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge-group path-cost</td>
<td>Specifies the path cost for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td>bridge-group port-protected</td>
<td>Enables protected port for public secure mode configuration</td>
</tr>
<tr>
<td>bridge-group priority</td>
<td>Specifies the spanning tree priority for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td>bridge-group spanning-disabled</td>
<td>Disables STP on a specific interface</td>
</tr>
<tr>
<td>bridge-group subscriber-loop-control</td>
<td>Enables loop control on virtual circuits associated with a bridge group</td>
</tr>
<tr>
<td>bridge-group unicast-flooding</td>
<td>Enables unicast flooding for a specific interface</td>
</tr>
</tbody>
</table>
bridge-group path-cost

Use the `bridge-group path-cost` configuration interface command to configure the path cost for the bridge Ethernet and radio interfaces. Spanning Tree Protocol (STP) uses the path cost to calculate the shortest distance from the bridge to the spanning tree root.

```
bridge-group group path-cost cost
```

Note

This command is supported only on bridges.

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Specifies the bridge group to be configured</td>
</tr>
<tr>
<td><code>cost</code></td>
<td>Specifies the path cost for the bridge group</td>
</tr>
</tbody>
</table>

Defaults

The default path cost for the Ethernet interface is 19, and the default path cost for the radio interface is 33.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the path cost for bridge group 2:

```
bridge(config-if)# bridge-group 2 path-cost 25
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge protocol ieee</code></td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td><code>bridge-group block-unknown-source</code></td>
<td>Blocks traffic from unknown MAC addresses on a specific interface</td>
</tr>
<tr>
<td><code>bridge-group port-protected</code></td>
<td>Enables protected port for public secure mode configuration</td>
</tr>
<tr>
<td><code>bridge-group priority</code></td>
<td>Specifies the spanning tree priority for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td><code>bridge-group spanning-disabled</code></td>
<td>Disables STP on a specific interface</td>
</tr>
<tr>
<td><code>bridge-group subscriber-loop-control</code></td>
<td>Enables loop control on virtual circuits associated with a bridge group</td>
</tr>
<tr>
<td><code>bridge-group unicast-flooding</code></td>
<td>Enables unicast flooding for a specific interface</td>
</tr>
</tbody>
</table>
bridge-group port-protected

Use the **bridge-group port-protected** configuration interface command to enable protected port for public secure mode configuration. In Cisco IOS software, there is no exchange of unicast, broadcast, or multicast traffic between protected ports.

```
bridge-group bridge-group
    port-protected
```

Syntax Description

- **bridge-group**
 - Specifies the bridge group for port protection

Defaults

This command has no defaults.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enable protected port for bridge group 71:

```
AP(config-if)# bridge-group 71 port-protected
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge-group block-unknown-source</td>
<td>Blocks traffic from unknown MAC addresses on a specific interface</td>
</tr>
<tr>
<td>bridge-group path-cost</td>
<td>Specifies the path cost for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td>bridge-group priority</td>
<td>Specifies the spanning tree priority for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td>bridge-group spanning-disabled</td>
<td>Disables STP on a specific interface</td>
</tr>
<tr>
<td>bridge-group subscriber-loop-control</td>
<td>Enables loop control on virtual circuits associated with a bridge group</td>
</tr>
<tr>
<td>bridge-group unicast-flooding</td>
<td>Enables unicast flooding for a specific interface</td>
</tr>
</tbody>
</table>
bridge-group priority

Use the **bridge-group priority** configuration interface command to configure the spanning tree priority for the bridge Ethernet and radio interfaces. Spanning Tree Protocol (STP) uses the interface priority to select the root interface on the bridge.

The radio and Ethernet interfaces and the native VLAN on the bridge are assigned to bridge group 1 by default. When you enable STP and assign a priority on bridge group 1, STP is enabled on the radio and Ethernet interfaces and on the primary VLAN, and those interfaces adopt the priority assigned to bridge group 1. You can create bridge groups for sub-interfaces and assign different STP settings to those bridge groups.

```
bridge-group group priority priority
```

Syntax Description
- `group` Specifies the bridge group to be configured
- `priority` Specifies the STP priority for the bridge group

Defaults
The default priority for both the Ethernet and radio interfaces is 128.

Command Modes
Configuration interface

Command History
- **Release** 12.2(11)JA
- **Modification** This command was introduced.

Examples
This example shows how to configure the priority for an interface on bridge group 2:

```
bridge(config-if)# bridge-group 2 priority 150
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge protocol ieee</td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td>bridge-group block-unknown-source</td>
<td>Blocks traffic from unknown MAC addresses on a specific interface</td>
</tr>
<tr>
<td>bridge-group path-cost</td>
<td>Specifies the path cost for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td>bridge-group port-protected</td>
<td>Enables protected port for public secure mode configuration</td>
</tr>
<tr>
<td>bridge-group spanning-disabled</td>
<td>Disables STP on a specific interface</td>
</tr>
<tr>
<td>bridge-group subscriber-loop-control</td>
<td>Enables loop control on virtual circuits associated with a bridge group</td>
</tr>
<tr>
<td>bridge-group unicast-flooding</td>
<td>Enables unicast flooding for a specific interface</td>
</tr>
</tbody>
</table>
bridge-group spanning-disabled

Use the `bridge-group spanning-disabled` configuration interface command to disable Spanning Tree Protocol (STP) on a specific interface. Use the no form of the command to enable STP on a specific interface.

For STP to function properly, `spanning-disabled` must be disabled for interfaces participating in STP.

```
bridge-group group spanning-disabled
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Specifies the bridge group to be configured</td>
</tr>
</tbody>
</table>

Defaults

STP is disabled by default.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to disable STP for bridge group 2:

```
bridge(config-if)# bridge-group 2 spanning-disabled
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge protocol ieee</code></td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td><code>bridge-group block-unknown-source</code></td>
<td>Blocks traffic from unknown MAC addresses on a specific interface</td>
</tr>
<tr>
<td><code>bridge-group path-cost</code></td>
<td>Specifies the path cost for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td><code>bridge-group port-protected</code></td>
<td>Enables protected port for public secure mode configuration</td>
</tr>
<tr>
<td><code>bridge-group priority</code></td>
<td>Specifies the spanning tree priority for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td><code>bridge-group subscriber-loop-control</code></td>
<td>Enables loop control on virtual circuits associated with a bridge group</td>
</tr>
<tr>
<td><code>bridge-group unicast-flooding</code></td>
<td>Enables unicast flooding for a specific interface</td>
</tr>
</tbody>
</table>
bridge-group subscriber-loop-control

Use the `bridge-group subscriber-loop-control` configuration interface command to enable loop control on virtual circuits associated with a bridge group. Use the `no` form of the command to disable loop control on virtual circuits associated with a bridge group.

For Spanning Tree Protocol (STP) to function properly, `subscriber-loop-control` must be disabled for interfaces participating in STP.

bridge-group group subscriber-loop-control

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Specifies the bridge group to be configured</td>
</tr>
</tbody>
</table>

Defaults

When you enable STP for an interface, subscriber loop control is disabled by default.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to disable subscriber loop control for bridge group 2:

```
bridge(config-if)# no bridge-group 2 subscriber-loop-control
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge protocol ieee</code></td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td><code>bridge-group block-unknown-source</code></td>
<td>Blocks traffic from unknown MAC addresses on a specific interface</td>
</tr>
<tr>
<td><code>bridge-group path-cost</code></td>
<td>Specifies the path cost for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td><code>bridge-group port-protected</code></td>
<td>Enables protected port for public secure mode configuration</td>
</tr>
<tr>
<td><code>bridge-group priority</code></td>
<td>Specifies the spanning tree priority for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td><code>bridge-group spanning-disabled</code></td>
<td>Disables STP on a specific interface</td>
</tr>
<tr>
<td><code>bridge-group unicast-flooding</code></td>
<td>Enables unicast flooding for a specific interface</td>
</tr>
</tbody>
</table>
bridge-group unicast-flooding

Use the `bridge-group unicast-flooding` configuration interface command to enable unicast flooding for a specific interface. Use the `no` form of the command to disable unicast flooding for a specific interface.

```
bridge-group group unicast-flooding
```

Syntax Description

| group | Specifies the bridge group to be configured |

Defaults

Unicast flooding is disabled by default.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure unicast flooding for bridge group 2:

```
bridge(config-if)# bridge-group 2 unicast-flooding
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge protocol ieee</code></td>
<td>Enables STP on the bridge</td>
</tr>
<tr>
<td><code>bridge-group block-unknown-source</code></td>
<td>Blocks traffic from unknown MAC addresses on a specific interface</td>
</tr>
<tr>
<td><code>bridge-group path-cost</code></td>
<td>Specifies the path cost for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td><code>bridge-group port-protected</code></td>
<td>Enables protected port for public secure mode configuration</td>
</tr>
<tr>
<td><code>bridge-group priority</code></td>
<td>Specifies the spanning tree priority for the bridge Ethernet and radio interfaces</td>
</tr>
<tr>
<td><code>bridge-group spanning-disabled</code></td>
<td>Disables STP on a specific interface</td>
</tr>
<tr>
<td><code>bridge-group subscriber-loop-control</code></td>
<td>Enables loop control on virtual circuits associated with a bridge group</td>
</tr>
</tbody>
</table>
broadcast-key

Use the `broadcast-key` configuration interface command to configure the time interval between rotations of the broadcast encryption key used for clients. Use the `no` form of the command to disable broadcast key rotation.

```
[no] broadcast-key
  [vlan vlan-id]
  [change secs]
  [ membership-termination ]
  [ capability-change ]
```

Note
Client devices using static WEP cannot use the access point when you enable broadcast key rotation. When you enable broadcast key rotation, only wireless client devices using 802.1x authentication (such as LEAP, EAP-TLS, or PEAP) can use the access point.

Note
This command is not supported on bridges.

Syntax Description
- `vlan vlan-id` (Optional) Specifies the virtual LAN identification value
- `change secs` (Optional) Specifies the amount of time (in seconds) between the rotation of the broadcast encryption key
- `membership-termination` (Optional) If WPA authenticated key management is enabled, this option specifies that the access point generates and distributes a new group key when any authenticated client device disassociates from the access point. If clients roam frequently among access points, enabling this feature might generate significant overhead.
- `capability-change` (Optional) If WPA authenticated key management is enabled, this option specifies that the access point generates and distributes a dynamic group key when the last non-key management (static WEP) client disassociates, and it distributes the statically configured WEP key when the first non-key management (static WEP) client authenticates. In WPA migration mode, this feature significantly improves the security of key-management capable clients when there are no static-WEP clients associated to the access point.

Defaults
This command has no defaults.

Command Modes
Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Examples

This example shows how to configure vlan10 to support broadcast key encryption with a 5-minute key rotation interval:

```
AP(config-if)# broadcast-key vlan 10 change 300
```

This example shows how to disable broadcast key rotation:

```
AP(config-if)# no broadcast-key
```

cache authentication profile

Use the `cache authentication profile` server configuration command to configure the cache authentication profile. Use the `no` form of the command to disable the cache authentication profile.

```
[no] cache authentication profile name
```

Note

This command is not supported on bridges.

Syntax Description

- `name`: Specifies the name of the cache authentication profile.

Defaults

This command has no defaults.

Command Modes

Server group configuration.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure a RADIUS cache authentication profile:

```
AP(config)# aaa group server radius rad_admin
AP(config-sg-radius)# server 10.19.21.105
AP(config-sg-radius)# cache expiry 5
AP(config-sg-radius)# cache authentication profile admin_cache
```

This example shows how to configure a TACACS+ cache authentication profile:

```
AP(config)# aaa group server tacacs+ tac_admin
AP(config-sg-tacacs+)# server 10.19.21.125
AP(config-sg-tacacs+)# cache expiry 5
AP(config-sg-tacacs+)# cache authentication profile admin_cache
```
cache authorization profile

Use the `cache authorization profile` server configuration command to configure the cache authorization profile. Use the `no` form of the command to disable the cache authorization profile.

```
[no] cache authorization profile name
```

Note
This command is not supported on bridges.

Syntax Description

| name | Specifies the name of the cache authorization profile. |

Defaults

This command has no defaults.

Command Modes

Server group configuration.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure a RADIUS cache authorization profile:

```
AP(config)# aaa group server radius rad_admin
AP(config-sg-radius)# server 10.19.21.105
AP(config-sg-radius)# cache expiry 5
AP(config-sg-radius)# cache authorization profile admin_cache
```

This example shows how to configure a TACACS+ cache authorization profile:

```
AP(config)# aaa group server tacacs+ tac_admin
AP(config-sg-tacacs+)# server 10.19.21.125
AP(config-sg-tacacs+)# cache expiry 5
AP(config-sg-tacacs+)# cache authorization profile admin_cache
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authentication login default local cache</td>
<td>Sets local cache for AAA authentication login.</td>
</tr>
<tr>
<td>aaa authorization exec default local cache</td>
<td>Sets local cache for the AAA authorization exec mode.</td>
</tr>
<tr>
<td>aaa cache profile</td>
<td>Sets the AAA cache profile name.</td>
</tr>
<tr>
<td>cache authentication profile</td>
<td>Sets the cache authentication profile name.</td>
</tr>
<tr>
<td>cache expiry</td>
<td>Sets the expiration time for the server group cache.</td>
</tr>
</tbody>
</table>

cache expiry

Use the `cache expiry` server group configuration command to configure the expiration time of the server group cache. Use the `no` form of the command to disable the cache expiration.

```
[no] cache expiry hours [enforce | failover]
```

Note

This command is not supported on bridges.

Syntax Description

- `hours`: Specifies the amount of time (in hours) before the cache expires. Enter a number from 0 to 2147483647. Zero specifies the cache never expires.
- `enforce`: (Optional) Specifies not to use an expired entry.
- `failover`: (Optional) Specifies that an expired entry is used if all other methods fail.

Defaults

The default cache expiration time is 24 hours.

Command Modes

Server group configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure a RADIUS cache expiration time of 5 hours:

```
AP(config)# aaa group server radius rad_admin
AP(config-sg-radius)# server 10.19.21.105
AP(config-sg-radius)# cache expiry 5
```

This example shows how to configure a TACACS+ cache expiration time of 5 hours:

```
AP(config)# aaa group server tacacs+ tac_admin
AP(config-sg-tacacs+)# server 10.19.21.125
AP(config-sg-tacacs+)# cache expiry 5
```
Use the `cca` configuration interface command to configure the clear channel assessment (CCA) noise floor level for the bridge radio. The value you enter is used as an absolute value of dBm.

```
ccc number
```

Note

This command is supported only on bridges.

Syntax Description

```
number
```

Specifies the radio noise floor in dBm. Enter a number from –60 to 0. Zero configures the radio to use a received validate frame as the CCA indication.

Defaults

The default CCA level is –62 dBm.

Command Modes

Configuration interface

Command History

```
Release | Modification
--------|-------------
12.2(11)JA | This command was introduced.
```

Examples

This example shows how to configure the CCA level for the bridge radio:

```
bridge(config-if)# cca 50
```
Use the **channel** configuration interface command to set the radio channel frequency and the 802.11n radio channel width. Use the **no** form of this command to reset the channel frequency to defaults.

```
[no] channel {number | frequency | least-congested | width [20] [40-above] [40-below] | dfs}
```

802.11n allows both 20-MHz and 40-MHz channel widths consisting of 2 contiguous non-overlapping channels (for example, 2.4-GHz channels 1 and 6)

Note

This command is disabled on 5-GHz radios that support Dynamic Frequency Selection (DFS). All 5-GHz radios configured at the factory for use in the European Union and Singapore support DFS. Radios configured for use in other regulatory domains do not support DFS.

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| number | Specifies a channel number. For a list of channels for the 2.4-GHz radio, see Table 2-1. For a list of channels for the 5-GHz radio, see Table 2-2.
Note The valid numbers depend on the channels allowed in your regulatory region and are set during manufacturing. For additional information, refer to the hardware installation guide for your access point or bridge. |
| frequency | Specifies the center frequency for the radio channel. For a list of center frequencies for the 2.4-GHz access point radio, see Table 2-1. For a list of center frequencies for the 5-GHz access point radio, see Table 2-2. For a list of center frequencies for the 5-GHz bridge radio, see Table 2-3.
Note The valid frequencies depend on the channels allowed in your regulatory region and are set during manufacturing. For additional information, refer to the hardware installation guide for your access point or bridge. |
| least-congested | Enables or disables the scanning for a least busy radio channel to communicate with the client adapter |
| width [20] [40-above] [40-below] | Specifies a channel width. One of the 20-MHz channels is called the control channel. Legacy clients and 20-MHz high throughput clients use the control channel. Beacons can only be sent on this channel. The second 20-MHz channel is called the extension channel. 40-MHz stations may use this channel and the control channel simultaneously.
Use the **width** option to specify a bandwidth to use. This option is available for the 1250 series access point and consists of three available settings: 20, 40-above, and 40-below. Choosing 20 sets the channel width to 20 MHz. Choosing 40-above sets the channel width to 40 MHz with the extension channel above the control channel. Choosing 40-below sets the channel width to 40 MHz with the extension channel below the control channel. |
| dfs | Enables Dynamic Frequency Selection. |
The default channel setting is least-congested.

Table 2-1 Channels and Center Frequencies for 2.4-GHz Radios (both 802.11b and 802.11g)

<table>
<thead>
<tr>
<th>Channel Identifier</th>
<th>Frequency (MHz)</th>
<th>Channel Identifier</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2412</td>
<td>8</td>
<td>2447</td>
</tr>
<tr>
<td>2</td>
<td>2417</td>
<td>9</td>
<td>2452</td>
</tr>
<tr>
<td>3</td>
<td>2422</td>
<td>10</td>
<td>2457</td>
</tr>
<tr>
<td>4</td>
<td>2427</td>
<td>11</td>
<td>2462</td>
</tr>
<tr>
<td>5</td>
<td>2432</td>
<td>12</td>
<td>2467</td>
</tr>
<tr>
<td>6</td>
<td>2437</td>
<td>13</td>
<td>2472</td>
</tr>
<tr>
<td>7</td>
<td>2442</td>
<td>14</td>
<td>2484</td>
</tr>
</tbody>
</table>

Table 2-2 Channels and Center Frequencies for Access Point 5-GHz Radios

<table>
<thead>
<tr>
<th>Channel Identifier</th>
<th>Frequency (MHz)</th>
<th>Channel Identifier</th>
<th>Frequency (MHz)</th>
<th>Channel Identifier</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>5170</td>
<td>100</td>
<td>5500</td>
<td>149</td>
<td>5745</td>
</tr>
<tr>
<td>36</td>
<td>5180</td>
<td>104</td>
<td>5520</td>
<td>153</td>
<td>5765</td>
</tr>
<tr>
<td>38</td>
<td>5190</td>
<td>108</td>
<td>5540</td>
<td>157</td>
<td>5785</td>
</tr>
<tr>
<td>40</td>
<td>5200</td>
<td>112</td>
<td>5560</td>
<td>161</td>
<td>5805</td>
</tr>
<tr>
<td>42</td>
<td>5210</td>
<td>116</td>
<td>5580</td>
<td>165</td>
<td>5825</td>
</tr>
<tr>
<td>44</td>
<td>5220</td>
<td>120</td>
<td>5600</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>46</td>
<td>5230</td>
<td>124</td>
<td>5620</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>48</td>
<td>5240</td>
<td>128</td>
<td>5640</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>52</td>
<td>5260</td>
<td>132</td>
<td>5660</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>56</td>
<td>5280</td>
<td>136</td>
<td>5680</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>60</td>
<td>5300</td>
<td>140</td>
<td>5700</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>64</td>
<td>5320</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2-3 Channels and Center Frequencies for the 1400 Series Bridge 5-GHz Radio

<table>
<thead>
<tr>
<th>Channel Identifier</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>5745</td>
</tr>
<tr>
<td>153</td>
<td>5765</td>
</tr>
<tr>
<td>157</td>
<td>5785</td>
</tr>
<tr>
<td>161</td>
<td>5805</td>
</tr>
</tbody>
</table>
Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(8)JA</td>
<td>Parameters were added to support the 5-GHz access point radio.</td>
</tr>
<tr>
<td>12.2(11)JA</td>
<td>Parameters were added to support the 5-GHz bridge radio.</td>
</tr>
<tr>
<td>12.4(10b)JA</td>
<td>The width option was added to support 2.4-GHz and 5-GHz 802.11n radios.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to set the access point radio to channel 10 with a center frequency of 2457.

```
AP(config-if)# channel 2457
```

This example shows how to set the access point to scan for the least-congested radio channel.

```
AP(config-if)# channel least-congested
```

This example shows how to set the frequency to the default setting:

```
AP(config-if)# no channel
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show controllers dot11radio</td>
<td>Displays the radio controller information and status</td>
</tr>
</tbody>
</table>

channel-match (LBS configuration mode)

Use the `channel-match` location based services (LBS) configuration mode command to specify that the LBS packet sent by an LBS tag must match the radio channel on which the access point receives the packet. If the channel used by the tag and the channel used by the access point do not match, the access point drops the packet.

```
[no] channel-match
```

Syntax Description

This command has no arguments or keywords.

Defaults

The channel match option is enabled by default.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enable the channel match option for an LBS profile:

```
ap(dot11-lbs)# channel-match
```
class-map

Use the `class-map` global configuration command to create a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode. Use the `no` form of this command to delete an existing class map and return to global configuration mode.

```
[no] class-map name
```

Syntax Description

- **name**: Specifies the name of the class map

Defaults

This command has no defaults, and there is not a default class map.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to specify the name of the class for which you want to create or modify class-map match criteria and to enter class-map configuration mode. In this mode, you can enter one `match` command to configure the match criterion for this class.

The `class-map` command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally named service policy applied on a per-interface basis.

After you are in quality of service (QoS) class-map configuration mode, these configuration commands are available:
• **description**: describes the class map (up to 200 characters). The **show class-map** privileged EXEC command displays the description and the name of the class-map.

• **exit**: exits from QoS class-map configuration mode.

• **match**: configures classification criteria. For more information, see the **match (class-map configuration)** command.

• **no**: removes a match statement from a class map.

• **rename**: renames the current class map. If you rename a class map with a name already in use, the message **A class-map with this name already exists** is displayed.

Only one match criterion per class map is supported. For example, when defining a class map, only one **match** command can be issued.

Because only one **match** command per class map is supported, the **match-all** and **match-any** keywords function the same.

Only one access control list (ACL) can be configured in a class map. The ACL can have multiple access control entries (ACEs).

Examples

This example shows how to configure the class map called **class1**. **class1** has one match criterion, which is an access list called **103**.

```
AP(config)# access-list 103 permit any any dscp 10
AP(config)# class-map class1
AP(config-cmap)# match access-group 103
AP(config-cmap)# exit
```

This example shows how to delete the class map **class1**:

```
AP(config)# no class-map class1
```

You can verify your settings by entering the **show class-map** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>match (class-map configuration)</td>
<td>Defines the match criteria ACLs, IP precedence, or IP Differentiated Services Code Point (DSCP) values to classify traffic</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple interfaces to specify a service policy</td>
</tr>
<tr>
<td>show class-map</td>
<td>Displays QoS class maps</td>
</tr>
</tbody>
</table>
clear dot11 aaa authentication mac-authen filter-cache

Use the clear dot11 aaa authentication mac-authen filter-cache privileged EXEC command to clear entries from the MAC authentication cache.

```
clear dot11 aaa authentication mac-authen filter-cache [address]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address</code></td>
<td>Specifies a specific MAC address to clear from the cache.</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear a specific MAC address from the MAC authentication cache:

```
ap# clear dot11 aaa authentication mac-authen filter-cache 7643.798a.87b2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 activity-timeout</td>
<td>Enable MAC authentication caching on the access point.</td>
</tr>
<tr>
<td>show dot11 aaa</td>
<td>Display MAC addresses in the MAC authentication cache.</td>
</tr>
<tr>
<td>authentication</td>
<td></td>
</tr>
<tr>
<td>mac-authen filter-cache</td>
<td></td>
</tr>
</tbody>
</table>
clear dot11 cckm-statistics

Use the clear dot11 cckm-statistics privileged EXEC command to reset CCKM statistics.

```
clear dot11 cckm-statistics
```

Syntax Description
This command has no arguments or keywords.

Defaults
This command has no default setting.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to clear CCKM statistics:

```
AP# clear dot11 cckm-statistics
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 associations</td>
<td>Displays association information for 802.11 devices</td>
</tr>
</tbody>
</table>
clear dot11 client

Use the clear dot11 client privileged EXEC command to deauthenticate a radio client with a specified MAC address. The client must be directly associated with the access point, not a repeater.

```
clear dot11 client {mac-address}
```

Syntax Description

- **mac-address**: Specifies a radio client MAC address (in xxxx.xxxx.xxxx format)

Defaults

This command has no defaults.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to deauthenticate a specific radio client:

```
AP# clear dot11 client 0040.9645.2196
```

You can verify that the client was deauthenticated by entering the following privileged EXEC command:

```
AP# show dot11 associations 0040.9645.2196
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 associations</td>
<td>Displays the radio association table or optionally displays association statistics or association information about repeaters or clients</td>
</tr>
</tbody>
</table>
clear dot11 hold-list

Use the clear dot11 hold-list privileged EXEC command to reset the MAC, LEAP, and EAP authentications hold list.

```
clear dot11 hold-list
```

Syntax Description
This command has no arguments or keywords.

Defaults
This command has no default setting.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to clear the hold-off list of MAC authentications:

```
AP# clear dot11 hold-list
```
clear dot11 statistics

Use the **clear dot11 statistics** privileged EXEC command to reset statistic information for a specific radio interface or for a particular client with a specified MAC address.

```
clear dot11 statistics
   {interface | mac-address}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Specifies a radio interface number</td>
</tr>
<tr>
<td>mac-address</td>
<td>Specifies a client MAC address (in xxxx.xxxx.xxxxx format)</td>
</tr>
</tbody>
</table>

Defaults

This command has no default setting.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear radio statistics for radio interface 0:

```
AP# clear dot11 statistics dot11radio 0
```

This example shows how to clear radio statistics for the client radio with a MAC address of 0040.9631.81cf:

```
AP# clear dot11 statistics 0040.9631.81cf
```

You can verify that the radio interface statistics are reset by entering the following privileged EXEC command:

```
AP# show dot11 associations statistics
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 statistics client-traffic</td>
<td>Displays client traffic statistics</td>
</tr>
<tr>
<td>show interfaces dot11radio</td>
<td>Displays radio interface information</td>
</tr>
<tr>
<td>show interfaces dot11radio statistics</td>
<td>Displays radio interface statistics</td>
</tr>
</tbody>
</table>
clear dot11 ids mfp client statistics

Use the clear dot11 ids mfp client statistics privileged EXEC command to clear MFP-2 statistics on the access point console.

```
clear dot11 ids mfp client statistics
```

Defaults
This command has no default setting.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5(3g)JA & 12.3(8)JEB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to clear ids mfp statistics:

```
AP# clear dot11 ids mfp statistics
```
clear eap sessions

Use the clear eap sessions privileged EXEC command to clear the EAP session information on the access point.

```
clear eap sessions
[credentials profile name]
[interface name [number]]
[method name]
[transport name]
```

Syntax Description

- `credentials profile name` Clears EAP session information for the credentials profile specified by `profile name`.
- `interface interface number` Clears EAP session information for the interface specified by `name` and `number`.
- `method name` Clears EAP session information for the EAP method specified by `name`.
- `transport name` Clears EAP session information for the EAP transport specified by `name`.

Defaults
Clears all session information on the access point.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear all the EAP session information on the access point:

```
AP# clear eap sessions
```

This command shows how to clear all EAP session information for the fast Ethernet interface:

```
AP# clear eap sessions interface fastethernet 0
```

This command shows how to clear all EAP session information for the EAP-FAST method:

```
AP# clear eap sessions method eap-fast
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show eap sessions</td>
<td>Displays all the EAP session information on the access point.</td>
</tr>
</tbody>
</table>
clear iapp rogue-ap-list

Use the **clear iapp rogue-ap-list** privileged EXEC command to clear the list of IAPP rogue access points.

clear iapp rogue-ap-list

Note
This command is not supported on bridges.

Syntax Description
This command has no arguments or keywords.

Defaults
This command has no default setting.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to clear the IAPP rogue access point list:

```
AP# clear iapp rogue-ap-list
```

You can verify that the rogue AP list was deleted by entering the **show iapp rogue-ap-list** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show iapp rogue-ap-list</td>
<td>Displays the IAPP rogue access point list</td>
</tr>
</tbody>
</table>
clear iapp statistics

Use the `clear iapp statistics` privileged EXEC command to clear all the IAPP statistics.

```
clear iapp statistics
```

Syntax Description
This command has no arguments or keywords.

Defaults
This command has no default setting.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear the IAPP statistics:

```
AP# clear iapp statistics
```

You can verify that the IAPP statistics were cleared by entering the following privileged EXEC command:

```
AP# show iapp statistics
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show iapp statistics</code></td>
<td>Displays the IAPP transmit and receive statistics</td>
</tr>
</tbody>
</table>
clear ip igmp snooping membership

Use the `clear ip igmp snooping membership` privileged EXEC command to reset IGMP host membership information on the access point.

```
clear ip igmp snooping membership [vlan vlan id ]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan id</code></td>
<td>Resets IGMP host membership information by VLAN.</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to reset the IGMP membership information on the access point:

```
AP# clear ip igmp snooping membership
```

This example shows how to reset the IGMP membership information by vlan:

```
AP# clear ip igmp snooping membership vlan 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays IGMP snooping group information.</td>
</tr>
<tr>
<td><code>groups</code></td>
<td></td>
</tr>
<tr>
<td><code>ip igmp snooping vlan</code></td>
<td>Enables IGMP snooping for a Catalyst VLAN.</td>
</tr>
</tbody>
</table>
clear wlc cp wds

Use the clear wlc cp wds privileged EXEC command to clear WDS statistics and to remove devices from the WDS database.

```
clear wlc cp wds { [ap [mac-address]] | [mn [mac-address]] } | statistics | aaa authentication mac-authen filter-cache [mac-address] }
```

Syntax Description

- `ap [mac-address]`\: Removes access points from the WDS database. If you specify a MAC address (in the hhhh.hhhh.hhhh format), the command removes the specified device from the WDS database. If you do not specify a MAC address, the command removes all access points from the WDS database.

- `mn [mac-address]`\: Removes client devices (mobile nodes) from the WDS database. If you specify a MAC address (in the hhhh.hhhh.hhhh format), the command removes that device from the WDS database. If you do not specify a MAC address, the command removes all clients from the WDS database.

- `statistics`\: Resets all WDS statistics.

- `aaa authentication mac-authen filter-cache [mac-address]`\: Removes MAC addresses from the access point’s MAC authentication filter cache. If you specify a MAC address (in the hhhh.hhhh.hhhh format), the command removes that device from the filter cache. If you do not specify a MAC address, the command removes all addresses from the cache.

Defaults

This command has no default setting.

Command Modes

Privileged EXEC

Command History

- **Release** 12.2(15)JA
- **Modification** This command was introduced.

Examples

This example shows how to remove an access point from the WDS database:

```
AP# clear wlc cp wds ap 1572.342d.97f4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show wlc cp</code></td>
<td>Displays information on devices participating in Cisco Centralized Key Management (CCKM)</td>
</tr>
<tr>
<td><code>wlc cp wds aaa authentication mac-authen filter-cache</code></td>
<td>Enables MAC authentication caching on the access point</td>
</tr>
</tbody>
</table>
clear wlccp wds recovery statistics

Use the clear wlccp wds recovery statistics privileged EXEC command to clear WDS recovery statistics.

 clear wlccp wds recovery statistics

Syntax Description
This command has no arguments of keywords.

Defaults
This command has no default setting.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to clear the WDS recovery statistics:

 AP# clear wlccp wds recovery statistics

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show wlccp</td>
<td>Displays information on devices participating in Cisco Centralized Key Management (CCKM)</td>
</tr>
</tbody>
</table>
concatenation

Use the concatenation configuration interface command to enable packet concatenation on the bridge radio. Using concatenation, the bridge combines multiple packets into one packet to reduce packet overhead and overall latency, and to increase transmission efficiency.

```
concatenation [ bytes ]
```

Note
This command is supported only on bridges.

Syntax Description

```
bytes
```

(Optional) Specifies a maximum size for concatenated packets in bytes. Enter a value from 1600 to 4000.

Defaults
Concatenation is enabled by default, and the default maximum concatenated packet size is 3500.

Command Modes
Configuration interface

Command History

```
Release Modification
12.2(11)JA  This command was introduced.
```

Examples

This example shows how to configure concatenation on the bridge radio:

```
bridge(config-if)# concatenation 4000
```
countermeasure tkip hold-time

Use the `countermeasure tkip hold-time` configuration interface command to configure a TKIP MIC failure holdtime. If the access point detects two MIC failures within 60 seconds, it blocks all the TKIP clients on that interface for the holdtime period.

```
countermeasure tkip hold-time seconds
```

Syntax Description

| `seconds` | Specifies the length of the TKIP holdtime in seconds (if the holdtime is 0, TKIP MIC failure hold is disabled) |

Defaults

TKIP holdtime is enabled by default, and the default holdtime is 60 seconds.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the TKIP holdtime on the access point radio:

```
ap(config-if)# countermeasure tkip hold-time 120
```
cw-max (QOS Class interface configuration mode)

Use the cw-max QOS Class interface configuration mode command to configure the CAC 802.11 maximum contention window size for a radio interface. Use the no form of the command to remove the setting.

[no] cw-max 0-10

Syntax Description

0-10 Specifies the size of the maximum contention window.

Defaults

When QoS is enabled, the default cw-max settings for access points match the values in Table 2-4, and the default cw-max settings for bridges match the values in Table 2-5.

Table 2-4 Default QoS cw-max Definitions for Access Points

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Max Contention Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>10</td>
</tr>
<tr>
<td>Best Effort</td>
<td>10</td>
</tr>
<tr>
<td>Video <100ms Latency</td>
<td>5</td>
</tr>
<tr>
<td>Voice <100ms Latency</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2-5 Default QoS cw-max Definitions for Bridges

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Max Contention Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>10</td>
</tr>
<tr>
<td>Best Effort</td>
<td>10</td>
</tr>
<tr>
<td>Video <100ms Latency</td>
<td>4</td>
</tr>
<tr>
<td>Voice <100ms Latency</td>
<td>3</td>
</tr>
</tbody>
</table>

Command Modes

QOS Class interface configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the CAC 802.11 maximum contention window size for the radio interface:

AP(config)# interface dot11radio 0
AP(config-if)# dot1 qos class voice
AP(config-if-qosclass)# cw-max 2
This example shows how to remove the CAC 802.11 maximum contention window for the radio interface:

```
AP(config-if-qosclass)# no cw-max
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admission-control (QOS Class interface configuration mode)</td>
<td>Specifies that CAC admission control is required for the radio interface.</td>
</tr>
<tr>
<td>admit-traffic (QOS Class interface configuration mode)</td>
<td>Specifies that CAC traffic is enabled for the radio interface.</td>
</tr>
<tr>
<td>cw-min (QOS Class interface configuration mode)</td>
<td>Specifies the CAC minimum contention window size for the radio interface.</td>
</tr>
<tr>
<td>fixed-slot (QOS Class interface configuration mode)</td>
<td>Specifies the CAC fixed fallback slot time for the radio interface.</td>
</tr>
<tr>
<td>transmit-op (QOS Class interface configuration mode)</td>
<td>Specifies the CAC transmit opportunity time for the radio interface.</td>
</tr>
</tbody>
</table>
cw-min (QOS Class interface configuration mode)

Use the cw-min QOS Class interface configuration mode command to configure the CAC 802.11 minimum contention window size for a radio interface. Use the no form of the command to remove the setting.

[no] cw-min 0-10

Syntax Description

| 0-10 | Specifies the size of the maximum contention window. |

Defaults

When QoS is enabled, the default cw-min settings for access points match the values in Table 2-6, and the default cw-min settings for bridges match the values in Table 2-7.

Table 2-6 Default QoS cw-min Definitions for Access Points

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Max Contention Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>5</td>
</tr>
<tr>
<td>Best Effort</td>
<td>5</td>
</tr>
<tr>
<td>Video <100ms Latency</td>
<td>4</td>
</tr>
<tr>
<td>Voice <100ms Latency</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2-7 Default QoS cw-min Definitions for Bridges

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Min Contention Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>4</td>
</tr>
<tr>
<td>Best Effort</td>
<td>4</td>
</tr>
<tr>
<td>Video <100ms Latency</td>
<td>3</td>
</tr>
<tr>
<td>Voice <100ms Latency</td>
<td>2</td>
</tr>
</tbody>
</table>

Command Modes

QOS Class interface configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the CAC 802.11 minimum contention window size for the radio interface:

AP(config)# interface dot11radio 0
AP(config-if)# dot11 qos class voice
AP(config-if-qosclass)# cw-min 2
This example shows how to remove the CAC 802.11 minimum contention window for the radio interface:

```
AP(config-if-qosclass)# no cw-min
```
debug dot11

Use the `debug dot11` privileged EXEC command to begin debugging of radio functions. Use the `no` form of this command to stop the debug operation.

```
[no] debug dot11
    {events | packets | forwarding | mgmt | network-map | syslog | virtual-interface}
```

Syntax Description

- `events`: Activates debugging of all radio related events
- `packets`: Activates debugging of radio packets received and transmitted
- `forwarding`: Activates debugging of radio forwarded packets
- `mgmt`: Activates debugging of radio access point management activity
- `network-map`: Activates debugging of radio association management network map
- `syslog`: Activates debugging of radio system log
- `virtual-interface`: Activates debugging of radio virtual interfaces

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to begin debugging of all radio-related events:

```
AP# debug dot11 events
```

This example shows how to begin debugging of radio packets:

```
AP# debug dot11 packets
```

This example shows how to begin debugging of the radio system log:

```
AP# debug dot11 syslog
```

This example shows how to stop debugging of all radio related events:

```
AP# no debug dot11 events
```

Related Commands
Command List

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug dot11</code></td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td><code>show interfaces dot11radio</code></td>
<td>Displays configuration and status information for the radio interface</td>
</tr>
</tbody>
</table>
debug dot11 aaa

Use the `debug dot11 aaa` privileged EXEC command to activate debugging of dot11 authentication, authorization, and accounting (AAA) operations. Use the `no` form of this command to stop the debug operation.

```
[no] debug dot11 aaa
    { accounting | authenticator | dispatcher | manager }
```

Syntax Description

<table>
<thead>
<tr>
<th>accounting</th>
<th>Activates debugging of 802.11 AAA accounting packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticator</td>
<td>Activates debugging of MAC and EAP authentication packets. Use these options to activate authenticator debugging:</td>
</tr>
<tr>
<td>all</td>
<td>activates debugging for all authenticator packets</td>
</tr>
<tr>
<td>dispatcher</td>
<td>activates debugging for authentication request handler packets</td>
</tr>
<tr>
<td>mac-authen</td>
<td>activates debugging for MAC authentication packets</td>
</tr>
<tr>
<td>process</td>
<td>activates debugging for authenticator process packets</td>
</tr>
<tr>
<td>rxdata</td>
<td>activates debugging for EAPOL packets from client devices</td>
</tr>
<tr>
<td>state-machine</td>
<td>activates debugging for authenticator state-machine packets</td>
</tr>
<tr>
<td>txdata</td>
<td>activates debugging for EAPOL packets sent to client devices</td>
</tr>
<tr>
<td>dispatcher</td>
<td>Activates debugging of 802.11 AAA dispatcher (interface between Association & Manager) packets</td>
</tr>
<tr>
<td>manager</td>
<td>Activates debugging information for the AAA manager. Use these options to activate AAA manager debugging:</td>
</tr>
<tr>
<td>all</td>
<td>activates all AAA manager debugging</td>
</tr>
<tr>
<td>dispatcher</td>
<td>activates debug information for AAA manager-authenticator dispatch traffic</td>
</tr>
<tr>
<td>keys</td>
<td>activates debug information for AAA manager key processing</td>
</tr>
<tr>
<td>rxdata</td>
<td>activates debugging for AAA manager packets received from client devices</td>
</tr>
<tr>
<td>state-machine</td>
<td>activates debugging for AAA manager state-machine packets</td>
</tr>
<tr>
<td>supplicant</td>
<td>activates debugging for LEAP supplicant packets</td>
</tr>
<tr>
<td>txdata</td>
<td>activates debugging for AAA manager packets sent to client devices</td>
</tr>
</tbody>
</table>

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC
debug dot11 cac

Use the `debug dot11 cac` privileged EXEC command to begin debugging of admission control radio functions. Use the `no` form of this command to stop the debug operation.

```
[no] debug dot11 cac
    {events | unit}
```

Note This command is not supported on repeaters.

Syntax Description

- `events` Activates debugging of radio admission control events.
- `unit` Activates verbose debugging of radio admission control events.

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to begin debugging of dot11 AAA accounting packets:

```
AP# debug dot11 aaa accounting
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays all debug settings</td>
</tr>
<tr>
<td><code>show interfaces dot11radio aaa</code></td>
<td>Optionally displays all radio clients</td>
</tr>
</tbody>
</table>
Examples

This example shows how to begin debugging of all admission control radio-related events:

```
AP# debug dot11 cac events
```

This example shows how to begin verbose debugging of all admission control radio-related events:

```
AP# debug dot11 cac unit
```

This example shows how to stop debugging of all admission control radio-related events:

```
AP# debug dot11 cac events
```

This example shows how to stop verbose debugging of all admission control radio-related events:

```
AP# no debug dot11 cac unit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit-traffic (SSID configuration mode)</td>
<td>Enables CAC admission control for an SSID on the access point.</td>
</tr>
<tr>
<td>admit-traffic (QOS Class interface configuration mode)</td>
<td>Configures CAC admission control on the access point.</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td>show dot11 ids eap</td>
<td>Displays all CAC radio events on the access point.</td>
</tr>
<tr>
<td>traffic-stream</td>
<td>Configures CAC traffic data rates and priorities for a radio interface on the access point.</td>
</tr>
</tbody>
</table>
debug dot11 dot11radio

Use the `debug dot11 dot11radio` privileged EXEC command to turn on radio debug options. These options include run RF monitor mode and trace frames received or transmitted on the radio interface. Use the `no` form of this command to stop the debug operation.

```
[no] debug dot11 dot11radio interface-number (accept-radio-firmware | monitor {ack | address | beacon | crc | lines | plcp | print | probe | store} | print {hex | if | iv | lines | mic | plcp | printf | raw | shortadr} | radio_debug flag-value | stop-on-failure | trace {off | print | store})
```

Syntax Description

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-number</code></td>
<td>Specifies a radio interface number (the 2.4-GHz radio is radio 0, and the 5-GHz radio is radio 1).</td>
</tr>
<tr>
<td><code>accept-radio-firmware</code></td>
<td>Configures the access point to disable checking the radio firmware version</td>
</tr>
<tr>
<td><code>monitor</code></td>
<td>Enables RF monitor mode. Use these options to turn on monitor modes:</td>
</tr>
<tr>
<td>· <code>ack</code></td>
<td>Displays ACK packets. ACK packets acknowledge receipt of a signal, information, or packet.</td>
</tr>
<tr>
<td>· <code>address</code></td>
<td>Displays packets to or from the specified IP address</td>
</tr>
<tr>
<td>· <code>beacon</code></td>
<td>Displays beacon packets</td>
</tr>
<tr>
<td>· <code>crc</code></td>
<td>Displays packets with CRC errors</td>
</tr>
<tr>
<td>· <code>lines</code></td>
<td>Specifies a print line count</td>
</tr>
<tr>
<td>· <code>plcp</code></td>
<td>Displays plcp packets</td>
</tr>
<tr>
<td>· <code>print</code></td>
<td>Enables RF monitor printing mode</td>
</tr>
<tr>
<td>· <code>probe</code></td>
<td>Displays probe packets</td>
</tr>
<tr>
<td>· <code>store</code></td>
<td>Enables RF monitor storage mode</td>
</tr>
<tr>
<td><code>print</code></td>
<td>Enables packet printing. Use these options to turn on packet printing:</td>
</tr>
<tr>
<td>· <code>hex</code></td>
<td>Prints entire packets without formatting</td>
</tr>
<tr>
<td>· <code>if</code></td>
<td>Prints the in and out interfaces for packets</td>
</tr>
<tr>
<td>· <code>iv</code></td>
<td>Prints the packet WEP IV</td>
</tr>
<tr>
<td>· <code>lines</code></td>
<td>Prints the line count for the trace</td>
</tr>
<tr>
<td>· <code>mic</code></td>
<td>Prints the Cisco MIC</td>
</tr>
<tr>
<td>· <code>plcp</code></td>
<td>Displays the PLCP</td>
</tr>
<tr>
<td>· <code>printf</code></td>
<td>Prints using printf instead of buginf</td>
</tr>
<tr>
<td>· <code>raw</code></td>
<td>Prints without formatting data</td>
</tr>
<tr>
<td>· <code>shortadr</code></td>
<td>Prints MAC addresses in short form</td>
</tr>
<tr>
<td><code>stop-on-failure</code></td>
<td>Configures the access point to not restart when the radio driver fails</td>
</tr>
<tr>
<td><code>trace</code></td>
<td>Enables trace mode. Use these options to turn on trace modes:</td>
</tr>
<tr>
<td>· <code>off</code></td>
<td>Turns off traces</td>
</tr>
<tr>
<td>· <code>print</code></td>
<td>Enables trace printing</td>
</tr>
<tr>
<td>· <code>store</code></td>
<td>Enables trace storage</td>
</tr>
</tbody>
</table>
debug dot11 dot11radio

Defaults
Debugging is not enabled.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enable packet printing with MAC addresses in short form:

```
AP# debug dot11 dot11radio 0 print shortadr
```

This example shows how to begin monitoring of all packets with CRC errors:

```
AP# debug dot11 dot11radio 0 monitor crc
```

This example shows how to stop monitoring of packets with CRC errors:

```
AP# no debug dot11 dot11radio 0 monitor crc
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td>show interfaces dot11radio</td>
<td>Displays configuration and status information for the radio interface</td>
</tr>
<tr>
<td>show interfaces dot11radio statistics</td>
<td>Displays radio interface statistics</td>
</tr>
</tbody>
</table>
debug dot11 ids

Use the debug dot11 ids eap privileged EXEC command to enable debugging for wireless IDS monitoring. Use the no form of the command to disable IDS debugging.

[no] debug dot11 ids {eap | cipher-errors}

Note

This command is not supported on 1400 series bridges.

Syntax Description

eap Activates debugging of IDS authentication events
cipher-errors Activates debugging of cipher errors detected by IDS

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC

Command History

Release Modification
12.3(4)IA This command was introduced.

Examples

This example shows how to activate wireless IDS debugging for authentication events:

AP# debug dot11 ids eap

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 ids eap attempts</td>
<td>Configures limits on authentication attempts and EAPOL flooding on scanner access points in monitor mode</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td>show dot11 ids eap</td>
<td>Displays wireless IDS statistics</td>
</tr>
</tbody>
</table>
debug dot11 ids mfp

Use the debug dot11 ids mfp privileged EXEC command to debug Management Frame Protection (MFP) operations on the access point.

[no] debug dot11 ids mfp
 ap {all | detector | events | generator | io}
 wds {all | detectors | events | generators | statistics}
 wlccp

Syntax Description

- **ap**: Debugs MFP events on the access point.
- **all**: Debugs all MFP events.
- **detectors**: Debugs MFP detector key management events.
- **events**: Debugs high level MFP events.
- **generators**: Debugs MFP generator key management events.
- **io**: Debugs MFP IO (generate or detect frame) events.
- **reporting**: Debugs MFP reporting events.
- **statistics**: Debugs MFP WDS statistics received from the detectors.
- **wds**: Debugs MFP WDS events.
- **wlccp**: Debugs MFP WLCCP messages.

Defaults

There are no defaults for this command.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to debug the MFP detectors on the access point:

```
ap(config)# debug dot11 ids mfp ap detectors
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 ids mfp</td>
<td>Configures MFP parameters on the access point.</td>
</tr>
<tr>
<td>show dot11 ids mfp</td>
<td>Displays MFP parameters on the access point.</td>
</tr>
</tbody>
</table>
debug eap

To display information about Extensible Authentication Protocol (EAP), use the `debug eap` command in privileged EXEC mode. To disable debugging output, use the `no` form of this command.

```
[no] debug eap [all | authenticator | errors | events | fast | gtc | leap | md5 | mschapv2 | packets | peer | sm | tls]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Turns on debugging for all EAP information.</td>
</tr>
<tr>
<td>authenticator</td>
<td>Turns on debugging for EAP authenticator.</td>
</tr>
<tr>
<td>errors</td>
<td>Displays information about EAP packet errors.</td>
</tr>
<tr>
<td>events</td>
<td>Displays information about EAP events.</td>
</tr>
<tr>
<td>fast</td>
<td>Displays information about EAP-Fast authentications.</td>
</tr>
<tr>
<td>gtc</td>
<td>Turns on debugging for EAP-GTC authentications.</td>
</tr>
<tr>
<td>leap</td>
<td>Turns on debugging for EAP-LEAP authentications.</td>
</tr>
<tr>
<td>md5</td>
<td>Turns on debugging for EAP-MD5 authentications.</td>
</tr>
<tr>
<td>mschapv2</td>
<td>Turns on debugging for EAP-MSCHAPV2 authentications.</td>
</tr>
<tr>
<td>packets</td>
<td>Displays EAP packet-related information.</td>
</tr>
<tr>
<td>peer</td>
<td>Turns on debugging for peer EAP authentications.</td>
</tr>
<tr>
<td>sm</td>
<td>Displays EAP state machine transitions.</td>
</tr>
<tr>
<td>tls</td>
<td>Turns on debugging for EAP-TLS authentications.</td>
</tr>
</tbody>
</table>

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 12.3(8)JA | This command was introduced.

Examples

This example shows how to activate debugging for EAP-FAST authentication events:

```
AP# debug eap fast all
```

This example shows how to deactivate EAP-FAST authentication debugging:

```
AP# no debug eap fast all
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
</tbody>
</table>
debug iapp

Use the **debug iapp** privileged EXEC command to begin debugging of IAPP operations. Use the **no** form of this command to stop the debug operation.

```
[no] debug iapp
   {packets | event | error}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>Displays IAPP packets sent and received by the access point. Link test packets are not displayed</td>
</tr>
<tr>
<td>event</td>
<td>Displays significant IAPP events</td>
</tr>
<tr>
<td>error</td>
<td>Displays IAPP software and protocol errors</td>
</tr>
</tbody>
</table>

Defaults

This command has no default setting.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to begin debugging of IAPP packets:

```
AP# debug iapp packet
```

This example shows how to begin debugging of IAPP events:

```
AP# debug iapp events
```

This example shows how to begin debugging of IAPP errors:

```
AP# debug iapp errors
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays all debug settings</td>
</tr>
</tbody>
</table>
debug radius local-server

Use the debug radius local-server privileged EXEC mode command to control the display of debug messages for the local authenticator.

```
debug radius local-server {client | eapfast | error | packets }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client</td>
<td>Activates display of error messages related to failed client authentications to the local authenticator.</td>
</tr>
<tr>
<td>eapfast {encryption</td>
<td>Activates display of messages related to EAP-FAST on the local authenticator.</td>
</tr>
<tr>
<td></td>
<td>events</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>error</td>
<td>Activates display of error messages related to the local authenticator</td>
</tr>
<tr>
<td>packets</td>
<td>Activates display of the content of RADIUS packets sent from and received by the local authenticator</td>
</tr>
</tbody>
</table>

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was first introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to begin debugging for local authenticator errors:

```
AP# debug radius local-server error
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius-server local</td>
<td>Enables the access point as a local authenticator</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
</tbody>
</table>
debug wlan ap

Use the debug wlan ap privileged EXEC command to enable debugging for devices that interact with the access point that provides wireless domain services (WDS).

```
debug wlan ap [mn | rm [statistics | context | packet] | state | wds-discovery]
```

Note
This command is not supported on bridges.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mn</td>
<td>(Optional) Activates display of debug messages related to client devices</td>
</tr>
<tr>
<td>rm [statistics</td>
<td>context</td>
</tr>
<tr>
<td></td>
<td>• statistics—shows statistics related to radio management</td>
</tr>
<tr>
<td></td>
<td>• context—shows the radio management contexts</td>
</tr>
<tr>
<td></td>
<td>• packet—shows output related to packet flow</td>
</tr>
<tr>
<td>state</td>
<td>(Optional) Activates display of debug messages related to access point</td>
</tr>
<tr>
<td></td>
<td>authentication to the WDS access point</td>
</tr>
<tr>
<td>wds-discovery</td>
<td>(Optional) Activates display of debug messages related to the WDS discovery</td>
</tr>
<tr>
<td></td>
<td>process</td>
</tr>
</tbody>
</table>

Defaults
Debugging is not enabled.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was first introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to begin debugging for LEAP-enabled client devices participating in Cisco Centralized Key Management (CCKM):

```
AP# debug wlan ap mn
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td>show wlan</td>
<td>Displays WLCCP information</td>
</tr>
<tr>
<td>show wlan ap</td>
<td></td>
</tr>
</tbody>
</table>
debug wlccp ap rm enhanced-neighbor-list

Use the debug wlccp ap rm enhanced-neighbor-list privileged EXEC command to enable internal debugging information and error messages of the Enhanced Neighbor List feature. Use the no form of the command to disable the debugging and error messages.

[no] debug wlccp ap rm enhanced-neighbor-list

Note
This command is not supported on bridges.

Syntax Description
This command has no arguments or keywords.

Defaults
Debugging is not enabled.

Command Modes
Privileged EXEC

Command History
Release Modification
12.3(8)JA This command was first introduced.

Examples
This example shows how to activate debugging and error messages of the Enhanced Neighbor List feature on the access point:

AP# debug wlccp ap rm enhanced-neighbor-list

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td>show wlccp</td>
<td>Displays WLCCP information</td>
</tr>
<tr>
<td>show wlccp ap rm enhanced-neighbor-list</td>
<td>Displays Enhanced Neighbor List feature related information.</td>
</tr>
<tr>
<td>debug wlccp ap rm enhanced-neighbor-list</td>
<td></td>
</tr>
</tbody>
</table>
debug wlccp packet

Use the debug wlccp packet privileged EXEC command to activate display of packets to and from the access point that provides wireless domain services (WDS).

debug wlccp packet

Note

This command is not supported on bridges.

Syntax Description

This command has no arguments or keywords.

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was first introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to activate display of packets to and from the WDS access point:

```
AP# debug wlccp packet
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td>show wlccp</td>
<td>Displays WLCCP information</td>
</tr>
</tbody>
</table>
debug wlccp rmlib

Use the `debug wlccp rmlib` privileged EXEC command to activate display of radio management library functions on the access point that provides wireless domain services (WDS).

```
AP# debug wlccp rmlib
```

Note
This command is not supported on bridges.

Syntax Description
This command has no arguments or keywords.

Defaults
Debugging is not enabled.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was first introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to activate display of radio management library functions on the access point that provides WDS:

```
AP# debug wlccp rmlib
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td><code>show wlccp</code></td>
<td>Displays WLCCP information</td>
</tr>
</tbody>
</table>
debug wlc cp wds

Use the `debug wlc cp wds` privileged EXEC command to activate display of wireless domain services (WDS) debug messages.

```
 debug wlc cp wds
   aggregator [packet]
   authenticator {all | dispatcher | mac-authen | process | rxdata | state-machine | txdata}
   nm [packet | loopback]
   state
   statistics
```

Note

This command is not supported on bridges.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregator [packet]</td>
<td>(Optional) Activates display of debug messages related to radio management. Use the <code>packet</code> option to display packets from and to the radio management aggregator.</td>
</tr>
<tr>
<td>authenticator {all</td>
<td>dispatcher</td>
</tr>
<tr>
<td>nm [packet</td>
<td>loopback]</td>
</tr>
<tr>
<td>state</td>
<td>(Optional) Activates display of state transitions for access points interacting with the WDS access point.</td>
</tr>
<tr>
<td>statistics</td>
<td>(Optional) Activates display of WDS statistics.</td>
</tr>
</tbody>
</table>

Defaults

Debugging is not enabled.

Command Modes

Privileged EXEC
description (dot1x credentials configuration mode)

Use the `description dot1x credentials` configuration mode command to specify a text description for the dot1x credential. Use the `no` form of the command to disable anonymous-id.

```
[no] description name
```

Syntax Description

```
name
```

Specifies the text description for the dot1x credential.

Defaults

This command has no defaults.

Command Modes

Dot1x credentials configuration interface

Command History

```
Release       Modification
------------- -------------------
12.3(8)JA     This command was introduced.
```

Examples

This example shows how to specify text description for the dot1x credential:

```
AP(config-dot1x-cred)# description This is a test credential
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x credentials</td>
<td>Configures the dot1x credentials on the access point.</td>
</tr>
<tr>
<td>show dot1x credentials</td>
<td>Displays the configured dot1x credentials on the access point.</td>
</tr>
</tbody>
</table>
Use the `dfs band` configuration interface command to prevent the access point from automatically selecting specific groups of 5-GHz channels during dynamic frequency selection (DFS). Use the `no` form of the command to unblock groups of channels.

```
```

Note This command is supported only on 5-GHz radios configured at the factory for use in the European Union and Singapore.

Syntax Description

- `[1]` Specifies frequencies 5.150 to 5.250 GHz. This group of frequencies is also known as the UNII-1 band.
- `[2]` Specifies frequencies 5.250 to 5.350 GHz. This group of frequencies is also known as the UNII-2 band.
- `[3]` Specifies frequencies 5.470 to 5.725 GHz.
- `[4]` Specifies frequencies 5.725 to 5.825 GHz. This group of frequencies is also known as the UNII-3 band.

Defaults

By default, `dfs band 3` is blocked.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(3g)JA & 12.3(8)JEB</td>
<td>This command was modified to provide backward compatibility with clients that do not yet support the new channels in band 3.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to prevent the access point from selecting frequencies 5.150 to 5.350 GHz during DFS:

```
ap(config-if)# dfs band 1 2 block
```

This example shows how to unblock frequencies 5.150 to 5.350 for DFS:

```
ap(config-if)# no dfs band 1 2 block
```

This example shows how to unblock all frequencies for DFS:

```
ap(config-if)# no dfs band block
```
distance

Some regulatory domains limit the 5-GHz channels that can be used in specific locations; for example, indoors or outdoors. Use the **dfs band** command to comply with the regulations in your regulatory domain.

Usage Guidelines

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel</td>
<td>Specifies the radio frequency on which a radio interface operates</td>
</tr>
</tbody>
</table>

distance

Use the **distance** configuration interface command to specify the distance from a root bridge to the non-root bridge or bridges with which it communicates. The distance setting adjusts the bridge’s timeout values to account for the time required for radio signals to travel from bridge to bridge. You do not need to adjust this setting on non-root bridges.

```
distance kilometers
```

Note

This command is supported only on bridges.

Note

If more than one non-root bridge communicates with the root bridge, enter the distance from the root bridge to the non-root bridge that is farthest away.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilometers</td>
<td>Specifies the bridge distance setting (enter a value from 0 to 99 km)</td>
</tr>
</tbody>
</table>

Defaults

In installation mode, the default distance setting is 99 km. In all other modes, such as root and non-root, the default distance setting is 0 km.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the distance setting for the root bridge radio:

```
bridge(config-if)# distance 40
```
dot11 aaa authentication attributes service

Use the `dot11 aaa authentication attributes service` global configuration command to set the service-type attribute in reauthentication requests. By default, the access point sends reauthentication requests to the authentication server with the service-type attribute set to authenticate-only. However, some Microsoft IAS servers do not support the authenticate-only service-type attribute. Depending on the user requirements, set the service-type attribute to login-user or framed-user.

```
dot11 aaa authentication attributes service [login-user | framed-user]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>login-user</th>
<th>Specifies a service-type attribute of login-user.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>framed-user</td>
<td>Specifies a service-type attribute of framed-user to support servers such as radius servers that do not support a login-user service-type.</td>
</tr>
</tbody>
</table>

Defaults

The default service-type attribute in authentication requests is login-user. The default service-type attribute in reauthentication requests is set to authenticate-only.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(25d)JA</td>
<td>This command was modified to introduce framed-user as a service-type option to support radius servers, which do not support the login-user service-type.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 aaa csid</td>
<td>Selects the format for MAC addresses in Called-Station-ID (CSID) and Calling-Station-ID attributes</td>
</tr>
</tbody>
</table>
dot11 aaa authentication mac-authen filter-cache

Use the **dot11 aaa authentication mac-authen filter-cache** global configuration command to enable MAC authentication caching on the access point. MAC authentication caching reduces overhead because the access point authenticates devices in its MAC-address cache without sending the request to your authentication server. When a client device completes MAC authentication to your authentication server, the access point adds the client’s MAC address to the cache.

dot11 aaa authentication mac-authen filter-cache [timeout seconds]

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout seconds</td>
<td>Specifies a timeout value for MAC authentications in the cache.</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

MAC authentication caching is disabled by default. When you enable it, the default timeout value is 1800 (30 minutes).

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure MAC authentication caching with a one-hour timeout:

```ap (config)# dot11 aaa authentication mac-authen filter-cache timeout 3600```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear dot11 aaa authentication mac-authen filter-cache</td>
<td>Clear MAC addresses from the MAC authentication cache.</td>
</tr>
<tr>
<td>show dot11 aaa authentication mac-authen filter-cache</td>
<td>Display MAC addresses in the MAC authentication cache.</td>
</tr>
</tbody>
</table>
dot11 aaa csid

Use the `dot11 aaa csid` global configuration command to select the format for MAC addresses in Called-Station-ID (CSID) and Calling-Station-ID attributes in RADIUS packets.

```
dot11 aaa csid { default | ietf | unformatted }
```

**Syntax Description**

- **default** Specifies the default format for MAC addresses in CSID attributes. The default format looks like this example:
  `0007.85b3.5f4a`
- **ietf** Specifies the Internet Engineering Task Force (IETF) format for MAC addresses in CSID attributes. The IETF format looks like this example:
  `00-07-85-b3-5f-4a`
- **unformatted** Specifies no formatting for MAC addresses in CSID attributes. An unformatted MAC address looks like this example:
  `000785b35f4a`

**Defaults**

The default CSID format looks like this example:

`0007.85b3.5f4a`

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can also use the `wlccp wds aaa csid` command to select the CSID format.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug dot11 aaa</code></td>
<td>Begin debugging of dot11 authentication, authorization, and accounting (AAA) operations</td>
</tr>
</tbody>
</table>
dot11 activity-timeout

Use the dot11 activity-timeout global configuration command to configure the number of seconds that the access point tracks an inactive device (the number depends on its device class). The access point applies the unknown device class to all non-Cisco Aironet devices.

```
dot11 activity-timeout { [client-station | repeater | bridge | workgroup-bridge | unknown] [default <1 - 100000>] [maximum <1 - 100000>] }
```

Syntax Description

- **client-station, repeater, bridge, workgroup-bridge**: Specify Cisco Aironet device classes.
- **unknown**: Specifies unknown (non-Cisco Aironet) device class.
- **default <1 - 100000>**: Specifies the activity timeout value that the access point uses when a device associates and proposes a zero-refresh rate or does not propose a refresh rate.
- **maximum <1 - 100000>**: Specifies the maximum activity timeout allowed for a device regardless of the refresh rate proposed by a device when it associates.

Defaults

Table 2-8 lists the default activity timeouts for each device class. All values are in seconds.

<table>
<thead>
<tr>
<th>Device Class</th>
<th>Default Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>60</td>
</tr>
<tr>
<td>client-station</td>
<td>60</td>
</tr>
<tr>
<td>repeater</td>
<td>60</td>
</tr>
<tr>
<td>bridge</td>
<td>60</td>
</tr>
<tr>
<td>workgroup-bridge</td>
<td>60</td>
</tr>
</tbody>
</table>

Command Modes

- Global configuration

Command History

- Release 12.2(13)JA: This command was introduced.

Examples

This example shows how to configure default and maximum activity timeouts for all device classes:

```
AP(config)# dot11 activity-timeout default 5000 maximum 24000
```

Usage Guidelines

To set an activity timeout for all device types, set a default or maximum timeout without specifying a device class (for example, enter dot11 activity-timeout default 5000). The access point applies the timeout to all device types that are not already configured with a timeout.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot11 adjacent-ap age-timeout</code></td>
<td>Specifies the number of hours an inactive entry remains in the list of adjacent access points</td>
</tr>
<tr>
<td><code>show dot11 associations</code></td>
<td>Display the radio association table, radio association statistics, or association information about wireless devices</td>
</tr>
<tr>
<td><code>show dot11 network-map</code></td>
<td>Displays the radio network map</td>
</tr>
</tbody>
</table>

**dot11 adjacent-ap age-timeout**

Use the `dot11 adjacent-ap age-timeout` global configuration command to specify the number of hours an inactive entry remains in the list of adjacent access points.

```
dot11 adjacent-ap age-timeout hours
```

**Note**

This command is not supported on bridges.

**Syntax Description**

`hours` Specifies the number of hours an inactive entry remains in the list of adjacent access points

**Defaults**

The default age-timeout is 24 hours.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure the timeout setting for inactive entries in the adjacent access point list:

```
AP# dot11 adjacent-ap age-timeout 12
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot11 adjacent-ap</code></td>
<td>Displays the list of adjacent access points</td>
</tr>
</tbody>
</table>
dot11 antenna-alignment

Use the dot11 antenna-alignment privileged EXEC command to activate the antenna-alignment tool for a radio interface.

```
dot11[interface-number] antenna-alignment [timeout]
```

**Note**
Use this command to test and align the wireless antenna with another remote antenna. This command is available only to a wireless device configured as a repeater.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-number</td>
<td>Specifies the radio interface number (The 2.4-GHz is radio 0, and the 5-GHz radio is radio 1.)</td>
</tr>
<tr>
<td>timeout</td>
<td>Specifies the duration of the alignment test in seconds (The range is 1–9999 seconds.)</td>
</tr>
</tbody>
</table>

**Defaults**

There are no defaults for this command.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

During the antenna alignment test, the radio disassociates from its parent, probes adjacent wireless devices, and records the MAC address and signal strength of responses it receives. After the timeout, the radio reassociates with its parent.

You display the last 10 results using the `show dot11 antenna-alignment` command, which lists the MAC addresses and signal level for devices that responded to the probe.

**Examples**

This example shows how to start the antenna-alignment test for radio interface 0 and sets a test duration of 60 seconds:

```
AP# dot11 dot11radio 0 antenna-alignment timeout 60
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 associations</td>
<td>Displays the radio association table</td>
</tr>
<tr>
<td>show dot11 network-map</td>
<td>Displays the radio network map</td>
</tr>
</tbody>
</table>
dot11 arp-cache

Use the `dot11 arp-cache` global configuration command to enable client ARP caching on the access point. ARP caching on the access point reduces the traffic on your wireless LAN and increases client battery life by stopping ARP requests for client devices at the access point. Instead of forwarding ARP requests to client devices, the access point responds to requests on behalf of associated client devices and drops ARP requests that are not directed to clients associated to the access point. When ARP caching is optional, the access point responds on behalf of clients with IP addresses known to the access point but forwards through its radio port any ARP requests addressed to unknown clients. When the access point knows all the IP addresses for associated clients, it drops any ARP requests not directed to its clients. In its beacon, the access point includes an information element to alert client devices that they can safely ignore broadcast messages to increase battery life.

```
[no] dot11 arp-cache [optional]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optional</code></td>
<td>Configures the access point to respond to ARP requests addressed to clients for which the access point knows the IP address but forwards through its radio port any ARP requests addressed to client devices that the access point does not recognize. When the access point learns all the IP addresses for associated clients, it drops any ARP requests not directed to its clients.</td>
</tr>
</tbody>
</table>

**Defaults**

ARP caching is disabled by default.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to enable ARP caching:

```
AP(config)# dot11 arp-cache
```
**dot11 association mac-list**

To specify a MAC address access list used for dot11 association use the `dot11 association mac-list` command.

```
dot11 association mac-list number
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>Specifies a number (700 to 799) for a 48-bit MAC address access list.</td>
</tr>
</tbody>
</table>

**Defaults**

No MAC address access list is assigned.

**Examples**

This example shows the creation of a MAC address access list used to filter one client with a MAC address of 0000.1234.5678.

```
AP(config)# access-list 700 deny 0000.1234.5678 0000.0000.0000
AP(config)# dot11 association mac-list 700
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show access-list</code></td>
<td>Displays the configured access-lists.</td>
</tr>
</tbody>
</table>
**dot11 auto-immune**

Use the `dot11 auto-immune` command to enable or disable protection from Denial of Service (DoS) attacks. This feature protects against auto-immune attacks on the AP.

```
dot11 auto-immune {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the auto-immune feature.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the auto-immune feature.</td>
</tr>
</tbody>
</table>

**Defaults**

This feature is disabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(25d)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A potential attacker can use specially crafted packets to mislead the Intrusion Detection System (IDS) into treating a legitimate client as an attacker. It causes the controller to disconnect this legitimate client and launch a DoS attack. The auto-immune feature, when enabled, is designed to protect against such attacks. However, conversations using Cisco 792x phones might be interrupted intermittently when the auto-immune feature is enabled. If you experience frequent disruptions when using 792x phones, you might want to disable this feature.

**Examples**

This example shows how to enable the auto-immune mode.

```
AP(config)# dot11 auto-immune enable
```
dot11 carrier busy

Use the dot11 carrier busy privileged exec command to display levels of radio activity on each channel.

```
dot11 interface-number carrier busy
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-number</td>
<td>Specifies the radio interface number (The 2.4-GHz radio is radio 0, and the 5-GHz radio is radio 1.)</td>
</tr>
</tbody>
</table>

### Defaults

This command has no defaults.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

During the carrier busy test, the access point or bridge drops all associations with wireless networking devices for about 4 seconds while it conducts the carrier test and then displays the test results.

You can re-display the carrier busy results using the `carrier busy` command.

### Examples

This example shows how to run the carrier busy test for radio interface 0:

```
AP# dot11 d0 carrier busy
```

This example shows the carrier busy test results:

```
Frequency Carrier Busy %
------------- ----------------
5180 0
5200 2
5220 27
5240 5
5260 1
5280 0
5300 3
5320 2
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 carrier busy</td>
<td>Displays the carrier busy test results</td>
</tr>
</tbody>
</table>
dot11 extension aironet

Use the `dot11 extension aironet` configuration interface command to enable or disable Cisco Aironet extensions to the IEEE 802.11b standard. Use the `no` form of this command to disable the Cisco Aironet extensions.

```
[no] dot11 extension aironet
```

**Note**
You cannot disable Cisco Aironet extensions on bridges.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
Cisco Aironet extensions are enabled by default.

**Command Modes**
Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The Cisco Aironet extensions help clients choose the best access point. You must enable these extensions to use advanced features such as Cisco MIC and key hashing. Disable these extensions for non-Cisco clients that misinterpret the extensions.

**Examples**
This example shows how to enable Cisco Aironet extensions for the radio interface:

```
AP(config-if)# dot11 extension aironet
```

This example shows how to disable Cisco Aironet extensions for the radio interface:

```
AP(config-if)# no dot11 extension aironet
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
dot11 extension power native

Use the `dot11 extension power native` configuration interface command to configure the native MIB power table to be used to respond to SNMP queries on the access point power levels. This command works with the `cd11IfPhyNativePowerUseStandard` MIB object of the Cisco DOT11-IF-MIB. Use the `no` form of this command to use the standard MIB power table.

```
[no] dot11 extension power native
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

The standard MIB power table is enabled by default.

**Command Modes**

Configuration interface

**Command History**

```
Release Modification
12.3(7)JA This command was introduced.
```

**Examples**

This example shows how to enable the native MIB power table for the radio interface:

```
AP(config-if)# dot11 extension power native
```

This example shows how to return to the standard MIB power table for the radio interface:

```
AP(config-if)# no dot11 extension power native
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
dot11 holdoff-time

Use the `dot11 holdoff-time` global configuration command to specify the hold-off time for EAP and MAC address authentication. The holdoff time is invoked when a client fails three login attempts or fails to respond to three authentication requests from the access point. Use the `no` form of the command to reset the parameter to defaults.

```
[no] dot11 holdoff-time seconds
```

**Syntax Description**

| seconds | Specifies the hold-off time (1 to 65555 seconds) |

**Defaults**

The default holdoff time is 0 (disabled).

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify a 2-minute hold-off time:

```
AP(config)# dot11 holdoff-time 120
```

This example shows how reset the hold-off time to defaults:

```
AP(config)# dot11 no holdoff-time
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays information on the current running access point configuration</td>
</tr>
</tbody>
</table>
**dot11 ids eap attempts**

Use the `dot11 ids eap attempts` global configuration command to configure the number of authentication attempts and the number of seconds of EAPOL flooding that trigger a fault on a scanner access point in monitor mode.

Setting an authentication failure limit protects your network against a denial-of-service attack called *EAPOL flooding*. The 802.1X authentication that takes place between a client and the access point triggers a series of messages between the access point, the authenticator, and an authentication server using EAPOL messaging. The authentication server can quickly become overwhelmed if there are too many authentication attempts. If not regulated, a single client can trigger enough authentication requests to impact your network.

A scanner access point in monitor mode tracks the rate at which 802.1X clients attempt to authenticate through the access point. If your network is attacked through excessive authentication attempts, the access point generates an alert when the authentication threshold has been exceeded.

```
[no] dot11 ids eap attempts number period seconds
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>Specifies the number of authentication attempts that triggers a fault on a scanner access point in monitor mode</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>Specifies the number of seconds of EAPOL flooding that triggers a fault on a scanner access point in monitor mode</td>
</tr>
</tbody>
</table>

| Defaults           | This command has no defaults.                     |

| Command Modes      | Global configuration                             |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure a limit on authentication attempts and on the duration of EAPOL flooding on a scanner access point in monitor mode:

```
ap(config)# dot11 ids eap attempts 10 period 10
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>debug dot11 ids</code></td>
<td>Enables wireless IDS debugging</td>
</tr>
<tr>
<td></td>
<td><code>show dot11 ids eap</code></td>
<td>Displays IDS statistics</td>
</tr>
</tbody>
</table>
dot11 ids mfp

Use the `dot11 ids mfp` global configuration command to configure Management Frame Protection (MFP) parameters on the access point.

**Note**

To configure an MFP distributor, the access point must be configured as a WDS.

```plaintext
[no] dot11 ids mfp {detector | distributor | generator}
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detector</td>
<td>Enables the MFP detector on the access point.</td>
</tr>
<tr>
<td>distributor</td>
<td>Configures the MFP distributor on the access point.</td>
</tr>
<tr>
<td>generator</td>
<td>Configures an MFP generator.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure the MFP detector, enable the MFP gesticulator, and configure the MFP generator on the access point:

```plaintext
ap(config)# dot11 ids mfp detector
ap(config)# dot11 ids mfp distributor
ap(config)# dot11 ids mfp generator
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 ids mfp</td>
<td>Displays MFP parameters configured on the access point.</td>
</tr>
<tr>
<td>debug dot11 ids mfp</td>
<td>Debugs MFP operations on the access point.</td>
</tr>
</tbody>
</table>
**dot11 igmp snooping-helper**

Use the **dot11 igmp snooping-helper** global configuration command to begin sending IGMP Query requests when a new client associates with the access point. Use the `no` form of this command to disable the IGMP Query requests.

```
[no] dot11 igmp snooping-helper
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

IGMP Query requests are disabled.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to enable IGMP Query requests:

```bash
AP(config)# dot11 igmp snooping-helper
```

This example shows how to stop or disable the IGMP Query requests:

```bash
AP(config)# no dot11 igmp snooping-helper
```
dot11 lbs

Use the dot11 lbs global configuration command to create a location based services (LBS) profile and to enter LBS configuration mode.

[no] dot11 lbs profile-name

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile-name</td>
<td>Specifies the name of the LBS profile</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to create an LBS profile and enter LBS configuration mode:

ap(config)# dot11 lbs southside

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-match (LBS configuration mode)</td>
<td>Specifies that the LBS packet sent by an LBS tag must match the radio channel on which the access point receives the packet</td>
</tr>
<tr>
<td>interface dot11 (LBS configuration mode)</td>
<td>Enables an LBS profile on a radio interface</td>
</tr>
<tr>
<td>method (LBS configuration mode)</td>
<td>Specifies the location method used in an LBS profile</td>
</tr>
<tr>
<td>multicast address (LBS configuration mode)</td>
<td>Specifies the multicast address that LBS tag devices use when they send LBS packets</td>
</tr>
<tr>
<td>packet-type (LBS configuration mode)</td>
<td>Specifies the LBS packet type accepted in an LBS profile</td>
</tr>
<tr>
<td>server-address (LBS configuration mode)</td>
<td>Specifies the IP address of the location server on your network</td>
</tr>
</tbody>
</table>
dot11 linktest

Use the **dot11 linktest** privileged EXEC command to test a radio link between the access point and a client device.

```
dot11 interface-number linktest
[target mac-address]
[count packet-number]
[interval sec]
[packet-size size]
[rate value]
```

**Syntax Description**

- `interface-number` Specifies the radio interface number (The 2.4-GHz radio is radio 0, and the 5-GHz radio is radio 1.)
- `target mac-address` (Optional) Specifies the MAC address (in xxxx.xxxxx.xxx format) of the client device
- `count packet-number` (Optional) Specifies the number of packets (1 to 9999) to send to the client device
- `interval sec` (Optional) Specifies the time interval between tests (from 1 to 10000 seconds)
- `packet-size size` (Optional) Specifies the size of each packet (from 1 to 1400 bytes)
- `rate value` (Optional) Specifies a specific link test data rate.
  - Rates for the 802.11b, 2.4-GHz radio are 1, 2, 5, or 11 Mbps.
  - Rates for the 802.11g, 2.4-GHz radio are 1, 2, 5, 6, 9, 11, 12, 18, 24, 36, 48, or 54 Mbps.
  - Rates for the 5-GHz radio are 6, 9, 12, 18, 24, 36, 48, or 54 Mbps.

**Defaults**

The default target for a root access point is the first client. The default target for a repeater is its parent access point.

The default count specifies that test runs once.

The default interval is 5 seconds.

The default packet-size is 512 bytes.

The default rate is the automatic rate-shifting algorithm.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(8)JA</td>
<td>Parameters were added to support the 5-GHz access point radio.</td>
</tr>
<tr>
<td>12.2(11)JA</td>
<td>Parameters were added to support the 5.8-GHz bridge radio.</td>
</tr>
<tr>
<td>12.2(13)JA</td>
<td>Parameters were added to support the 802.11g, 2.4-GHz access point radio.</td>
</tr>
</tbody>
</table>
dot11 linktest

Usage Guidelines

The link test verifies the radio link between the access point and a client device by sending the client a series of special packets, which the client returns to the access point.

Note

Some client devices, such as non-Cisco wireless clients, wired clients that are connected to a workgroup bridge, or non-Cisco clients connected to a repeater access point, might not respond to link test packets.

The client adds information to the packets that quantify how well it received the request. Results are displayed as a table of packet statistics, quality, and signal-level information.

If you specify an interval, the test repeats continuously separated by the specified number of seconds. To abort the test, type the escape sequence (Ctrl key and ^ key). Without an interval, the test runs once.

Examples

This example shows how to initiate a radio link test to send 10 packets to client MAC address 0040963181CF on radio interface 0:

```
AP# dot11 dot11radio 0 linktest target 0040.9631.81CF count 10
```

This example shows how to initiate a radio link test to send 100 packets of 500 bytes to client MAC address 0040963181CF on radio interface 0:

```
AP# dot11 dot11radio 0 linktest target 0040.9631.81CF packet-size 500 count 100
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces dot11radio statistics</td>
<td>Displays the radio statistics</td>
</tr>
<tr>
<td>show dot11 associations</td>
<td>Displays the radio association table</td>
</tr>
<tr>
<td>show dot11 network-map</td>
<td>Displays the radio network map</td>
</tr>
</tbody>
</table>
dot11 location isocc

Use the `dot11 location isocc` global configuration command to configure location identifiers that the access point sends with all RADIUS authentication and accounting requests.

```
dot11 location isocc ISO-country-code cc country-code ac area-code
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isocc ISO-country-code</code></td>
<td>Specifies the ISO country code that the access point includes in RADIUS authentication and accounting requests.</td>
</tr>
<tr>
<td><code>cc country-code</code></td>
<td>Specifies the International Telecommunication Union (ITU) country code that the access point includes in RADIUS authentication and accounting requests.</td>
</tr>
<tr>
<td><code>ac area-code</code></td>
<td>Specifies the ITU area code that the access point includes in RADIUS authentication and accounting requests.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can find a list of ISO and ITU country and area codes at the ISO and ITU websites. Cisco IOS software does not check the validity of the country and area codes that you enter with this command.

**Examples**

This example shows how to configure the ISO and ITU location codes on the access point:

```
ap(config)# dot11 location isocc us cc 1 ac 408
```

This example shows how the access point adds the SSID used by the client device and how it formats the location-ID string:

```
isocc=us,cc=1,ac=408,network=ACMEWISP_NewarkAirport
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server location</code></td>
<td>Specifies the SNMP system location and the WISPr location-name attribute</td>
</tr>
</tbody>
</table>
dot11 mbssid

Use the dot11 mbssid global configuration command to enable multiple basic SSIDs on all access point radio interfaces.

```
[no] dot11 mbssid
```

**Note**
This command is supported only on access points that contain at least one radio interface that supports multiple basic SSIDs. To determine whether a radio supports multiple basic SSIDs, enter the `show controllers radio_interface` command. Multiple basic SSIDs are supported if the results include this line:
Number of supported simultaneous BSSID on `radio_interface`: 8

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command is disabled by default.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to enable multiple basic SSIDs on all interfaces that support multiple basic SSIDs:
```
ap(config)# dot11 mbssid
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mbssid (SSID configuration mode)</code></td>
<td>Specifies that a BSSID is included in beacons and specifies a DTIM period for the BSSID</td>
</tr>
<tr>
<td><code>show dot11 bssid</code></td>
<td>Displays configured BSSIDs</td>
</tr>
</tbody>
</table>
**dot11 meter**

Use the **dot11 meter** privileged EXEC command to measure the performance of packet forwarding. To display the results, use the **show dot11 statistics metered-traffic** command.

```
dot11 interface-number meter
```

**Syntax Description**

| interface-number | Specifies the radio interface number. The 2.4-GHz radio is radio 0. The 5-GHz radio is radio 1. |

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to activate the meter tool for radio interface 0:

```
AP# dot11 dot11radio 0 meter
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 statistics metered-traffic</td>
<td>Displays packet forwarding performance</td>
</tr>
</tbody>
</table>


**dot11 network-map**

Use the `dot11 network-map` global configuration command to enable the radio network map feature. When enabled, the access point broadcasts a IAPP GenInfo Request every collection interval. This request solicits information from all Cisco access points in the same Layer 2 domain. Upon receiving a GetInfo Request, the access point sends a unicast IAPP GenInfo Response back to the requester. The access point uses these IAPP GenInfo Responses to build a network-map.

```
dot11 network-map [collect-interval]
```

**Syntax Description**

- `collect-interval` Specifies the time interval between IAPP GenInfo Requests (1 to 60 seconds)

**Defaults**

The default collect interval is 5 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to generate a radio network map with a collection interval of 30 seconds:

```
ap(config)# dot11 network-map 30
```

You can verify the network map by using the `show dot11 network-map` EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot11 network-map</code></td>
<td>Displays the radio network map</td>
</tr>
</tbody>
</table>

**dot11 phone**

Use the `dot11 phone` global configuration command to enable or disable IEEE 802.11 compliance phone support. Use the `no` form of this command to disable the IEEE 802.11 phone.

```
[no] dot11 phone dot11e
```

**Note**

This command is not supported on bridges.
**Syntax Description**

`dot11e` Specifies the use of the standard QBSS Load Information Element (IE).

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.3(7)JA</td>
<td>Parameter added for the standard (IEEE 802.11e draft 13) QBSS Load IE.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Enabling IEEE 802.11 compliance phone support adds information to the access point beacons and probe responses. This information helps some 802.11 phones make intelligent choices about the access point to which they should associate. Some phones do not associate with an access point without this additional information.

The `dot11e` parameter enables the future upgrade of the 7920 Wireless Phone firmware to support the standard QBSS Load IE. The new 7920 Wireless Phone firmware will be announced at a later date.

> **Note**

This release continues to support your existing 7920 Wireless Phone firmware. Please do not attempt to use the standard (IEEE 802.11e draft 13) QBSS Load IE with the 7920 Wireless Phone until new phone firmware is available for you to upgrade your phones.

**Examples**

This example shows how to enable IEEE 802.11 phone support with the legacy QBSS Load element:

```
AP(config)# dot11 phone
```

This example shows how to enable IEEE 802.11 phone support with the standard (IEEE 802.11e draft 13) QBSS Load element:

```
AP(config)# no dot11 phone dot11e
```

This example shows how to stop or disable the IEEE 802.11 phone support:

```
AP(config)# no dot11 phone
```
**dot11 priority-map avvid**

Use the **dot11 priority-map avvid** global configuration command to enable or disable Cisco AVVID (Architecture for Voice, Video and Integrated Data) priority mapping. AVVID priority mapping maps Ethernet packets tagged as class of service 5 to class of service 6. This feature enables the access point to apply the correct priority to voice packets for compatibility with Cisco AVVID networks. Use the **no** form of this command to disable AVVID priority mapping.

```markdown
[no] dot11 priority-map avvid
```

- **Note**: This command is not supported on bridges.

- **Syntax Description**: This command has no arguments or keywords.

- **Defaults**: AVVID priority mapping is enabled by default.

- **Command Modes**: Global configuration

- **Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

- **Examples**

  This example shows how to stop or disable AVVID priority mapping:

  ```
 AP(config)# no dot11 priority-map avvid
  ```

  This example shows how to enable AVVID priority mapping:

  ```
 AP(config)# dot11 priority-map avvid
  ```

- **Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to the class whose name you specify</td>
</tr>
<tr>
<td>show class-map</td>
<td>Displays quality of service (QoS) class maps</td>
</tr>
</tbody>
</table>
dot11 qos class

Use the `dot11 qos class` interface configuration mode command to configure QOS class parameters for the radio interface. Use the `no` form of the command to disable the QOS parameters.

```
[no] dot11 qos class {background | best-effort | video | voice}
{ [both] [cell] [local] }
```

**Note**
This command is not supported when operating in repeater mode.

**Syntax Description**
- **background** Specifies the QOS traffic is a background process.
- **best-effort** Specifies the QOS traffic is a best-effort process.
- **video** Specifies the QOS traffic is video data.
- **voice** Specifies the QOS traffic is voice data.
- **both** Specifies the QOS parameters for local and radio use.
- **cell** Specifies the QOS parameters apply to the radio cells.
- **local** Specifies the QOS parameters are for local use only.

**Defaults**
This command has no defaults.

**Command Modes**
Interface configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to specify video traffic support on radio cells:
```
AP(config)# interface dot11radio 1
AP(config-if)# dot11 qos class video cell
AP(config-if-qosclass)#
```

This example shows how to disable video traffic support on radio cells:
```
AP(config-if)# no dot11 qos class video
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit-traffic (QOS Class interface configuration mode)</td>
<td>Configures CAC admission control on the access point.</td>
</tr>
<tr>
<td>show dot11 cac</td>
<td>Displays admission control information on the access point.</td>
</tr>
</tbody>
</table>
### Command: dot11 ssid

Use the `dot11 ssid` global configuration command to create a global SSID. The SSID is inactive until you use the `ssid` configuration interface command to assign the SSID to a specific radio interface.

#### Syntax Description

This command has no arguments or keywords.

#### Defaults

This command has no defaults.

#### Command Modes

Global configuration

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

#### Examples

This example shows how to:

- Create an SSID in global configuration mode
- Configure the SSID for RADIUS accounting
- Set the maximum number of client devices that can associate using this SSID to 15
- Assign the SSID to a VLAN
- Assign the SSID to a radio interface

```
AP# configure terminal
AP(config)# dot11 ssid batman
AP(config-ssid)# accounting accounting-method-list
AP(config-ssid)# max-associations 15
AP(config-ssid)# vlan 3762
AP(config-ssid)# exit
AP(config)# interface dot11radio 0
AP(config-if)# ssid batman
```
dot11 update-group-key

Use the `dot11 update-group-key` privileged EXEC command to trigger an update of the WPA group key. When you enter the command, the access point distributes a new WPA group key to authenticated client devices.

```
dot11 interface-number update-group-key [vlan vlan-id]
```

**Syntax Description**

- `interface-number` Specifies the radio interface number (the 2.4-GHz radio is radio 0; the 5-GHz radio is radio 1)
- `vlan-id` Specifies the VLAN on which the access point sends out the group key update

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

- **Release** 12.2(11)JA
  - **Modification** This command was introduced.

**Examples**

This example shows how to trigger a group key update on VLAN 2:

```
AP# dot11 d0 update-group-key vlan 2
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config ssid</td>
<td>Displays configuration details for SSIDs created in global configuration mode</td>
</tr>
<tr>
<td>ssid</td>
<td>Creates an SSID in configuration interface mode or assigns a globally configured SSID to a specific radio interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication key-management</td>
<td>Configures the radio interface (for a specified SSID) to support authenticated key management</td>
</tr>
</tbody>
</table>
dot11 vlan-name

Use the `dot11 vlan-name` global configuration command to assign a name to a VLAN in addition to its numerical ID.

```
dot11 vlan-name name vlan vlan-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies a name to assign to a VLAN ID. The name can contain up to 32 ASCII characters.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>Specifies the VLAN ID to which the name is assigned.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no default setting.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Keep these guidelines in mind when using VLAN names:

- The mapping of a VLAN name to a VLAN ID is local to each access point, so across your network, you can assign the same VLAN name to a different VLAN ID.

**Note**

If clients on your wireless LAN require seamless roaming, Cisco recommends that you assign the same VLAN name to the same VLAN ID across all access points, or that you use only VLAN IDs without names.

- Every VLAN configured on your access point must have an ID, but VLAN names are optional.
- VLAN names can contain up to 32 ASCII characters. However, a VLAN name cannot be a number between 1 and 4095. For example, `vlan4095` is a valid VLAN name, but `4095` is not. The access point reserves the numbers 1 through 4095 for VLAN IDs.

**Examples**

This example shows how to assign a name to a VLAN:

```
AP(config)# dot11 vlan-name chicago vlan 121
```

You can view VLAN name and ID pairs by using the `show dot11 vlan-name` EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot11 traffic-streams</code></td>
<td>Displays VLAN name and ID pairs.</td>
</tr>
</tbody>
</table>
dot11 wpa handshake init-delay

Use the `dot11 wpa handshake init-delay` configuration command to introduce a delay to start the four-way handshake in WPA PSK or dot1x. This command is applicable to an AP working in root or bridge mode.

**Syntax**
```
dot11 wpa handshake init-delay time
```

**Syntax Description**
- `time`: Specifies the delay value. Valid range is from 0 ms to 10 ms.

**Defaults**
The default timeout is 0 ms.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(25d)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to assign a delay to start the four-way handshake in WPA PSK or dot1x:

```
dot11 wpa handshake init-delay 10
```
**dot11 wpa handshake timeout**

Use the `dot11 wpa handshake timeout` configuration command to adjust the duration before timing out WPA key packet transmission. This timer value may need to be increased with WPA clients in PSP mode.

```
dot11 wpa handshake timeout time
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>time</th>
<th>Specifies the new timeout time. Valid range is from 100ms to 2000ms.</th>
</tr>
</thead>
</table>

**Defaults**

The default timeout is 100ms.

**Command Modes**

Global configuration

**Usage Guidelines**

The WPA handshake timeout timer starts when the access point's state machine submits the key packet for transmission. If the client is in power save mode (PSP) at this time, the timer may expire before the client can come out of PSP mode and the packet can actually be transmitted. For PSP clients, a timeout value of 1000ms may work more reliably.

**dot1x credentials**

Use the `dot1x credentials` global configuration command to configure a dot1x credentials profile. The `no` form of the command disables the profile.

```
[no] dot1x credentials profile-name
```

**Note**

This command is not supported on c1200 and c1100 platforms.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>profile-name</th>
<th>Specifies the name of the dot1x credentials profile.</th>
</tr>
</thead>
</table>

**Defaults**

This command has no default setting.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
**dot1x eap profile (configuration interface mode)**

Use the `dot1x eap profile` command to enable a preconfigured EAP profile for the fast Ethernet interface. Use the `no` form of this command to disable the EAP profile.

```
[no] dot1x eap profile profile-name
```

**Syntax Description**

- `profile-name` Specifies the name of the EAP profile.

**Defaults**

This command has no default setting.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

---

**Usage Guidelines**

Use the `dot1x credentials` command to configure a dot1x credentials profile. Issuing `dot1x credentials profile-name` puts you in dot1x credentials configuration mode where you can specify profile parameters using these subcommands:

**Examples**

This example shows how to configure a dot1x credentials profile and specify the profile description, authentication password, and username:

```
AP(config)# dot1x credentials test
AP(config-dot1x-creden)# description This is a test credential profile
AP(config-dot1x-creden)# password 7 R127A61290H23
AP(config-dot1x-creden)# username John110
AP(config-dot1x-creden)# exit
```
Usage Guidelines

You must first configure an EAP profile before you can enable the profile on the fast Ethernet interface. To configure an EAP profile, use the `eap profile` configuration command. To enable a preconfigured EAP profile on the fast Ethernet interface, use the `dot1x eap profile` configuration interface command.

Examples

This example shows how to enable the preconfigured EAP test profile on the fast Ethernet interface:

```
AP(config)# interface fastethernet 0
AP(config-if)# dot1x eap profile test
```

This example shows how to disable the EAP test profile on the fast Ethernet interface:

```
AP(config)# interface fastethernet 0
AP(config-if)# no dot1x eap profile test
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eap profile</td>
<td>Configures an EAP profile.</td>
</tr>
<tr>
<td>method (eap profile configuration mode)</td>
<td>Specifies the method types for an EAP profile.</td>
</tr>
<tr>
<td>show eap registrations</td>
<td>Displays EAP registrations for the access point.</td>
</tr>
<tr>
<td>show eap sessions</td>
<td>Displays EAP statistics for the access point.</td>
</tr>
</tbody>
</table>
dot1x eap profile (SSID configuration mode)

Use the `dot1x eap profile` SSID configuration mode command to enable a preconfigured EAP profile for the SSID. Use the `no` form of this command to disable the EAP profile.

```
[no] dot1x eap profile profile-name
```

**Syntax Description**

- `profile-name`: Specifies the name of the EAP profile.

**Defaults**

This command has no default setting.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must configure an EAP profile before you can enable the profile for the SSID interface. To configure an EAP profile, use the `eap profile` configuration command. To enable a preconfigured EAP profile for the SSID interface, use the `dot1x eap profile` configuration interface command.

**Examples**

This example shows how to enable the preconfigured EAP profile test on the SSID configuration interface:

```
AP(config)# dot11 ssid EAP_test
AP(config-ssid)# dot1x eap profile test
```

This example shows how to disable the EAP test profile on the SSID interface:

```
AP(config)# dot11 ssid EAP_test
AP(config-ssid)# no dot1x eap profile test
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>eap profile</code></td>
<td>Configures an EAP profile.</td>
</tr>
<tr>
<td><code>method (eap profile configuration mode)</code></td>
<td>Specifies the method types for an EAP profile.</td>
</tr>
<tr>
<td><code>show eap registrations</code></td>
<td>Displays EAP registrations for the access point.</td>
</tr>
<tr>
<td><code>show eap sessions</code></td>
<td>Displays EAP statistics for the access point.</td>
</tr>
</tbody>
</table>
dot1x timeout reauth-period

Use the dot1x timeout reauth-period configuration interface command to configure the dot1x client reauthentication period. The no form of the command disables reauthentication.

[no] dot1x timeout reauth-period {<sec> | server}

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec</td>
<td>Specifies the number of seconds (1 to 65555 seconds).</td>
</tr>
<tr>
<td>server</td>
<td>Specifies reauthentication period is configured on the authentication server.</td>
</tr>
<tr>
<td></td>
<td>If you use this option, configure your authentication server with RADIUS</td>
</tr>
<tr>
<td></td>
<td>attribute 27, Session-Timeout. This attribute sets the maximum number of</td>
</tr>
<tr>
<td></td>
<td>seconds of service to be provided to a client device before termination of</td>
</tr>
<tr>
<td></td>
<td>the session. The server sends this attribute to the access point when a</td>
</tr>
<tr>
<td></td>
<td>client performs EAP authentication.</td>
</tr>
</tbody>
</table>

**Defaults**
The default is Disabled.

**Command Modes**
Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JEA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(21a)JA1</td>
<td>This command was modified.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to configure a dot1x client reauthentication period to a value of 100 seconds:

```
AP(config)# dot1x timeout reauth-period 100
```
dot1x timeout supp-response

Use the `dot1x timeout supp-response` global configuration command to configure the time that an access point waits for the wireless client to reply to an EAP dot1x message. The `no` form of the command disables the timeout.

```
[no] dot1x timeout supp-response time [local]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>time</th>
<th>Specifies the timeout value (1 to 120 seconds).</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td></td>
<td>Specifies that the access point must use the local configured timeout value and ignore the override timeout value from the RADIUS server.</td>
</tr>
</tbody>
</table>

**Defaults**

The default is 30 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure an access point to control the EAP dot1x wireless client response timeout and configure a value of 100 seconds:

```
AP(config)# dot1x timeout supp-response 100 local
```

duplex

To configure the duplex operation on a wireless device’s Ethernet port, use the `duplex` interface configuration command. Use the `no` form of this command to return the system to auto-duplex mode.

```
[no] duplex {auto | full | half}
```

**Note**

Cisco recommends that you use `auto`, the default setting, for both duplex and speed settings on the Ethernet port.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>auto</th>
<th>Specifies auto-duplex operation. Cisco recommends that you use this setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>full</td>
<td>Specifies full-duplex operation.</td>
</tr>
<tr>
<td></td>
<td>half</td>
<td>Specifies auto-duplex operation.</td>
</tr>
</tbody>
</table>
**Defaults**
The default duplex setting is `auto`.

**Command Modes**
Interface configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Cisco recommends that you use `auto`, the default setting, for both the speed and duplex settings on the Ethernet port.

When the access point or bridge receives inline power from a switch, any change in the speed or duplex settings that resets the Ethernet link reboots the unit. If the switch port to which the wireless device is connected is not set to `auto`, you can change the wireless device port to `half` or `full` to correct a duplex mismatch and the Ethernet link is not reset. However, if you change from `half` or `full` back to `auto`, the link is reset and, if the wireless device receives inline power from a switch, the wireless device reboots.

**Note**
The speed and duplex settings on the wireless device Ethernet port must match the Ethernet settings on the port to which the wireless device is connected. If you change the settings on the port to which the wireless device is connected, change the settings on the wireless device Ethernet port to match.

**Examples**
This example shows how to configure the Ethernet port for auto duplex:

```
AP(config-if)# duplex auto
```
eap profile

Use the `eap profile` global configuration command to configure an EAP profile. Use the `no` form of this command to disable the EAP profile.

```plaintext
[no] eap profile profile-name
```

**Note**

This command is not supported on c1200 and c1100 platforms.

**Syntax Description**

`profile-name` Specifies the name of the EAP profile.

**Defaults**

This command has no default setting.

**Command Modes**

Configuration interface

**Command History**

Release Modification
12.3(8)JA This command was introduced.

**Usage Guidelines**

Use the `eap profile` command to configure an eap profile. Issuing the `eap profile` command puts you in dot1x eap profile mode.

You can specify eap profile parameters using these subcommands:

- `description`—Specifies a text description for the EAP profile.
- `method`—Specifies EAP method types for the EAP profile.

**Examples**

This example shows how to create and provide a description for the EAP profile test:

```
AP(config)# eap profile test
AP(config-eap-profile)# description This is a test EAP profile
```

This example shows how to disable the EAP test profile:

```
AP(config-if)# no eap profile test
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>method (eap profile configuration mode)</code></td>
<td>Configures EAP types for the EAP profile.</td>
</tr>
<tr>
<td><code>show eap registrations</code></td>
<td>Displays EAP registrations for the access point.</td>
</tr>
<tr>
<td><code>show eap sessions</code></td>
<td>Displays EAP statistics for the access point.</td>
</tr>
<tr>
<td><code>dot1x eap profile</code></td>
<td>Configures a dot1x EAP profile for an interface.</td>
</tr>
</tbody>
</table>
## eapfast authority

Use the `eapfast authority` command to configure an EAP-FAST authority ID (AID) for a local authenticator access point. The EAP-FAST AID identifies the server that authenticates the EAP-FAST client. The local authenticator sends its AID to an authenticating client, and the client checks its database for a matching AID. If the client does not recognize the AID, it requests a new Protected Access Credential (PAC).

```
[no] eapfast authority {id identifier | info string}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>id identifier</code></td>
<td>Specifies an authority identifier for the local authenticator access point. Enter up to 32 hexadecimal digits for the AID.</td>
</tr>
<tr>
<td><code>info string</code></td>
<td>Specifies an AID information string. The information string is not used during EAP-FAST authentication, but it provides additional information about the local authenticator. Enter up to 32 ASCII characters.</td>
</tr>
</tbody>
</table>

### Defaults

The default AID is LOCAL RADIUS SER.

### Command Modes

Configuration mode for local authenticators

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to configure an AID for the local authenticator access point:

```
AP(config-radsrv)#eapfast authority id ap1200
```

This example shows how to configure an information string for the AID:

```
AP(config-radsrv)#eapfast authority id AP1200 A+G North
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>radius local-server pac-generate</code></td>
<td>Generates a PAC file for an EAP-FAST client</td>
</tr>
</tbody>
</table>
eapfast pac expiry

Use the `eapfast pac expiry` global configuration command to set the Protected Access Credential (PAC) expiration time and grace period for a group of EAP-FAST clients associated to a local authenticator access point.

```plaintext
[no] eapfast pac expiry days [grace days]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>days</code></td>
<td>Specifies the number of days that the PAC is valid for a group of EAP-FAST clients. Enter a number of days from 1 to 4095.</td>
</tr>
<tr>
<td><code>grace days</code></td>
<td>Specifies the grace period after the PAC expires. The PAC remains valid until the end of the grace period. Enter a number of days from 1 to 4095.</td>
</tr>
</tbody>
</table>

**Defaults**

The default is infinite days for both the expiration time and the grace period.

**Command Modes**

Client group configuration mode for local authenticators

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

In this example, PACs for the user group `clerks` expire in 10 days with a grace period of two days:

```plaintext
AP(config)#radius-server local
AP(config-radsrv)#group clerks
AP(config-radsrv-group)#eapfast pac expiry 10 grace 2
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>radius local-server pac-generate</code></td>
<td>Generates a PAC file for an EAP-FAST client</td>
</tr>
</tbody>
</table>
eapfast server-key

Use the **eapfast server-key** command to configure EAP-FAST server keys. The local authenticator uses server keys to encrypt Protected Access Credential (PAC) files that it generates and to decrypt PACs when it is authenticating clients. The server maintains two keys, a primary key and a secondary key, and uses the primary key to encrypt PACs. Periodically, the local authenticator switches keys, making the primary key the secondary and using the secondary key as the primary. If you do not configure server keys, the local authenticator generates keys automatically.

When the local authenticator receives a client PAC, it attempts to decrypt the PAC with the primary key. If decryption fails with the primary key, the authenticator attempts to decrypt the PAC with the secondary key. If decryption fails with the secondary key, the authenticator rejects the PAC as invalid.

```
[no] eapfast server-key {primary {auto-generate | [0 | 7] key} | secondary [0 | 7] key}
```

**Syntax Description**

- **primary {auto-generate | [0 | 7] key**
  
  Specifies a primary EAP-FAST server key. Use the **auto-generate** option to configure the local authenticator to generate a primary server key automatically. To configure a specific key, enter the key preceded by **0** or **7**. Keys can contain up to 32 hexadecimal digits. Enter **0** before the key to enter an unencrypted key. Enter **7** before the key to enter an encrypted key.

- **secondary [0 | 7] key**
  
  Specifies a secondary EAP-FAST server key. Enter the key preceded by **0** or **7**. Keys can contain up to 32 hexadecimal digits. Enter **0** before the key to enter an unencrypted key. Enter **7** before the key to enter an encrypted key.

**Defaults**

By default, the local authenticator generates server keys automatically.

**Command Modes**

Configuration mode for local authenticators

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure a primary server key for the local authenticator access point:

```
AP(config-radsrv)#eapfast server-key primary 0 2468
```

This example shows how to configure a secondary server key:

```
AP(config-radsrv)#eapfast server-key secondary 0 9753
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius local-server pac-generate</td>
<td>Generates a PAC file for an EAP-FAST client</td>
</tr>
</tbody>
</table>
encryption key

Use the encryption key configuration interface command to define a WEP key used for data encryption on the wireless LAN or on a specific virtual LAN (VLAN). Use the no form of the command to remove a specific encryption key.

Note
You need to configure static WEP keys only if your access point supports client devices that use static WEP. If all the client devices that associate to the access point use key management (WPA, CCKM, or 802.1x authentication) you do not need to configure static WEP keys.

Note
Encryption VLAN is not supported on bridges.

Syntax Description

```
[no] encryption
 [vlan vlan-id]
 key 1-4
 size { 40bit | 128Bit }
 encryption-key
 [transmit-key]
```

**Syntax Description**

- `vlan vlan-id` Specifies the VLAN number (1 to 4095)
- `key 1-4` Specifies the number of the key (1 to 4) that is being configured. (A total of four encryption keys can be configured for each VLAN.)
  - **Note** If you configure static WEP with MIC or CMIC, the access point and associated client devices must use the same WEP key as the transmit key, and the key must be in the same key slot on the access point and the clients. See Table 2-9 for a list of WEP key restrictions based on your security configuration.
- `size 40bit` Specifies a 40-bit encryption key
- `size 128bit` Specifies a 128-bit encryption key
- `encryption-key` Specifies the value of the encryption key:
  - A 40-bit encryption key requires 10 (hexadecimal) digits.
  - A 128-bit encryption key requires 26 (hexadecimal) digits.
- `transmit-key` Specifies the key for encrypting transmit data from the access point. Key slot 1 is the default key slot.

**Defaults**

This command has no defaults.

**Command Modes**

Configuration interface
**Encryption Key**

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Using security features such as authenticated key management can limit WEP key configurations. Table 2-9 lists WEP key restrictions based on your security configuration.

**Table 2-9  WEP Key Restrictions**

<table>
<thead>
<tr>
<th>Security Configuration</th>
<th>WEP Key Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCKM or WPA authenticated key management</td>
<td>Cannot configure a WEP key in key slot 1</td>
</tr>
<tr>
<td>LEAP or EAP authentication</td>
<td>Cannot configure a WEP key in key slot 4</td>
</tr>
<tr>
<td>Cipher suite with 40-bit WEP</td>
<td>Cannot configure a 128-bit key</td>
</tr>
<tr>
<td>Cipher suite with 128-bit WEP</td>
<td>Cannot configure a 40-bit key</td>
</tr>
<tr>
<td>Cipher suite with TKIP</td>
<td>Cannot configure any WEP keys</td>
</tr>
<tr>
<td>Cipher suite with TKIP and 40-bit WEP or 128-bit WEP</td>
<td>Cannot configure a WEP key in key slot 1 and 4</td>
</tr>
<tr>
<td>Static WEP with MIC or CMIC</td>
<td>Access point and client devices must use the same WEP key as the transmit key, and the key must be in the same key slot on both access point and clients</td>
</tr>
<tr>
<td>Broadcast key rotation</td>
<td>Keys in slots 2 and 3 are overwritten by rotating broadcast keys</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure a 40-bit encryption key with a value of 11aa33bb55 as WEP key 1 used on VLAN number 1:

```
 AP(config-if)# encryption vlan 1 key 1 size 40bit 11aa33bb55 transmit-key
```

This example shows how to remove WEP key 1 on VLAN 1:

```
 AP(config-if)# no encryption vlan 1 key 1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
encryption mode ciphers

Use the `encryption mode ciphers` configuration interface command to enable a cipher suite. Cipher suites are sets of encryption algorithms that, like WEP, protect radio communication on your wireless LAN. You must use a cipher suite to enable Wi-Fi Protected Access (WPA) or Cisco Centralized Key Management (CCKM).

Because cipher suites provide the protection of WEP while also allowing use of authenticated key management, Cisco recommends that you enable WEP by using the `encryption mode ciphers` command in the CLI or by using the cipher drop-down menu in the web-browser interface. Cipher suites that contain TKIP provide the best security for your wireless LAN, and cipher suites that contain only WEP are the least secure.

**Note** You can also use the `encryption mode wep` command to set up static WEP. However, you should use `encryption mode wep` only if all clients that associate to the access point are not capable of key management.

**Note** Encryption VLAN is not supported on bridges.

```
encryption [vlan vlan] mode ciphers
 [[aes-ccm | ckip | cmic | ckip-cmic | tkip]]
 [[wep128 | wep40]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan vlan</td>
<td>(Optional) Specifies the VLAN number</td>
</tr>
<tr>
<td>aes-ccm</td>
<td>Specifies that AES-CCMP is included in the cipher suite.</td>
</tr>
<tr>
<td>ckip</td>
<td>Specifies that ckip is included in the cipher suite.</td>
</tr>
<tr>
<td>cmic</td>
<td>Specifies that cmic is included in the cipher suite.</td>
</tr>
<tr>
<td>ckip-cmic</td>
<td>Specifies that both ckip and cmic are included in the cipher suite.</td>
</tr>
<tr>
<td>tkip</td>
<td>Specifies that TKIP is included in the cipher suite.</td>
</tr>
<tr>
<td>wep128</td>
<td>Specifies that 128-bit WEP is included in the cipher suite.</td>
</tr>
<tr>
<td>wep40</td>
<td>Specifies that 40-bit WEP is included in the cipher suite.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Configuration interface
If you configure your access point to use WPA or CCKM authenticated key management, you must select a cipher suite compatible with the authenticated key management type. Table 2-10 lists the cipher suites that are compatible with WPA and CCKM.

**Table 2-10 Cipher Suites Compatible with WPA and CCKM**

<table>
<thead>
<tr>
<th>Authenticated Key Management Types</th>
<th>Compatible Cipher Suites</th>
</tr>
</thead>
</table>
| CCKM                             | • encryption mode ciphers wep128  
|                                   | • encryption mode ciphers wep40  
|                                   | • encryption mode ciphers ckip  
|                                   | • encryption mode ciphers cmic  
|                                   | • encryption mode ciphers ckip-cmic  
|                                   | • encryption mode ciphers tkip  
|                                   | • encryption mode ciphers tkip wep128  
|                                   | • encryption mode ciphers tkip wep40  |
| WPA                              | • encryption mode ciphers tkip  
|                                   | • encryption mode ciphers tkip wep128  
|                                   | • encryption mode ciphers tkip wep40  |

**Note** You must enable Aironet extensions to include CKIP, CMIC, or CKIP-CMIC in a cipher suite. Use the dot11 extension aironet command to enable Aironet extensions.

Refer to the *Cisco IOS Software Configuration Guide for Cisco Aironet Access Points* for a complete description of WPA and CCKM and instructions for configuring authenticated key management.

**Examples**

This example sets up a cipher suite for VLAN 22 that enables CKIP, CMIC, and 128-bit WEP.

```
ap(config-if)# encryption vlan 22 mode ciphers ckip-cmic wep128
```
**encryption mode wep**

Use the `encryption mode wep` configuration interface command to enable a specific encryption type that is used to communicate on the wireless LAN or on a specific VLAN. When encryption is enabled, all client devices on the wireless LAN or on a VLAN must support the specified encryption methods to communicate with the access point. Use the `no` form of the command to disable the encryption features on a specific VLAN.

**Note**
Because cipher suites provide the protection of WEP while also allowing use of authenticated key management, Cisco recommends that you enable WEP by using the `encryption mode ciphers` command. Cipher suites that contain TKIP provide the best security for your wireless LAN, and cipher suites that contain only WEP are the least secure.

**Note**
Encryption VLAN is not supported on bridges.

```
[no] encryption [vlan vlan-id] mode wep
 { mandatory | optional }
 { key-hash | mic [key-hash] }
```

**Syntax Description**

- `vlan vlan-id` (Optional) Specifies the VLAN number
- `mandatory` Specifies that encryption is mandatory for the client to communicate with the access point
- `optional` Specifies that client devices can communicate with the access point with or without using encryption
- `key-hash` (Optional) Specifies that encryption key hashing is required for client devices to communicate with the access point
- `mic` (Optional) Specifies that encryption with message integrity check (MIC) is required for client devices to communicate with the access point

**Defaults**
This command has no defaults.

**Command Modes**
Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to specify that encryption key hashing must be used on VLAN number 1:

```
AP(config-if)# encryption vlan 1 mode wep mandatory key-hash
```
This example shows how to disable mandatory encryption on VLAN 1:

```
AP(config-if)# no encryption vlan 1 mode wep mandatory
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>

**exception crashinfo buffersize**

To change the size of the buffer used for crashinfo files, use the `exception crashinfo buffersize` command in global configuration mode. To revert to the default buffersize, use the `no` form of this command.

```
exception crashinfo buffersize kilobytes

no exception crashinfo buffersize kilobytes
```

**Syntax Description**

- `kilobytes` Sets the size of the buffersize to the specified value within the range of 32 to 100 kilobytes. The default is 32 KB.

**Defaults**

Crashinfo buffer is 32 KB.

**Command Modes**

Global config

**Command History**

- **Release**: 12.2(15)JA
- **Modification**: This command was introduced.

**Usage Guidelines**

The crashinfo file saves information that helps Cisco technical support representatives to debug problems that caused the Cisco IOS image to fail (crash). The access point writes the crash information to the console at the time of the failure, and the file is created the next time you boot the Cisco IOS image after the failure (instead of while the system is failing).

**Examples**

This example sets the crashinfo buffer to 100 KB:

```
ap(config)# exception crashinfo buffersize 100
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exception crashinfo file</td>
<td>Enables the creation of a diagnostic file at the time of unexpected system shutdowns.</td>
</tr>
</tbody>
</table>
exception crashinfo file

To enable the creation of a diagnostic file at the time of unexpected system shutdowns, use the `exception crashinfo file` command in global configuration mode. To disable the creation of crashinfo files, use the `no` form of this command.

```
exception crashinfo file device:filename

no exception crashinfo file device:filename
```

### Syntax Description

```
device:filename
```

- **device:filename**: Specifies the flash device and file name to be used for storing the diagnostic information. The colon is required.

### Defaults

Creation of crashinfo files is disabled by default.

### Command Modes

- **Global config**

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The crashinfo file saves information that helps Cisco technical support representatives to debug problems that caused the Cisco IOS image to fail (crash). The access point writes the crash information to the console at the time of the failure, and the file is created the next time you boot the Cisco IOS image after the failure (instead of while the system is failing). The filename will be `filename_yyyymmdd-hhmmss`, where `y` is year, `m` is month, `d` is date, `h` is hour, and `s` is seconds.

### Examples

In this example, the access point creates a crashinfo file called `crashdata` in the default flash memory device if a system crash occurs:

```
ap(config)# exception crashinfo file flash:crashinfo
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exception crashinfo buffersize</code></td>
<td>Changes the size of the crashinfo buffer.</td>
</tr>
</tbody>
</table>
fixed-slot (QOS Class interface configuration mode)

Use the `fixed-slot` QOS Class interface configuration mode command to configure the CAC 802.11 fixed backoff slot time for a radio interface. Use the `no` form of the command to remove the setting.

```
fixed-slot 0-16

no cw-max
```

**Note**

This command is not supported when operating in repeater mode.

**Syntax Description**

`0-16` Specifies the fixed backoff slot time (0 to 16 msec).

**Defaults**

When QoS is enabled, the default fixed-slot settings for access points match the values in Table 2-11, and the default fixed-slot settings for bridges match the values in Table 2-12.

**Table 2-11 Default QoS Fixed Slot Definitions for Access Points**

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Fixed Slot Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>7</td>
</tr>
<tr>
<td>Best Effort</td>
<td>3</td>
</tr>
<tr>
<td>Video &lt;100ms Latency</td>
<td>2</td>
</tr>
<tr>
<td>Voice &lt;100ms Latency</td>
<td>2</td>
</tr>
</tbody>
</table>

**Table 2-12 Default QoS Fixed Slot Definitions for Bridges**

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Min Contention Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>7</td>
</tr>
<tr>
<td>Best Effort</td>
<td>3</td>
</tr>
<tr>
<td>Video &lt;100ms Latency</td>
<td>2</td>
</tr>
<tr>
<td>Voice &lt;100ms Latency</td>
<td>2</td>
</tr>
</tbody>
</table>

**Command Modes**

QOS Class interface configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
This example shows how to configure the CAC 802.11 fixed backoff slot time for the radio interface:

```
AP(config)# interface dot11radio 0
AP(config-if)# dot11 qos class voice
AP(config-if-qosclass)# fixed-slot 6
```

This example shows how to remove the CAC 802.11 fixed backoff slot time for the radio interface:

```
AP(config-if-qosclass)# no fixed-slot
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admission-control (QOS Class interface mode)</td>
<td>Specifies that CAC admission control is required for the radio interface.</td>
</tr>
<tr>
<td>admit-traffic (QOS Class interface mode)</td>
<td>Specifies that CAC traffic is enabled for the radio interface.</td>
</tr>
<tr>
<td>cw-max (QOS Class interface mode)</td>
<td>Specifies the CAC maximum contention window size for the radio interface.</td>
</tr>
<tr>
<td>transmit-op (QOS Class interface mode)</td>
<td>Specifies the CAC transmit opportunity time for the radio interface.</td>
</tr>
</tbody>
</table>
**fragment-threshold**

Use the `fragment-threshold` configuration interface command to set the size at which packets are fragmented. Use the `no` form of the command to reset the parameter to defaults.

```
[no] fragment-threshold 256-2346
```

**Syntax Description**
- **256-2346**: Specifies the packet fragment threshold size (256 to 2346 bytes)

**Defaults**
- The default threshold is 2346 bytes

**Command Modes**
- Configuration interface

**Command History**

```
Release Modification
12.2(4)JA This command was introduced.
```

**Examples**

- This example shows how to set the packet fragment threshold size to 1800 bytes:

  AP(config-if)# fragment-threshold 1800

- This example shows how to reset the packet fragment threshold size to defaults:

  AP(config-if)# no fragment-threshold

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
**group (local server configuration mode)**

Use the `group` local server configuration mode command to enter user group configuration mode and configure a user group to which you can assign shared settings. In user group configuration mode you can specify settings for the user group such as VLAN and SSID.

```
group group
```

**Note**

This command is not supported on bridges.

**Syntax Description**

- `group` Specifies the name of the user group

**Defaults**

This command has no defaults.

**Command Modes**

Local server configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to create a user group on the local authenticator:

```
AP(config-radsrv)# group hoosiers
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nas (local server configuration mode)</code></td>
<td>Adds an access point to the list of NAS access points on the local authenticator</td>
</tr>
<tr>
<td><code>radius-server local</code></td>
<td>Enables the access point as a local authenticator and enters local server configuration mode</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration</td>
</tr>
<tr>
<td><code>user (local server configuration mode)</code></td>
<td>Adds a user to the list of users allowed to authenticate to the local authenticator</td>
</tr>
</tbody>
</table>
guard-interval

Use the `guard-interval` configuration mode command to configure the 802.11n guard interval. The guard interval is the period in nanoseconds the radio listens between packets. Two settings are available: short (400ns) and long (800ns).

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>any</strong></td>
<td>Allows the radio to use either short or long guard intervals.</td>
</tr>
<tr>
<td><strong>long</strong></td>
<td>Specifies a guard interval of 800ns.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Dot11Radio configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(10b)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to manually set a desired guard interval.

**Examples**

This example shows how to set a long guard interval on a 2.4-GHz 802.11n radio:

```
ap#config terminal
ap(config-if)#interface dot11radio0
ap(config-if)#guard-interval long
ap(config-if)#end
ap#copy running-config startup-config
```

**Related Commands**

None
guest-mode (SSID configuration mode)

Use the guest-mode SSID configuration mode command to configure the radio interface (for the specified SSID) to support guest mode. Use the no form of the command to disable the guest mode.

[no] guest-mode

Syntax Description  This command has no arguments or keywords.

Defaults  This command has no defaults.

Command Modes  SSID configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines  The access point can have one guest-mode SSID or none at all. The guest-mode SSID is used in beacon frames and response frames to probe requests that specify the empty or wildcard SSID. If no guest-mode SSID exists, the beacon contains no SSID and probe requests with the wildcard SSID are ignored. Disabling the guest mode makes the networks slightly more secure. Enabling the guest mode helps clients that passively scan (do not transmit) associate with the access point. It also allows clients configured without a SSID to associate.

Examples  This example shows how to set the wireless LAN for the specified SSID into guest mode:

```
AP(config-if-ssid)# guest-mode
```

This example shows how to reset the guest-mode parameter to default values:

```
AP(config-if-ssid)# no guest-mode
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssid</td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
iapp standby mac-address

Use the `iapp standby mac-address` global configuration command to configure an access point to be in standby mode and specify the monitored access point’s MAC address. Use the `no` form of this command to disable the access point standby mode.

```
[no] iapp standby mac-address mac-address
```

**Note**
This command is not supported on bridges.

**Syntax Description**
```
mac-address
```
Specifies the MAC address (in `xxxx.xxxx.xxxx` format) of the active access point

**Defaults**
This command has no default setting.

**Command Modes**
Global configuration

**Command History**
```
Release | Modification
--------|-------------
12.2(4)JA | This command was introduced.
```

**Examples**
This example shows how to place the access point in standby mode and indicate the MAC address of the active access point:
```
AP(config)# iapp standby mac-address 0040.9631.81cf
```

This example shows how to stop or disable the standby mode:
```
AP(config)# no iapp standby mac-address 0040.9631.81cf
```

**Related Commands**
```
Command | Description
-------------------------|-------------
iapp standby poll-frequency | Configures the polling interval in standby mode
iapp standby primary-shutdown | Shuts down the radio interface on the monitored access point when the standby access point takes over
iapp standby timeout | Configures the polling timeout value in standby mode
```
iapp standby poll-frequency

Use the `iapp standby poll-frequency` global configuration command to configure the standby mode polling interval. Use the `no` form of this command to clear the access point standby mode poll frequency.

```
[no] iapp standby poll-frequency sec [mac-address]
```

**Note**

This command is not supported on bridges.

**Syntax Description**

- `sec` Specifies the standby mode poll frequency in seconds
- `mac-address` Specifies the MAC address of an access point

**Defaults**

When you enable hot standby, the default poll frequency is 2 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify the standby mode poll frequency of 5 minutes:

```
AP(config)# iapp standby poll-frequency 300
```

This example shows how to stop or disable the standby mode:

```
AP(config)# no iapp standby mac-address 0040.9631.81cf
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>iapp standby mac-address</code></td>
<td>Places the access point into standby mode and identifies the MAC address of the active access point</td>
</tr>
<tr>
<td><code>iapp standby primary-shutdown</code></td>
<td>Shuts down the radio interface on the monitored access point when the standby access point takes over</td>
</tr>
<tr>
<td><code>iapp standby timeout</code></td>
<td>Specifies the access point standby mode polling timeout value</td>
</tr>
</tbody>
</table>
iapp standby primary-shutdown

Use the `iapp standby primary-shutdown` global configuration command to disable the radio interfaces on the monitored access point when the standby access point becomes active. The standby access point sends a Dumb Device Protocol (DDP) message to disable the radios of the monitored access point when it detects a failure (for example, if the standby unit cannot associate to the monitored access point, or if the standby unit detects a link test failure on any of the monitored interfaces).

```plaintext
[no] iapp standby primary-shutdown
```

**Note**

This command is not supported on bridges.

**Note**

When the monitored access point receives the message to disable its radios it puts the radio interfaces into the `admin down` state. You must re-enable the radios to bring the radio interfaces back up.

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This feature is disabled by default.

**Command Modes**

Global configuration

**Command History**

```
Release Modification
12.2(13)JA This command was introduced.
```

**Examples**

This example shows how to enable the primary shutdown feature on a standby access point:

```
AP(config)# iapp standby primary-shutdown
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>iapp standby mac-address</code></td>
<td>Places the access point into standby mode and identifies the MAC address of the active access point</td>
</tr>
<tr>
<td><code>iapp standby poll-frequency</code></td>
<td>Specifies the polling interval in standby mode</td>
</tr>
<tr>
<td><code>iapp standby timeout</code></td>
<td>Specifies the access point standby mode polling timeout value</td>
</tr>
</tbody>
</table>
iapp standby timeout

Use the `iapp standby timeout` global configuration command to configure the standby mode polling timeout value. Use the `no` form of this command to clear the standby mode polling timeout value.

```
[no] iapp standby timeout sec
```

**Syntax Description**

| sec | Specifies the standby mode polling timeout in seconds |

**Defaults**

When you enable hot standby, the default standby timeout is 20 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify the standby mode polling timeout of 1 minute:

```
AP(config)# iapp standby timeout 60
```

This example shows how to clear the standby mode timeout value:

```
AP(config)# no iapp standby timeout
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>iapp standby mac-address</code></td>
<td>Places the access point into standby mode and identifies the MAC address of the active access point</td>
</tr>
<tr>
<td><code>iapp standby poll-frequency</code></td>
<td>Specifies the standby mode polling interval</td>
</tr>
<tr>
<td><code>iapp standby primary-shutdown</code></td>
<td>Shuts down the radio interface on the monitored access point when the standby access point takes over</td>
</tr>
</tbody>
</table>
ids mfp client

Use the `ids mfp client` SSID configuration command to enable and explicitly specify the status of MFP-2. To disable MFP-2 on an access point, use the `no` form of this command.

```
[no] ids mfp client {required | optional }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>required</code></td>
<td>MFP-2 is mandatory for a client to authenticate to an access point.</td>
</tr>
<tr>
<td><code>optional</code></td>
<td>MFP-2 is optional for a client to authenticate to an access point. In this case both MFP-2 enabled and disabled clients can authenticate and associate to an access point.</td>
</tr>
</tbody>
</table>

**Defaults**

By default, MFP-2 is disabled.

**Command Modes**

SSID configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(3g)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to enable MFP-2 for mandatory authentication:

```
AP(config-if-ssid)# ids mfp client required
```

This example shows how to enable MFP-2 for optional authentication:

```
AP(config-if-ssid) ids mfp client optional
```
information-element ssidl (SSID configuration mode)

Use the `information-element ssidl` SSID configuration command to designate an SSID for inclusion in an SSIDL information element (IE) that the access point includes in beacons. When you designate an SSID to be included in an SSIDL IE, client devices detect that the SSID is available, and they also detect the security settings required to associate using that SSID.

```
[no] information-element ssidl { [advertisement] [wps] }
```

**Note**
When multiple basic SSIDs are enabled on the access point, the SSIDL IE does not contain a list of SSIDs; it contains only extended capabilities.

**Syntax Description**
- `advertisement`: Includes the SSID name and capabilities in the access point SSIDL IE.
- `wps`: Sets the WPS capability flag in the SSIDL IE.

**Defaults**
By default, the access point does not include SSIDL IEs in beacons.

**Command Modes**
SSID configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to designate an SSID for inclusion in the WPS IE:

```
AP(config-if-ssid)# information-element ssidl advertisement wps
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ssid</code></td>
<td>Assigns an SSID to a specific interface.</td>
</tr>
</tbody>
</table>
infrastructure-client

Use the **infrastructure-client** configuration interface command to configure a virtual interface for a workgroup bridge client. Use the **no** form of the command to disable the workgroup bridge client virtual interface.

[no] infrastructure-client

**Note**
Enter this command on an access point or bridge. This command is not supported on devices configured as workgroup bridges.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
The default is infrastructure client disabled.

**Command Modes**
Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Enable the infrastructure client feature to increase the reliability of multicast messages to workgroup bridges. When enabled, the access point sends directed packets containing the multicasts, which are retried if necessary, to the associated workgroup bridge. Enable only when necessary because it can greatly increase the load on the radio cell.

**Examples**
This example shows how to configure a virtual interface for a workgroup bridge client.

```
AP(config-if)# infrastructure-client
```

This example shows how to specify that a workgroup bridge client virtual interface is not supported.

```
AP(config-if)# no infrastructure-client
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays information on the current running access point configuration</td>
</tr>
</tbody>
</table>
infrastructure-ssid (SSID configuration mode)

Use the `infrastructure-ssid` command in SSID configuration mode to reserve this SSID for infrastructure associations, such as those from one access point or bridge to another. Use the `no` form of the command to revert to a normal non-infrastructure SSID.

```
[no] infrastructure-ssid [optional]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>optional</th>
<th>Specifies that both infrastructure and mobile client devices are allowed to associate using the SSID</th>
</tr>
</thead>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

SSID configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command controls the SSID that access points and bridges use when associating with one another. A root access point only allows a repeater access point to associate using the infrastructure SSID. A root bridge only allows a non-root bridge to associate using the infrastructure SSID. Repeater access points and non-root bridges use this SSID to associate with root devices. The infrastructure SSID must be assigned to the native VLAN. It cannot be assigned a non-native VLAN.

For configurations using the CLI, the `infrastructure-ssid` command is not a requirement unless multiple SSIDs are configured on the radio. In this case the `infrastructure-ssid` command is used to identify the SSID a non-root bridge uses to connect to the uplink. Other non-infrastructure SSIDs are used for client association to the non-root bridge.

However, using the GUI requires that the infrastructure ssid be configured for repeaters, workgroup bridges, and non-root bridges. The goal of the CLI is to provide the maximum flexibility while the GUI provides the minimum working configuration for the purpose of ease of use.

**Examples**

This example shows how to reserve the specified SSID for infrastructure associations on the wireless LAN:

```
AP(config-if-ssid)# infrastructure-ssid
```

This example shows how to restore the SSID to non-infrastructure associations:

```
AP(config-if-ssid)# no infrastructure-ssid
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ssid</code></td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
</tbody>
</table>
interface dot11 (LBS configuration mode)

Use the `interface dot11` configuration mode command to specify the radio interface on which an LBS profile is enabled. An LBS profile remains inactive until you enter this command.

```plaintext
(no) interface dot11 {0 | 1}
```

**Syntax Description**
- `{0 | 1}`: Specifies the radio interface. The 2.4-GHz radio is radio 0, and the 5-GHz radio is radio 1.

**Defaults**
- LBS profiles are disabled by default.

**Command History**
- **Release**: 12.3(4)JA
  - **Modification**: This command was introduced.

**Examples**
- This example shows how to specify the radio interface for an LBS profile:

  ```plaintext
 ap(dot11-lbs)# interface dot11 0
  ```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel-match (LBS configuration mode)</code></td>
<td>Specifies that the LBS packet sent by an LBS tag must match the radio channel on which the access point receives the packet</td>
</tr>
<tr>
<td><code>dot11 lbs</code></td>
<td>Creates an LBS profile and enters LBS configuration mode</td>
</tr>
<tr>
<td><code>method (LBS configuration mode)</code></td>
<td>Specifies the location method used in an LBS profile</td>
</tr>
<tr>
<td><code>multicast address (LBS configuration mode)</code></td>
<td>Specifies the multicast address that LBS tag devices use when they send LBS packets</td>
</tr>
<tr>
<td><code>packet-type (LBS configuration mode)</code></td>
<td>Specifies the LBS packet type accepted in an LBS profile</td>
</tr>
<tr>
<td><code>server-address (LBS configuration mode)</code></td>
<td>Specifies the IP address of the location server on your network</td>
</tr>
</tbody>
</table>
interface dot11radio

Use the **interface dot11radio** global configuration command to place access point into the radio configuration mode.

```
interface dot11radio interface-number
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-number</td>
<td>Specifies the radio interface number (The 2.4-GHz radio is radio 0, and the 5-GHz radio is radio 1.)</td>
</tr>
</tbody>
</table>

**Defaults**

The default radio interface number is 0.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to place the access point into the radio configuration mode:

```
AP# interface dot11radio 0
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces dot11radio</td>
<td>Displays the radio interface configuration and statistics</td>
</tr>
</tbody>
</table>
ip igmp snooping vlan

Use the ip igmp snooping vlan global configuration command to enable IGMP snooping on a Catalyst VLAN.

   [no] ip igmp snooping vlan vlan-id

Note
If there is no multicast router for processing IGMP query and response from the host, it is mandatory that no ip igmp snooping be configured on the access point. When IGMP snooping is enabled, all multicast group traffic must send IGMP query and response. If an IGMP query or response is not detected, all multicast traffic for that group is dropped.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan id</td>
<td>Specifies the Catalyst VLAN number.</td>
</tr>
</tbody>
</table>

Defaults
This command has no defaults.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enable IGMP snooping on a Catalyst VLAN:

AP(config)# ip igmp snooping vlan 1

This example shows how to disable IGMP snooping on a Catalyst VLAN:

AP(config)# no ip igmp snooping vlan 1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping groups</td>
<td>Displays IGMP snooping group information.</td>
</tr>
</tbody>
</table>
**ip redirection**

Use the `ip redirection` SSID configuration mode command to enable IP redirection for an SSID. When you configure IP redirection for an SSID, the access point redirects packets sent from client devices associated to that SSID to a specific IP address. IP redirection is used mainly on wireless LANs serving handheld devices that use a central software application and are statically configured to communicate with a specific IP address.

You can redirect all packets from client devices associated using an SSID or redirect only packets directed to specific TCP or UDP ports (as defined in an access control list). When you configure the access point to redirect only packets addressed to specific ports, the access point redirects those packets from clients using the SSID and drops all other packets from clients using the SSID.

**Note**

When you perform a ping test from the access point to a client device that is associated using an IP-redirect SSID, the response packets from the client are redirected to the specified IP address and are not received by the access point.

```
[no] ip redirection { host ip-address [access-group { access-list-number | access-list-name } in] }
```

**Syntax Description**

- `ip-address`: Specifies the IP address to which packets are redirected. If you do not specify an access control list (ACL) which defines TCP or UDP ports for redirection, the access point redirects all packets that it receives from client devices.
- `access-list-number`: Specifies the number of the ACL used for packet redirection.
- `access-list-name`: Specifies the name of the ACL used for packet redirection.
- `in`: Specifies that the ACL is applied to the access point’s incoming interface.

**Defaults**

IP redirection is disabled by default.

**Command Modes**

SSID configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure IP redirection for an SSID without applying an ACL. The access point redirects all packets that it receives from client devices associated to the SSID `zorro`:

```
AP# configure terminal
AP(config)# interface dot11radio 0
AP(config-if)# ssid zorro
AP(config-if-ssid)# ip redirection host 10.91.104.91
AP(config-if-ssid-redirect)# end
```
This example shows how to configure IP redirection only for packets sent to the specific TCP and UDP ports specified in an ACL. When the access point receives packets from client devices associated using the SSID robin, it redirects packets sent to the specified ports and discards all other packets:

```
AP# configure terminal
AP(config)# interface dot11radio 0
AP(config-if)# ssid zorro
AP(config-if-ssid)# ip redirection host 10.91.104.91 access-group redirect-acl in
AP(config-if-ssid)# end
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssid</td>
<td>Configure an SSID for the access point radio</td>
</tr>
</tbody>
</table>

### l2-filter bridge-group-acl

Use the `l2-filter bridge-group-acl` configuration interface command to apply a Layer 2 ACL filter to the bridge group incoming and outgoing packets between the access point and the host (upper layer). Use the `no` form of the command to disable the Layer 2 ACL filter.

```
[no] l2-filter bridge-group-acl
```

#### Syntax Description

This command has no arguments or keywords.

#### Defaults

This command has no defaults.

#### Command Modes

Configuration interface

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

#### Examples

This example shows how to apply a Layer 2 ACL filter to the bridge group packets:

```
AP(config-if)# l2-filter bridge-group-acl
```

This example shows how to activate a Layer 2 ACL filter:

```
AP(config-if)# no l2-filter bridge-group-acl
```
Chapter 2      Cisco IOS Commands for Access Points and Bridges

l2-filter-block-arp

Use the **l2-filter block-arp** command on radio interface to block all ARP requests whose target L3-address is the access point IP address.

The Address Resolution Protocol (ARP) is used to dynamically map physical hardware addresses to an IP address. Network devices and workstations maintain internal tables in which these mappings are stored for some period of time.

### Syntax Description

This command has no arguments or keywords.

### Defaults

This feature is disabled by default.

### Command Modes

Configuration interface

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7) JA2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to apply a **l2-filter block-arp** command to a radio interface:

```conf
interface Dot11Radio0
(config-if)#l2-filter block-arp
```
led display

Use the led display global configuration command to reduce the brightness or to turn-off the Status LED on the Cisco Aironet 1130AG access point. Use the no form of the command to return the Status LED to full intensity operation.

[no] led display {off | dim}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>Turns-off the Status LED.</td>
</tr>
<tr>
<td>dim</td>
<td>Reduces the brightness of the Status LED.</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to reduce the brightness of the 1130AG Status LED:

```
AP(config)# led display dim
```

This example shows how to turn-off the 1130AG Status LED:

```
AP(config)# led display off
```

This example shows how to turn-on the 1130AG Status LED.

```
AP(config)# no led display off
```

This example shows how to return the 1130AG Status LED to full brightness operation.

```
AP(config)# no led display dim
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the contents of the currently running configuration file.</td>
</tr>
</tbody>
</table>

led flash

Use the led flash privileged EXEC command to start or stop the blinking of the LED indicators on the access point for a specified number of seconds. Without arguments, this command blinks the LEDs continuously.
led flash [seconds | disable]

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Specifies the number of seconds (1 to 3600) that the LEDs blink</td>
</tr>
<tr>
<td>disable</td>
<td>Stops the blinking of the LEDs</td>
</tr>
</tbody>
</table>

Defaults

The default is continuous blinking of the LEDs.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to blink the access point LEDs for 30 seconds:

```
AP# led flash 30
```

This example shows how to stop the blinking of the access point LEDs:

```
AP# led flash disable
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show led flash</td>
<td>Displays the blinking status of the LEDs</td>
</tr>
</tbody>
</table>
logging buffered

Use the **logging buffered** global configuration command to begin logging of messages to an internal buffer. Use the `no` form of this command to stop logging messages.

```
[no] logging buffered [size] [severity]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>Specifies the size of the internal buffer (4096 to 2147483647 bytes)</td>
</tr>
<tr>
<td>severity</td>
<td>Specifies the message severity to log (1-7)</td>
</tr>
<tr>
<td></td>
<td>Severity 1: alerts</td>
</tr>
<tr>
<td></td>
<td>Severity 2: critical</td>
</tr>
<tr>
<td></td>
<td>Severity 3: errors</td>
</tr>
<tr>
<td></td>
<td>Severity 4: warnings</td>
</tr>
<tr>
<td></td>
<td>Severity 5: notifications</td>
</tr>
<tr>
<td></td>
<td>Severity 6: informational</td>
</tr>
<tr>
<td></td>
<td>Severity 7: debugging</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)IA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to begin logging severity 3 messages to an internal 5000-byte buffer:

```
AP(config)# logging buffered 5000 3
```

This example shows how to stop the message logging:

```
AP(config)# no logging buffered
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging</td>
<td>Displays recent logging event headers or complete events</td>
</tr>
<tr>
<td>clear logging</td>
<td>Clears logging status count and the trace buffer</td>
</tr>
</tbody>
</table>
logging snmp-trap

Use the logging snmp-trap global configuration command to specify the severity level of syslog messages for which the access point sends SNMP traps.

[no] logging snmp-trap severity

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>severity</td>
<td>Specifies the severity levels for which the access point sends SNMP traps. You can enter a range of severity levels--0 through 7--or a single severity level. To specify a single severity level, enter emergencies (level 0), alerts (level 1), critical (level 2), errors (level 3), warnings (level 4), notifications (level 5), informational (level 6), or debugging (level 7).</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For the logging snmp-trap command to operate correctly, you must also configure these global configuration commands on the access point:

```
AP(config)# logging history severity
AP(config)# snmp-server enable traps
AP(config)# snmp-server host address syslog
```

Examples

This example shows how to configure the access point to send SNMP traps for all severity levels:

```
AP(config)# logging snmp-trap 0 7
```

This example shows how to configure the access point to send SNMP traps only for warning messages:

```
AP(config)# logging snmp-trap warnings
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging buffered</td>
<td>Controls logging of messages to an internal buffer</td>
</tr>
<tr>
<td>show logging</td>
<td>Displays recent logging event headers or complete events</td>
</tr>
<tr>
<td>clear logging</td>
<td>Clears logging status count and the trace buffer</td>
</tr>
</tbody>
</table>
match (class-map configuration)

Use the `match` class-map configuration command to define the match criteria to classify traffic. Use the `no` form of this command to remove the match criteria.

```
[no] match { access-group acl-index-or-name | ip [dscp dscp-list | precedence precedence-list] | vlan vlan-id }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-group</td>
<td>Specifies the number or name of an IP standard or extended access control list (ACL) or MAC ACL. For an IP standard ACL, the ACL index ranges are 1 to 99 and 1300 to 1999. For an IP extended ACL, the ACL index ranges are 100 to 199 and 2000 to 2699.</td>
</tr>
<tr>
<td>acl-index-or-name</td>
<td></td>
</tr>
<tr>
<td>ip dscp</td>
<td>Specifies a list of up to eight IP Differentiated Services Code Point (DSCP) values to match against incoming packets. Separate each value with a space. The range is 0 to 63.</td>
</tr>
<tr>
<td>dscp-list</td>
<td></td>
</tr>
<tr>
<td>ip precedence</td>
<td>Specifies a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.</td>
</tr>
<tr>
<td>precedence-list</td>
<td></td>
</tr>
<tr>
<td>vlan</td>
<td>Specifies the virtual LAN identification number. Valid IDs are from 1 to 4095; do not enter leading zeros.</td>
</tr>
<tr>
<td>vlan-id</td>
<td></td>
</tr>
</tbody>
</table>

**Note**

Though visible in the command-line help strings, the `any`, `class-map`, `destination-address`, `input-interface`, `mpls`, `not`, `protocol`, and `source-address` keywords are not supported.

**Defaults**

This command has no defaults.

**Command Modes**

Class-map configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `class-map` global configuration command to enter the class-map configuration mode. The `match` command in the class-map configuration mode is used to specify which fields in the incoming packets are examined to classify the packets. Only the IP access group or the MAC access group matching to the Ether Type/Len are supported.

You can use the `match ip dscp dscp-list` command only in a policy map that is attached to an egress interface.

Only one `match` command per class map is supported.
For the `match ip dscp dscp-list` or the `match ip precedence ip-precedence-list` command, you can enter a mnemonic name for a commonly used value. For example, you can enter the `match ip dscp af11` command, which is the same as entering the `match ip dscp 10` command. You can enter the `match ip precedence critical` command, which is the same as entering the `match ip precedence 5` command. For a list of supported mnemonics, enter the `match ip dscp ?` or the `match ip precedence ?` command to see the command-line help strings.

**Examples**

This example shows how to create a class map called `class2`, which matches all the incoming traffic with DSCP values of 10, 11, and 12:

```
AP(config)# class-map class2
AP(config-cmap)# match ip dscp 10 11 12
AP(config-cmap)# exit
```

This example shows how to create a class map called `class3`, which matches all the incoming traffic with IP-precedence values of 5, 6, and 7:

```
AP(config)# class-map class3
AP(config-cmap)# match ip precedence 5 6 7
AP(config-cmap)# exit
```

This example shows how to delete the IP-precedence match criteria and to classify traffic by vlan:

```
AP(config)# class-map class2
AP(config-cmap)# match ip precedence 5 6 7
AP(config-cmap)# no match ip precedence
AP(config-cmap)# match vlan 2
AP(config-cmap)# exit
```

You can verify your settings by entering the `show class-map` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to the class whose name you specify</td>
</tr>
<tr>
<td>show class-map</td>
<td>Displays quality of service (QoS) class maps</td>
</tr>
</tbody>
</table>
max-associations (SSID configuration mode)

Use the `max-associations` SSID configuration mode command to configure the maximum number of associations supported by the radio interface (for the specified SSID). Use the `no` form of the command to reset the parameter to the default value.

```
[no] max-associations value
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the maximum number (1 to 255) of associations supported</td>
</tr>
</tbody>
</table>

**Defaults**

This default maximum is 255.

**Command Modes**

SSID configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to set the maximum number of associations to 5 on the wireless LAN for the specified SSID:

```
AP(config-if-ssid)# max-associations 5
```

This example shows how to reset the maximum number of associations to the default value:

```
AP(config-if-ssid)# no max-associations
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssid</td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
</tbody>
</table>
**mbssid**

Use the `mbssid` configuration interface command to enable multiple basic SSIDs on an access point radio interface.

```
[no] mbssid
```

**Note**

This command is supported only on radio interfaces that support multiple BSSIDs. To determine whether a radio supports multiple BSSIDs, enter the `show controllers radio_interface` command. Multiple BSSIDs are supported if the results include this line:

```
Number of supported simultaneous BSSID on radio_interface: 8
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command is disabled by default.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to enable multiple BSSIDs on a radio interface:

```
ap(config-if)# mbssid
```

To enable multiple BSSIDs on all radio interfaces, use the `dot11 mbssid` global configuration command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot11 mbssid</code></td>
<td>Enables multiple BSSIDs on all radio interfaces that support multiple BSSIDs</td>
</tr>
<tr>
<td><code>mbssid (SSID configuration mode)</code></td>
<td>Specifies that a BSSID is included in beacons and specifies a DTIM period for the BSSID</td>
</tr>
<tr>
<td><code>show dot11 bssid</code></td>
<td>Displays configured BSSIDs</td>
</tr>
</tbody>
</table>
mbssid (SSID configuration mode)

Use the `mbssid` SSID configuration mode command to include the SSID name in the beacon and broadcast probe response and to configure the DTIM period for the SSID.

```
[no] mbssid [guest-mode] [dtim-period period]
```

**Note**
This command is supported only on radio interfaces that support multiple basic SSIDs. To determine whether a radio supports multiple basic SSIDs, enter the `show controllers radio_interface` command. Multiple basic SSIDs are supported if the results include this line:
Number of supported simultaneous BSSID on `radio_interface`: 8

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>guest-mode</td>
<td>Specifies that the SSID is included in beacons.</td>
</tr>
<tr>
<td>dtim-period</td>
<td>Specifies the rate at which the device sends a beacon that contains a Delivery Traffic Indicator Message (DTIM). Enter a beacon rate between 1 and 100.</td>
</tr>
</tbody>
</table>

**Defaults**
Guest mode is disabled by default. The default period is 2, which means that every other beacon contains a DTIM.

**Command Modes**
SSID configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The guest mode and DTIM period configured in this command are applied only when MBSSIDs are enabled on the radio interface.

When client devices receive a beacon that contains a DTIM, they normally wake up to check for pending packets. Longer intervals between DTIMs let clients sleep longer and preserve power. Conversely, shorter DTIM periods reduce the delay in receiving packets but use more battery power because clients wake up more often.

**Note**
Increasing the DTIM period count delays the delivery of multicast packets. Because multicast packets are buffered, large DTIM period counts can cause a buffer overflow.

If you configure a DTIM period for a BSSID and you also use the `beacon` command to configure a DTIM period for the radio interface, the BSSID DTIM period takes precedence.
Examples

This example shows how to include a BSSID in the beacon:

```
AP(config-if-ssid)# mbssid guest-mode
```

This example shows how to configure a DTIM period for a BSSID:

```
AP(config-if-ssid)# mbssid dtim-period 5
```

This example shows how to include a BSSID in the beacon and to configure a DTIM period:

```
AP(config-if-ssid)# mbssid guest-mode dtim-period 5
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 mbssid</td>
<td>Enables BSSIDs on all radio interfaces that support multiple BSSIDs</td>
</tr>
<tr>
<td>mbssid</td>
<td>Enables BSSIDs on a specific radio interface</td>
</tr>
<tr>
<td>show dot11 bssid</td>
<td>Displays configured BSSIDs</td>
</tr>
</tbody>
</table>
method (eap profile configuration mode)

Use the method EAP profile configuration mode command to enable method types used in an EAP profile. Use the no form of the command to disable the EAP method.

[no] method [fast] [gtc] [leap] [md5] [mschapv2] [tls]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast</td>
<td>Specifies the EAP-FAST method of authentication.</td>
</tr>
<tr>
<td>gtc</td>
<td>Specifies the EAP-GTC method of authentication.</td>
</tr>
<tr>
<td>leap</td>
<td>Specifies the EAP-LEAP method of authentication.</td>
</tr>
<tr>
<td>md5</td>
<td>Specifies the EAP-MD5 method of authentication.</td>
</tr>
<tr>
<td>mschapv2</td>
<td>Specifies the EAP-MSCHAPV2 method of authentication.</td>
</tr>
<tr>
<td>tls</td>
<td>Specifies the EAP-TLS method of authentication.</td>
</tr>
</tbody>
</table>

Note EAP-GTC, EAP-MD5, and EAP-MSCHAPV2 should not be used as the primary authentication method.

Defaults

There is no default for this command.

Command Modes EAP profile configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to specify the EAP-FAST method for the EAP test profile:

```
AP(config)# eap profile test
AP(config-eap-profile)# method fast
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eap profile</td>
<td>Configures an EAP profile and enters into EAP profile configuration mode.</td>
</tr>
<tr>
<td>dot1x eap profile</td>
<td>Configures an EAP profile for an interface.</td>
</tr>
<tr>
<td>show eap registrations</td>
<td>Displays the EAP registrations.</td>
</tr>
<tr>
<td>show eap sessions</td>
<td>Displays the EAP sessions.</td>
</tr>
</tbody>
</table>
method (LBS configuration mode)

Use the method location based services (LBS) configuration mode command to specify the location method used in an LBS profile.

method method

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>Specifies the location method used by the access point. In this release, rssi (in which the access point measures the location packet’s received signal strength indication) is the only option and is also the default.</td>
</tr>
</tbody>
</table>

Defaults

The default location method is RSSI.

Command Modes

LBS configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to specify the location method used in the LBS profile:

```
ap(dot11-lbs)# method rssi
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-match (LBS configuration mode)</td>
<td>Specifies that the LBS packet sent by an LBS tag must match the radio channel on which the access point receives the packet</td>
</tr>
<tr>
<td>dot11 lbs</td>
<td>Creates an LBS profile and enters LBS configuration mode</td>
</tr>
<tr>
<td>interface dot11 (LBS configuration mode)</td>
<td>Enables an LBS profile on a radio interface</td>
</tr>
<tr>
<td>multicast address (LBS configuration mode)</td>
<td>Specifies the multicast address that LBS tag devices use when they send LBS packets</td>
</tr>
<tr>
<td>packet-type (LBS configuration mode)</td>
<td>Specifies the LBS packet type accepted in an LBS profile</td>
</tr>
<tr>
<td>server-address (LBS configuration mode)</td>
<td>Specifies the IP address of the location server on your network</td>
</tr>
</tbody>
</table>
Use the `mobile station` configuration interface command to configure a bridge or a workgroup bridge as a mobile device. When you enable this setting on a device in non-root or workgroup bridge mode, the device scans for a new parent association when it encounters a poor Received Signal Strength Indicator (RSSI), excessive radio interference, or a high frame-loss percentage. Using these criteria, a bridge configured as a mobile station searches for a new parent association and roams to a new parent before it loses its current association. When the mobile station setting is disabled (the default setting) the bridge does not search for a new association until it loses its current association.

```
[no] mobile station [period] [threshold] [scan] [ignore neighbor-list] [minimum-rate]
```

**Note**
This command is supported only on 1040, 1100, 1130, 1140, 1200, 1250, 1240, and 1260 series access points in workgroup bridge mode and on 1300 series access point/bridges in non-root or workgroup bridge mode.

**Syntax Description**

- `period <seconds>`
  - Determines how fast the device scans for a new parent after it associates to a new poor connection or has had a previous scan triggered with the current association.

- `threshold <dBm>`
  - Sets the dBm that triggers the algorithm to scan for a better parent. Threshold should be set to noise + 20 dBm, but not more than -70 dBm.

- `scan <set of channels>`
  - Limits the channels scanned by the device to those specified.

- `ignore neighbor-list`
  - Workgroup bridge ignores CCX neighbor list reports such as access point adjacent or enhanced neighbor list reports. This command is valid only in the case where the workgroup bridge is configured for limited channel scanning.

- `minimum-rate <rate>`
  - Sets the minimum data rate below which the WGB restarts the scanning. If a minimum rate is configured on the WGB, the root AP will be rejected only if the current rate goes below the configured minimum rate. The minimum rate can be set to any of the WGB supported rates. Using the CLI, configure a rate which is not acceptable to the WGB when the data rates are lowered.

**Defaults**
This command is disabled by default.

- The default period is 20 seconds.
- The default threshold is -70 dBm.
- There is no default for the minimum-rate parameter.

**Command Modes**
Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.3(2)JA</td>
<td>Support added for 1100 series access points in workgroup bridge mode.</td>
</tr>
</tbody>
</table>
Usage Guidelines

This command can prevent data loss on a mobile workgroup bridge or bridge by ensuring that the bridge roams to a new parent device before it loses its current association.

Examples

This example shows how to specify that a bridge is a mobile station and sets the period and threshold to 20 seconds and -70 dBm:

```
BR(config-if)# mobile-station period 20 threshold -70
```

This example shows how to specify a scan for channels 1 and 6:

```
BR(config-if)# mobile-station scan 1 6
```

This example shows how to set a minimum rate of MCS rate index 15, below which the AP is rejected:

```
BR(config-if)# mobile-station minimum-rate m15
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
mobility network-id

Use the `mobility network-id` SSID configuration mode command to associate an SSID to a Layer 3 mobility network ID. Use the `no` form of the command to disassociate the SSID from the mobility network ID.

```
[no] mobility network-id network-id
```

**Syntax Description**

- `network-id` Specifies the Layer 3 mobility network identification number for the SSID

**Defaults**

This command has no defaults.

**Command Modes**

SSID configuration interface

**Command History**

- **Release** 12.2(15)JA
- **Modification** This command was introduced.

**Examples**

This example shows how to an SSID with a Layer 3 mobility network ID:

```
AP(config-if-ssid)# mobility network-id 7
```

This example shows how to reset the VLAN parameter to default values:

```
AP(config-if-ssid)# no mobility network-id
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssid</td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
<tr>
<td>wlccp authentication-server</td>
<td>Enables Layer 3 mobility on the access point</td>
</tr>
</tbody>
</table>
Use the **multicast address** location based services (LBS) configuration mode command to specify the multicast address that LBS tag devices use when they send LBS packets.

```
multicast address mac-address
```

**Syntax Description**

<table>
<thead>
<tr>
<th><strong>Command</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>multicast address</code></td>
<td>Specifies the multicast address that LBS tag devices use when they send LBS packets.</td>
</tr>
</tbody>
</table>

**Defaults**

The default multicast address is 01:40:96:00:00:10.

**Command History**

<table>
<thead>
<tr>
<th><strong>Release</strong></th>
<th><strong>Modification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify the multicast address used in the LBS profile:

```
ap(dot11-lbs)# multicast address 01.40.96.00.00.10
```

**Related Commands**

<table>
<thead>
<tr>
<th><strong>Command</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel-match</code> (LBS configuration mode)</td>
<td>Specifies that the LBS packet sent by an LBS tag must match the radio channel on which the access point receives the packet</td>
</tr>
<tr>
<td><code>dot11 lbs</code></td>
<td>Creates an LBS profile and enters LBS configuration mode</td>
</tr>
<tr>
<td><code>interface dot11</code> (LBS configuration mode)</td>
<td>Enables an LBS profile on a radio interface</td>
</tr>
<tr>
<td><code>method</code> (LBS configuration mode)</td>
<td>Specifies the location method used in an LBS profile</td>
</tr>
<tr>
<td><code>packet-type</code> (LBS configuration mode)</td>
<td>Specifies the LBS packet type accepted in an LBS profile</td>
</tr>
<tr>
<td><code>server-address</code> (LBS configuration mode)</td>
<td>Specifies the IP address of the location server on your network</td>
</tr>
</tbody>
</table>
nas (local server configuration mode)

Use the `nas` local server configuration mode command to add an access point to the list of devices that use the local authenticator.

```
nas ip-address key shared-key
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip-address</code></td>
<td>Specifies the IP address of the NAS access point</td>
</tr>
<tr>
<td><code>shared-key</code></td>
<td>Specifies the shared key used to authenticate communication between the local authenticator and other access points. You must enter this shared key on the access points that use the local authenticator.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Local server configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to add an access point to the list of NAS access points on the local authenticator:

```
AP(config-radsrv)# nas 10.91.6.158 key 110337
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group (local server configuration mode)</code></td>
<td>Creates a user group on the local authenticator and enters user group configuration mode</td>
</tr>
<tr>
<td><code>radius-server local</code></td>
<td>Enables the access point as a local authenticator and enters local server configuration mode</td>
</tr>
<tr>
<td><code>user (local server configuration mode)</code></td>
<td>Adds a user to the list of users allowed to authenticate to the local server</td>
</tr>
</tbody>
</table>
packet max-retries

Use the `packet max-retries` configuration interface command to specify the maximum number of attempts per non-best-effort data packet before discarding the packet. Use the `no` form of the command to reset the parameter to defaults.

```
[no] packet max-retries number 1 number 2
 fail-threshold number 3 number 4
 priority value
 drop-packet
```

**Syntax Description**

- `max-retries number 1 number 2` Specifies the maximum number (0 to 128) of non-best-effort data packet retries before discarding the packet. `number 1` retries is used if `number 3` fail-threshold has not exceeded and `number 2` retries is used if `number 3` fail-threshold has been exceeded. `number 1` default is 3 and `number 2` default is 0.

- `fail-threshold number 3 number 4` Specifies the thresholds for the maximum number of consecutive dropped packets (0 to 1000). `number 3` fail-threshold is used to switch max-retries from `number 1` to `number 2` as described above. If `number 4` fail-threshold has exceeded, the client will be disassociated. `number 3` default is 100 and `number 4` default is 500.

- `priority value` Specifies the QOS user priority (1 to 7). `value` does not have a default value.

- `drop-packet` Specifies that priority packets should not be retried and that the packets should be dropped when the maximum number of retries has been reached.

**Defaults**

`number 1` default is 3, `number 2` default is 0, `number 3` default is 100, `number 4` default is 500, `value` does not have a default and `drop-packet` default is no, that is - non-best-effort data packets will not be discarded.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify the packet max-retries.

```
AP(config)#interface dot11radio 1
AP(config-if)# packet max-retries 15 15 fail-threshold 10 10 priority 7 drop-packet
```

This example shows how reset the packet retries to defaults.

```
AP(config-if)# no packet max-retries 15 15 fail-threshold 10 10 priority 7 drop-packet
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration.</td>
</tr>
</tbody>
</table>
packet retries

Use the `packet retries` configuration interface command to specify the maximum number of attempts to send a packet. Use the `no` form of the command to reset the parameter to defaults.

```
no packet retries 1-128
```

### Syntax Description
- **1-128**
  Specifies the maximum number of retries (1 to 128)

### Defaults
- The default number of retries is 32.

### Command Modes
- Configuration interface

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to specify 15 as the maximum number of retries.

```
AP(config-if)# packet retries 15
```

This example shows how reset the packet retries to defaults.

```
AP(config-if)# no packet retries
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
packet speed

Use the `packet speed` configuration interface command to specify downlink data rates and priorities for packets which have been declared discard-eligible in the `packet max-retries` command. Use the `no` form of the command to disable specified speeds and priorities and to restore the default data rates.

```
[no] packet speed [rate1....rateN | default]
 priority 0-7
```

- `rate1....rateN` Specifies one or multiple data rates that can be used for packets. Possible data rates are listed below:
  - 802.11b data rates (Mbps)
    - 1.0, 2.0, 5.5, 11.0
  - 802.11g data rates (Mbps)
    - 1.0, 2.0, 5.5, 6.0, 9.0, 11.0, 12.0, 18.0, 24.0, 36.0, 48.0, 54.0
  - 802.11a data rates (Mbps)
    - 6.0, 9.0, 11.0, 12.0, 18.0, 24.0, 36.0, 48.0, 54.0
- `default` Specifies that the default rates are used for packets.
- `priority 0-7` Specifies the priority (0 to 7)

**Defaults**

- 802.11b default data rates (Mbps): 5.5, 11.0
- 802.11a default data rates (Mbps): 6.0, 12.0, 24.0
- 802.11g default data rates (Mbps): 5.5, 6.0, 11.0, 12.0, 24.0

Priority default is 6 (voice). Currently, only priority 6 is allowed pending future releases.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)IA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify default packet speeds for priority 7.

```
AP(config-if)# packet speed default priority 7
```

This example shows how remove packet speeds of 1.0, 2.0, 5.5, 6.0, and 9.0 Mbps data rates at priority 7.

```
AP(config-if)# no packet speed 1.0 2.0 5.5 6.0 priority 7
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
packet timeout

Use the `packet timeout` configuration interface command to specify the packet timeout period for a priority. Queued packets whose age has exceeded the timeout threshold will be discarded if they have been declared discard-eligible in the `packet max-retries` command. Use the `no` form of the command to reset the parameter to defaults.

```
[no] packet timeout 1-128
 priority 0-7
```

**Syntax Description**

- `1-128` Specifies the packet timeout (1 to 128 milliseconds).
- `0-7` Specifies the packet priority (0 to 7).

**Defaults**
The timeout default is 35 milliseconds.

**Command Modes**
Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify a packet timeout of 12 msec at a priority of 7:

```
AP(config-if)# packet timeout 12 priority 7
```

This example shows how remove the packet timeout of 12 at a priority of 7:

```
AP(config-if)# no packet timeout 12 priority 7
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
packet-type (LBS configuration mode)

Use the `packet-type` location based services (LBS) configuration mode command to specify the LBS packet type that accepted in an LBS profile.

```
packet-type {extended | short}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>extended</code></td>
<td>Specifies that the access point accepts extended packets from LBS tag devices. An extended packet contains two bytes of LBS information in the frame body. If the packet does not contain those two bytes in the frame body, the access point drops the packet.</td>
</tr>
<tr>
<td><code>short</code></td>
<td>Specifies that the access point accepts short location packets from LBS tag devices. In short packets, the LBS information is missing from the tag packet’s frame body and the packet indicates the tag’s transmit channel.</td>
</tr>
</tbody>
</table>

**Defaults**
The default packet type is extended.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify the packet type used in the LBS profile:

```
ap(dott11-lbs)# packet-type short
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel-match (LBS configuration mode)</code></td>
<td>Specifies that the LBS packet sent by an LBS tag must match the radio channel on which the access point receives the packet</td>
</tr>
<tr>
<td><code>dot11 lbs</code></td>
<td>Creates an LBS profile and enters LBS configuration mode</td>
</tr>
<tr>
<td><code>interface dot11 (LBS configuration mode)</code></td>
<td>Enables an LBS profile on a radio interface</td>
</tr>
<tr>
<td><code>method (LBS configuration mode)</code></td>
<td>Specifies the location method used in an LBS profile</td>
</tr>
<tr>
<td><code>multicast address (LBS configuration mode)</code></td>
<td>Specifies the multicast address that LBS tag devices use when they send LBS packets</td>
</tr>
<tr>
<td><code>server-address (LBS configuration mode)</code></td>
<td>Specifies the IP address of the location server on your network</td>
</tr>
</tbody>
</table>
### parent

Use the **parent** configuration interface command to add a parent to a list of valid parent access points. Use the **no** form of the command to remove a parent from the list.

```
[no] parent 1-4 mac-address
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Specifies the parent root access point number (1 to 4)</td>
</tr>
<tr>
<td>mac-address</td>
<td>Specifies the MAC address (in xxxx.xxxx.xxxx format) of a parent access point</td>
</tr>
</tbody>
</table>

#### Defaults

Repeater access point operation is disabled by default.

#### Command Modes

Configuration interface

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines

The **parent** command adds a parent to the list of valid parent access points. Use this command multiple times to define up to four valid parents. A repeater access point operates best when configured to associate with specific root access points that are connected to the wired LAN.

#### Examples

This example shows how to set up repeater operation with the parent 1 access point:

```
AP(config-if)# parent 1 0040.9631.81cf
```

This example shows how to set up repeater operation with the parent 2 access point:

```
AP(config-if)# parent 2 0040.9631.81da
```

This example shows how to remove a parent from the parent list:

```
AP(config-if)# no parent 2
```

#### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent timeout</td>
<td>Sets the parent association timeout</td>
</tr>
</tbody>
</table>
parent timeout

Use the `parent timeout` configuration interface command to define the amount of time that a repeater tries to associate with a parent access point. Use the `no` form of the command to disable the timeout.

```
[no] parent timeout sec
```

**Syntax Description**

- `sec` Specifies the amount of time the access point attempts to associate with the specified parent access point (0 to 65535 seconds)

**Defaults**

Parent timeout is disabled by default.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `parent timeout` defines how long the access point attempts to associate with a parent in the parent list. After the timeout, another acceptable parent is used. You set up the parent list using the `parent` command. With the timeout disabled, the parent must come from the parent list.

**Examples**

This example shows how to set up repeater operation with the parent 1 access point with a timeout of 60 seconds:

```
AP(config-if)# parent timeout 60
```

This example shows how to disable repeater operation:

```
AP(config-if)# no parent
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>parent</code></td>
<td>Specify valid parent access points</td>
</tr>
</tbody>
</table>
password (dot1x credentials configuration mode)

Use the `password` dot1x credentials configuration mode command to specify dot1x credential user password. Use the `no` form of the command to disable the password.

```
[no] password [number] password
```

**Syntax Description**

<table>
<thead>
<tr>
<th><code>number</code></th>
<th>Specifies the type of password that follows. 0 indicates the password is unencrypted. 7 indicates the password is hidden.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>password</code></td>
<td>Specifies the user password for the dot1x credential.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Dot1x credentials configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify an unencrypted user password for the dot1x credential:

```
AP(config-dot1x-creden)# password 0 1234A45b8
```

This example shows how to specify a hidden user password for the dot1x credential:

```
AP(config-dot1x-creden)# password 7 1234A45b8
```

This example shows how to disable the credential user password:

```
AP(config-dot1x-creden)# no password
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x credentials</code></td>
<td>Configures dot1x credentials on the access point.</td>
</tr>
<tr>
<td><code>show dot1x credentials</code></td>
<td>Displays the configured dot1x credentials on the access point.</td>
</tr>
</tbody>
</table>
payload-encapsulation

Use the `payload-encapsulation` configuration interface command to specify the Ethernet encapsulation type used to format Ethernet data packets that are not formatted using IEEE 802.3 headers. Data packets that are not IEEE 802.3 packets must be reformatted using IEEE 802.1H or RFC1042. Use the `no` form of the command to reset the parameter to defaults.

```plaintext
[no] payload-encapsulation
 {snap | dot1h}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snap</code></td>
<td>(Optional) Specifies the RFC1042 encapsulation</td>
</tr>
<tr>
<td><code>dot1h</code></td>
<td>(Optional) Specifies the IEEE 802.1H encapsulation</td>
</tr>
</tbody>
</table>

**Defaults**

The default payload encapsulation is snap.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify the use of IEEE 802.1H encapsulation:

```
AP(config-if)# payload-encapsulation dot1h
```

This example shows how to reset the parameter to defaults:

```
AP(config-if)# no payload-encapsulation
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
pki-trustpoint (dot1x credentials configuration mode)

Use the **pki-trustpoint** dot1x credentials configuration mode command to configure the PKI-Trustpoint for the dot1x credential. Use the **no** form of the command to disable the PKI-Trustpoint.

```plaintext
[no] pki-trustpoint name
```

**Syntax Description**

| **name** | Specifies the default PKI-Trustpoint for the dot1x credential. |

**Defaults**

This command has no defaults.

**Command Modes**

Dot1x credentials configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify default PKI-Trustpoint for the dot1x credential:

```
AP(config-dot1x-cred)# pki-trustpoint pki101
```

This example shows how to disable the default PKI-Trustpoint:

```
AP(config-dot1x-cred)# no pki-trustpoint
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x credentials</td>
<td>Configures dot1x credentials on the access point.</td>
</tr>
<tr>
<td>show dot1x credentials</td>
<td>Displays the configured dot1x credentials on the access point.</td>
</tr>
</tbody>
</table>
power client

Use the `power client` configuration interface command to configure the maximum power level clients should use for IEEE 802.11b radio transmissions to the access point. The power setting is transmitted to the client device during association with the access point. Use the `no` form of the command to not specify a power level.

**2.4-GHz Radio (802.11b)**

```
[no] power client {1 | 5 | 20 | 30 | 50 | 100 | maximum }\(^1\)
```

**2.4-GHz Radio (802.11g)**

```
[no] power client {1 | 5 | 10 | 20 | 30 | 50 | 100 | maximum }\(^1\)
[no] power client{-1 | 2 | 5 | 8 | 11 | 14 | 17 | 20 | maximum }\(^2\)
```

**5-GHz Radio (802.11a)**

```
[no] power client {5 | 10 | 20 | 40 | maximum }\(^1\)
[no] power client{-1 | 2 | 5 | 8 | 11 | 14 | 17 | maximum }\(^2\)
[no] power client {-1 | 2 | 5 | 8 | 11 | 14 | 15 | maximum }\(^2\)
```

**Note**  
This command is supported only on access points and the 1300 series bridge.

**Note**  
The supported client power levels differ on the various access points and the 1300 series bridge.

1. Power settings in mW.
2. Power settings in dBm.
Syntax Description

For the 802.11b, 2.4-GHz radio:
1, 5, 20, 30, 50, 100, maximum\(^1\)

For the 802.11g, 2.4-GHz radio:
1, 5, 10, 20, 30, 50, 100, maximum\(^1\)
-1, 2, 5, 8, 11, 14, 16, 17, 20, maximum\(^2\)

For 802.11a, 5-GHz radio:
5, 10, 20, 40, maximum\(^1\)
-1 | 2 | 5 | 8 | 11 | 14 | 15 | 17 | maximum\(^2\)
-1 | 2 | 5 | 8 | 11 | 14 | 15 | maximum\(^2\)

1. Power settings in mW.
2. Power settings in dBm.

Specifies a specific power level in mW or in dBm. Maximum power is regulated by the regulatory domain for the country of operation and is set during manufacture of the access point and client device.

Note The maximum power level allowed depends on the gain of the antenna being used on your access point or bridge and on your regulatory domain.

For a list of maximum power levels allowed in each regulatory domain for the 2.4-GHz radio and the 5-GHz radio, refer to the “Channels and Antenna Settings” section in the hardware installation guide for your access point or bridge.

Note The 802.11g radio transmits at up to 100 mW or 20 dBm for the 1, 2, 5.5, and 11Mbps data rates. However, for the 6, 9, 12, 18, 24, 36, 48, and 54Mbps data rates, the maximum transmit power for the 802.11g radio is 30 mW or 17 dBm.

Defaults

The default is no power level specification during association with the client.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to specify the desired transmitter power level for clients. Lower power levels reduce the radio cell size and interference between cells. The client software chooses the actual transmit power level, choosing between the lower of the access point value and the locally configured value. The maximum transmit power is limited according to regulatory region.

Examples

This example shows how to specify a 20-mW power level for client devices associated to the access point radio:

```
AP(config-if)# power client 20
```

This example shows how to disable power level requests:

```
AP(config-if)# no power client
```
Use the `power inline negotiation` configuration command to configure the Cisco Aironet 1130AG or 1240AG series access point to operate with older switch software that does not support Cisco Intelligent Power Management power negotiations. Use the no form of the command to disable the access point inline power settings.

```
[no] power inline negotiation { prestandard source |
 injector{installed | override | MAC address} }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prestandard source</td>
<td>Specifies that the Cisco switch is running older software that does not support Intelligent Power Management negotiations but is able to supply sufficient power to the access point.</td>
</tr>
<tr>
<td>injector installed</td>
<td>Specifies that a power injector is used to supply sufficient power to the access point and that the Cisco switch is running older software that does not support Intelligent Power Management.</td>
</tr>
<tr>
<td>injector override</td>
<td>Specifies a power injector is supplying power and the access point is configured to override all inline power checks.</td>
</tr>
<tr>
<td><code>MAC address</code></td>
<td>Specifies that a power injector is supplying power to the access point and the access point is connected to a new switch port with the indicated MAC address. Enter the MAC address (in xxxx.xxxx.xxxx hexadecimal format) of the new switch port where the power injector is connected.</td>
</tr>
</tbody>
</table>

**Caution**

When using the `power inline negotiation injector override` command, a power injector must always be installed to prevent a possible overload condition with an underpowered power source.

**Defaults**

The manufacturing default configuration is `power inline negotiation prestandard source`. If your switch supports Intelligent Power Management, you should change this setting by using the `no power inline negotiation prestandard source` command.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.3(8)JA</td>
<td>The command was modified to include the <code>installed, override, and MAC address</code> keywords.</td>
</tr>
</tbody>
</table>
Usage Guidelines

To help avoid an over-current condition with low power sources and to optimize power usage on Cisco switches, Cisco developed Intelligent Power Management, which uses Cisco Discovery Protocol (CDP) to allow powered devices (the Cisco Aironet 1130AG and 1240AG series access points) to negotiate with a Cisco switch for sufficient power.

Intelligent Power Management support is dependent on the version of software resident in the Cisco switch that is providing power to the access point. Each Cisco switch should be upgraded to support Intelligent Power Management. Until the software is upgraded, you can configure the access point to operate with older switch software using the `power inline negotiation` command. Refer to the Troubleshooting section of the hardware installation guide for your access point for additional information.

A power injector can be used to supply power to the Cisco Aironet 1130AG or 1240AG series access point. If your switch supports Intelligent Power Management, the power injector will be detected without the need for any configuration changes on the access point.

**Note**
Cisco switches that do not support inline power can run software that supports Intelligent Power Management. If your Cisco switch software cannot be upgraded, the access point must be reconfigured using the `power inline negotiation injector` command.

**Caution**

You must cautiously use the `power inline negotiation injector override` command because this command causes the access point to enter high power mode without performing power checks and can potentially cause an overcurrent condition in underpowered power sources. Always verify that a power injector is correctly installed before using this command.

When an access point was previously configured with a power injector and you relocate the access point to another switch port, you must use the `power inline negotiation injector MAC address` command with the MAC address of the new switch port. You must verify that the power injector is correctly installed before using this command.

Examples

This example shows how to set up the Cisco Aironet 1130AG or 1240AG series access point to be powered from a Cisco switch that can supply sufficient power but does not support Intelligent Power Management negotiations:

```
AP(config)# power inline negotiation prestandard source
AP(config)# no power inline negotiation injector
```

This example shows how to set up the Cisco Aironet 1130AG or 1240AG series access point to be powered from a power injector connected to a Cisco switch port that does not support Intelligent Power Management. The access point automatically determines the MAC address of the switch port:

```
AP(config)# no power inline negotiation prestandard source
AP(config)# power inline negotiation injector installed
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current running configuration of the access point, which indicates how the access point is being powered.</td>
</tr>
</tbody>
</table>
power local

Use the `power local` configuration interface command to configure the access point or bridge radio power level. Use the `no` form of the command to reset the parameter to defaults. On the 2.4-GHz, 802.11g radio, you can set Orthogonal Frequency Division Multiplexing (OFDM) power levels and Complementary Code Keying (CCK) power levels. CCK modulation is supported by 802.11b and 802.11g devices. OFDM modulation is supported by 802.11g and 802.11a devices.

### 2.4-GHz Access Point Radio (802.11b)

- `no power local { 1 | 5 | 20 | 30 | 50 | 100 | maximum }`

### 2.4-GHz Access Point Radio (802.11g)

- `no power local cck { 1 | 5 | 10 | 20 | 30 | 50 | 100 | maximum }`
- `no power local cck { -1 | 2 | 5 | 8 | 11 | 14 | 15 | 17 | 20 | maximum }`
- `no power local ofdm { 1 | 5 | 10 | 20 | 30 | maximum }`
- `no power local ofdm { -1 | 2 | 5 | 8 | 11 | 14 | 17 | maximum }`

### 5-GHz Access Point Radio (801.11a)

- `no power local { 5 | 10 | 20 | 40 | maximum }`
- `no power local { -1 | 2 | 5 | 8 | 11 | 14 | 15 | maximum }`

### 1400 Series Bridge 5.8-GHz Radio

- `no power local { 12 | 15 | 18 | 21 | 22 | 23 | 24 | maximum }`

**Note**

The maximum transmit power depends on your regulatory domain and the antenna gain for your access point or bridge. For additional information refer to the “Channels and Antenna Settings” section of the hardware installation guide for your access point or bridge.

**Note**

The supported transmit power levels differ on the various access points and bridges.

**Note**

This command requires the radio to be turned on and enabled to determine valid power settings allowed on your access point radio.

---

1. Power settings in mW.
2. Power settings in dBm.
Syntax Description

For the 802.11b, 2.4-GHz access point radio:
1, 5, 20, 30, 50, 100, or maximum\(^1\)

For the 802.11g, 2.4-GHz access point radio:
1, 5, 10, 20, 30, 50, 100, or maximum
1, 2, 5, 8, 11, 14, 15, 17, 20, or maximum\(^2\)
1 | 5 | 10 | 20 | 30 | maximum\(^1\)
-1 | 2 | 5 | 8 | 11 | 14 | 17 | maximum\(^2\)

For the 5-GHz access point radio:
5, 10, 20, 40, or maximum\(^1\)
-1, 2, 5, 8, 11, 14, 15, or maximum\(^2\)
-1, 2, 5, 8, 11, 14, 15, 17, or maximum\(^2\)

For the 5.8-GHz 1400 series bridge radio:
12, 15, 18, 21, 22, 23, 24, or maximum\(^2\)

1. Power settings in mW.
2. Power settings in dBm.

Specifies access point power setting in mW or in dBm. Maximum power is regulated by the regulatory domain for the country of operation and is set during manufacture of the access point and client device.

Note The maximum power level allowed depends on the gain of the antenna being used on your access point or bridge and on your regulatory domain.

For a list of maximum power levels allowed in each regulatory domain for the 2.4-GHz radio and the 5-GHz radio, refer to the “Channels and Antenna Settings” section in the hardware installation guide for your access point or bridge.

Note The 802.11g radio transmits at up to 100 mW or 20 dBm for the 1, 2, 5.5, and 11Mbps data rates. However, for the 6, 9, 12, 18, 24, 36, 48, and 54Mbps data rates, the maximum transmit power for the 802.11g radio is 30 mW or 17 dBm.

Defaults

The default local power level is maximum.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(8)JA</td>
<td>Parameters were added to support the 5-GHz access point radio.</td>
</tr>
<tr>
<td>12.2(11)JA</td>
<td>Parameters were added to support the 5.8-GHz bridge radio.</td>
</tr>
<tr>
<td>12.2(13)JA</td>
<td>Parameters were added to support the 802.11g, 2.4-GHz access point radio.</td>
</tr>
<tr>
<td>12.3(2)JA</td>
<td>Parameters were added to support the AIR-RM21A 5-GHz radio module.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to specify the local transmit power level for the current operating radio channel on the access point. This command requires the access point radio to be turned on. Lower power levels reduce the radio cell size and interference between cells. The maximum transmit power for the access point is limited by the regulatory domain for your country of operation.

On some access point radios, the available transmit power settings vary on a per-channel basis. Prior to using the power local command, you should set the access point to the desired radio channel. If the access point is set to scan for the best channel, then the power settings available in the power local command are limited by the radio channel selected by the access point. You can use the power local ? command to display the available power settings for that channel.
Examples

This example shows how to specify a 20-mW transmit power level for the 802.11b access point radio:

```
AP(config-if)# power local 20
```

This example shows how to reset power to defaults on one of the access point radios:

```
AP(config-if)# no power local
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>

preamble-short

Use the `preamble-short` configuration interface command to enable short radio preambles. The radio preamble is a selection of data at the head of a packet that contains information that the access point and client devices need when sending and receiving packets. Use the `no` form of the command to change back to default values.

```
[no] preamble-short
```

Note

This command is not supported on the 5-GHz access point radio interface (dot11radio1).

Syntax Description

This command has no arguments or keywords.

Defaults

The default is short radio preamble.

Command Modes

Configuration interface

Command History

```
Release Modification
12.2(4)JA This command was introduced.
```

Usage Guidelines

If short radio preambles are enabled, clients may request either short or long preambles and the access point formats packets accordingly. Otherwise, clients are told to use long preambles.
Examples

This example shows how to set the radio packet to use a short preamble.

```
AP(config-if)# preamble-short
```

This example shows how to set the radio packet to use a long preamble.

```
AP(config-if)# no preamble-short
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>
probe-response gratuitous

Gratuitous Probe Response (GPR) aids in conserving battery power in dual mode phones that support cellular and WLAN modes of operation. GPR is available on 5-GHz radios and is disabled by default. Use the `probe-response gratuitous` configuration interface command to define amount of time between GPRs and the datarate used to transmit the GPR.

Use the `no` form of the command to disable the GPR settings.

```
[no] probe-response gratuitous [period <Kms>] [speed <rate>]
```

Syntax Description

- **period Kms**: Specifies the amount of time between GPRs in Kilomicroseconds (Kms). Kms is a unit of measurement in software terms. 
  
  \[ K = 1024, m = 10^{-6}, \text{and} \ s = \text{seconds}, \text{so} \ Kms = 0.001024 \text{ seconds}, \ 1.024 \text{ milliseconds, or} \ 1024 \text{ microseconds (0 to 255 Kms). The period values are from 10 to 255. The default value is 10.} \]

- **speed rate**: Specifies the data rate (in Mbps) used to transmit the GPR. The speed values are 6.0, 9.0, 12.0, 18.0, 24.0, 36.0, 48.0, 54.0. The default value is 6.0.

Defaults

The command is disabled by default. The default **period** is 10 and the default **speed** is 6.0.

Command Modes

Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure a GPR period of 10 Kms at a speed of 18 Mbps:

```
AP# config terminal
AP# interface dot11radio 1
AP(config-if)# probe-response gratuitous period 30 speed 18.0
```

This example shows how to configure a GPR period of 200 Kms at the default speed.

```
AP(config-if)# probe-response gratuitous period 200
```

This example shows how to disable the GPR settings:

```
AP(config-if)# no probe-response gratuitous
```
radius local-server pac-generate

Use the `radius local-server pac-generate` global configuration command to generate a Protected Access Credential (PAC) for a client device on a local authenticator access point. The local authenticator automatically generates PACs for EAP-FAST clients that request them. However, you might need to generate a PAC manually for some client devices. When you enter the command, the local authenticator generates a PAC file and writes it to the network location that you specify. The user imports the PAC file into the client profile.

```
radius local-server pac-generate username filename [password password] [expire days]
```

**Syntax Description**

- `username` Specifies the client username for which the PAC is generated.
- `filename` Specifies the name for the PAC file. When you enter the PAC file name, enter the full path to which the local authenticator writes the PAC file.
- `password password` Specifies a password used in password protection for the PAC file.
- `expire days` Specifies the number of days until the PAC file expires and is no longer valid.

**Defaults**

This default password for a PAC file is `test`, and the default expiration time is 1 day.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

In this example, the local authenticator generates a PAC for the username `joe`, password-protects the file with the password `bingo`, sets the PAC to expire in 10 days, and writes the PAC file to the TFTP server at 10.0.0.5:

```
AP# radius local-server pac-generate joe tftp://10.0.0.5/joe.pac password bingo expiry 10
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>radius-server local</code></td>
<td>Configures an access point as a local or backup authenticator</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current access point operating configuration</td>
</tr>
<tr>
<td><code>user (local server configuration mode)</code></td>
<td>Adds a user to the list of users allowed to authenticate to the local authenticator</td>
</tr>
</tbody>
</table>
radius-server local

Use the radius-server local global configuration command to enable the access point as a local or backup authenticator and to enter configuration mode for the local authenticator.

radius-server local

Note

This command is not supported on bridges.

Defaults

This command has no defaults.

Command Modes

Global configuration

Command History

Release Modification
12.2(11)JA This command was introduced.

Examples

This example shows how to enable the access point as a local or backup authenticator:

AP(config)# radius-server local

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group (local server configuration mode)</td>
<td>Creates a user group on the local authenticator and enters user group configuration mode</td>
</tr>
<tr>
<td>nas (local server configuration mode)</td>
<td>Adds an access point to the list of NAS access points on the local authenticator</td>
</tr>
<tr>
<td>show radius local-server statistics</td>
<td>Displays statistics for a local authenticator access point</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current access point operating configuration</td>
</tr>
<tr>
<td>user (local server configuration mode)</td>
<td>Adds a user to the list of users allowed to authenticate to the local authenticator</td>
</tr>
</tbody>
</table>
rts

Use the `rts` configuration interface command to set the Request-To-Send (RTS) threshold and the number of retries. Use the `no` form of the command to reset the parameter to defaults.

### Access Points

```
[no] rts
 {threshold 0-4000 | retries 1-128}
```

### Bridges

```
[no] rts
 {threshold 0-4000 | retries 1-128}
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold</td>
<td>Specifies the packet size, in bytes, above which the access point or bridge negotiates an RTS/CTS before sending out the packet.</td>
</tr>
<tr>
<td>retries</td>
<td>Specifies the number of times the access point or bridge issues an RTS before stopping the attempt to send the packet over the radio.</td>
</tr>
</tbody>
</table>

#### Defaults

The default `threshold` is 2347 bytes for all access points and bridges.

The default number of `retries` is 32.

#### Command Modes

Configuration interface

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(11)JA</td>
<td>This command was modified to support bridges.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines

On bridges set up in a point-to-point configuration, set the RTS threshold to 4000 on both the root and non-root bridges. If you have multiple bridges set up in a point-to-multipoint configuration, set the RTS threshold to 4000 on the root bridge and to 0 on the non-root bridges.

You have the option to change the rts threshold value on BR1310 and BR1410 bridges to any value in the range 0 to 4000. For the BR1310 and BR1410, it would be useful to set the rts threshold value in the range 2348 to 4000 if the packet concatenation feature is enabled and the maximum packet concatenation size is in the range 0 to 2348.

#### Examples

This example shows how to set the RTS threshold on a bridge to 4000 bytes:

```
bridge(config-if)# rts threshold 4000
```

This example shows how to set the RTS retries count to 3:
AP(config-if)# **rts retries 3**

This example shows how to reset the parameter to defaults:

AP(config-if)# **no rts**
server-address (LBS configuration mode)

Use the server-address LBS configuration mode command to specify the IP address of your location server and the port number on the server to which LBS access points send UDP packets that contain positioning information.

```
server-address ip-address port port-number
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>Specifies the IP address of the location server on your network.</td>
</tr>
<tr>
<td>port-number</td>
<td>Specifies the port on the location server to which LBS access points send UDP packets that contain positioning information. Enter a port number from 1024 to 65535.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

LBS configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify the IP address of your location server and a port on the server:

```
ap(dot11-lbs# server-address 10.91.107.19 port 1024
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-match (LBS configuration mode)</td>
<td>Specifies that the LBS packet sent by an LBS tag must match the radio channel on which the access point receives the packet</td>
</tr>
<tr>
<td>dot11</td>
<td>Creates an LBS profile and enters LBS configuration mode</td>
</tr>
<tr>
<td>interface dot11 (LBS configuration mode)</td>
<td>Enables an LBS profile on a radio interface</td>
</tr>
<tr>
<td>method (LBS configuration mode)</td>
<td>Specifies the location method used in an LBS profile</td>
</tr>
<tr>
<td>multicast address (LBS configuration mode)</td>
<td>Specifies the multicast address that LBS tag devices use when they send LBS packets</td>
</tr>
<tr>
<td>packet-type (LBS configuration mode)</td>
<td>Specifies the LBS packet type accepted in an LBS profile</td>
</tr>
</tbody>
</table>
short-slot-time

Use the **short-slot-time** configuration interface command to enable short slot time on the 802.11g, 2.4-GHz radio. Short slot time reduces the slot time from 20 microseconds to 9 microseconds, thereby increasing throughput. The access point uses short slot time only when all clients that are associated to the 802.11g radio can support short slot time.

```
short-slot-time
```

**Note**

This command is supported only on 802.11g, 2.4-GHz radios.

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

Short slot time is disabled by default.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to enable short slot time:

```
AP(config-if)# short-slot-time
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlccp wds priority</code></td>
<td>Configures an access point as a candidate to provide wireless domain services (WDS)</td>
</tr>
</tbody>
</table>
show boot mode-button

Use the `show boot mode-button` privileged EXEC command to display the access point mode button status.

```
show boot mode-button
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to display the access point Mode button status:

```
AP# show boot mode-button
on
ap#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>boot mode-button</code></td>
<td>Enables or disables the access point mode button.</td>
</tr>
</tbody>
</table>
show controllers dot11radio

Use the `show controllers dot11radio` privileged EXEC command to display the radio controller status.

```
show controllers dot11radio interface-number
```

### Syntax Description

| interface-number | Specifies the radio interface number. The 2.4-GHz radio(b, g, or n) is radio 0. The 5-GHz(a or n) radio is radio 1. |

### Defaults

This command has no defaults.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.4(3g)JA &amp; 12.3(8)JEB</td>
<td>Command modified to include the following DFS information:</td>
</tr>
<tr>
<td></td>
<td>• Uniform spreading is required</td>
</tr>
<tr>
<td></td>
<td>• DFS is enabled or not for the particular frequency</td>
</tr>
<tr>
<td></td>
<td>• Channels not in the non-occupancy period due to radar detection</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to display the radio controller status for radio interface 0:

```
AP# show controllers dot11radio 0
```

A portion of the output of this command shows the active power levels by rate, as shown below:

```
1.0 to 11.0 , 20 dBm, changed due to regulatory maximum
6.0 to m15. , 17 dBm, changed due to regulatory maximum
m0.-4 to m15.-4, 14 dBm, changed due to regulatory maximum
```

-4 means 40-MHz wide band. A similar output, -4s means 40-MHz wide band with short guard interval turned on.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces dot11radio</code></td>
<td>Displays configuration and status information for the radio interface</td>
</tr>
</tbody>
</table>
show dot11 aaa authentication mac-authen filter-cache

Use the `show dot11 aaa authentication mac-authen filter-cache` privileged EXEC command to display MAC addresses in the MAC authentication cache.

```
show dot11 aaa authentication mac-authen filter-cache [address]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address</code></td>
<td>Specifies a specific MAC address in the cache.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear dot11 aaa authentication mac-authen filter-cache</code></td>
<td>Clear MAC addresses from the MAC authentication cache.</td>
</tr>
<tr>
<td><code>dot11 activity-timeout</code></td>
<td>Enable MAC authentication caching.</td>
</tr>
</tbody>
</table>
show dot11 adjacent-ap

Use the show dot11 adjacent-ap privileged EXEC command to display the fast, secure roaming list of access points that are adjacent to this access point. The WDS access point builds the adjacent access point list based on data from client devices that support fast, secure roaming. This command works only when you configure your wireless LAN for fast, secure roaming and there are client devices on your wireless LAN that support fast, secure roaming.

show dot11 adjacent-ap

Note
For this command to work, dot11network-map should be enabled

Note
This command is not supported on bridges.

Defaults
This command has no defaults.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display the adjacent access point list:

```
AP# show dot11 adjacent-ap
```

This example shows a list of adjacent access points:

```
Radio Address Channel Age(Hours) SSID
-------- ----------------- --------- ----------- ----
0 0007.50d5.8759 1 1 tsunami
```

These are descriptions of the list columns:

- Radio—the interface number to which the client is currently associated
- Address—the MAC address of the adjacent access point from which the client device roamed
- Channel—the radio channel used by the adjacent access point
- Age (Hours)—the number of hours since a client roamed from the adjacent access point
- SSID—the SSID the client used to associate to the adjacent access point
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dot11 adjacent-ap</td>
<td>Specifies the number of hours an inactive entry remains in the adjacent access point list</td>
</tr>
<tr>
<td></td>
<td>age-timeout</td>
<td></td>
</tr>
</tbody>
</table>
**show dot11 associations**

Use the `show dot11 associations` privileged EXEC command to display the radio association table, radio association statistics, or to selectively display association information about all repeaters, all clients, a specific client, or basic service clients.

```
show dot11 associations
 [client | repeater | statistics | H.H.H | bss-only | all-client | cckm-statistics]
```

**Note**
The `show dot11 associations` command shows only the first 15 characters of the association table. To see the entire table use the `show dot11 associations client` command.

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client</code></td>
<td>(Option) Displays all client devices associated with the access point</td>
</tr>
<tr>
<td><code>repeater</code></td>
<td>(Option) Displays all repeater devices associated with the access point</td>
</tr>
<tr>
<td><code>statistics</code></td>
<td>(Option) Displays access point association statistics for the radio interface</td>
</tr>
<tr>
<td><code>H.H.H (mac-address)</code></td>
<td>(Option) Displays details about the client device with the specified MAC address (in xxxx.xxxx.xxxx format)</td>
</tr>
<tr>
<td><code>bss-only</code></td>
<td>(Option) Displays only the basic service set clients that are directly associated with the access point</td>
</tr>
<tr>
<td><code>all-client</code></td>
<td>(Option) Displays the status of all clients associated with the access point</td>
</tr>
<tr>
<td><code>cckm-statistics</code></td>
<td>(Option) Displays fast, secure roaming (CCKM) latency statistics measured at the access point for client devices using CCKM</td>
</tr>
</tbody>
</table>

### Defaults

When parameters are not specified, this command displays the complete radio association table.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The data retrieved depends on the state of the device. If the station/wireless client is associated, the following states are printed:

- EAP-Assoc
- MAC-Assoc
- Assoc

If the station/wireless client is not associated, the actual states are printed:

- Auth_notAssoc
- Wait ReAuth
show dot11 associations

Examples

This example shows how to display the radio association table:

```
AP# show dot11 associations
```

This example shows how to display all client devices associated with the access point:

```
AP# show dot11 associations client
```

This example shows how to display access point radio statistics:

```
AP# show dot11 associations statistics
```
### show dot11 associations

#### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear dot11 client</td>
<td>Deauthenticates a client with a specified MAC address</td>
</tr>
<tr>
<td>clear dot11 statistics</td>
<td>Resets the statistics for a specified radio interface or client device</td>
</tr>
<tr>
<td>dot11 extension aironet</td>
<td>Starts a link test between the access point and a client device</td>
</tr>
</tbody>
</table>
show dot11 bssid

Use the show dot11 bssid privileged EXEC command to display the relationship between SSIDs and BSSIDs or MAC addresses.

```
show dot11 bssid
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display a list of BSSIDs and SSIDs:

```
AP# show dot11 bssid
```

This example shows the command output:

```
AP1230#show dot11 bssid
Interface BSSID Guest SSID
Dot11Radio1 0011.2161.b7c0 Yes tsunami
Dot11Radio0 0005.9a3e.7c0f Yes WPA2-TLS-g
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 mbssid</td>
<td>Enables BSSIDs on all radio interfaces that support multiple BSSIDs</td>
</tr>
<tr>
<td>mbssid</td>
<td>Enables BSSIDs on a radio interface</td>
</tr>
<tr>
<td>mbssid (SSID configuration mode)</td>
<td>Specifies that a BSSID is included in beacons and specifies a DTIM period for the BSSID</td>
</tr>
</tbody>
</table>

show dot11 cac

Use the show dot11 cac command to display CAC information for a radio interface.

```
show dot11 cac [dot11radio number]
```

**Note**

This command is not supported on repeaters.
Syntax Description

`dot11radio number` Displays admission control statistics for the 802.11 radio interface, where `number` is 0 for the 802.11a and 802.11g radios or 1 for the 801.11a radio.

Defaults

This command has no defaults.

Command Modes

Privileged EXEC

Command History

Release  Modification
12.3(8)JA  This command was introduced.

Examples

This example shows how to display CAC information for the access point:

```
AP# show dot11 cac
Admission Control is allowed on the following SSID(s):
 test
The AAC on Dot11Radio0 is 23437
Dot11Radio0, AC:3 :
Configuration: Max-Channel 75, Roam 10
Medium Time Info:
 MT max: 23437, MT roam: 3125, MT Consumed: 0, Total MT Left: 23437
 Direct Orig MT Left: 20312
 Admitted Count 0, Rejected Count 0
 Counters:
 ssid rejects: 0, rate rejects: 0, tspec violations: 0
 bandwidth rejects: 0, active calls: 0
 Na_direct=12, Na_roam =14, Channel Used= 0, State = 0
Dot11Radio1, AC:2 :
 ACM bit is turned off, all TSPECS accepted
 Counters:
 ssid rejects: 0, rate rejects: 0, tspec violations: 0
 bandwidth rejects: 0, active calls: 0
 Na_direct=0, Na_roam =0, Channel Used= 0, State = 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit-traffic (QOS Class interface configuration mode)</td>
<td>Configures CAC admission control on the access point.</td>
</tr>
<tr>
<td>admit-traffic (SSID configuration mode)</td>
<td>Enables CAC traffic on an SSID.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>traffic-stream</td>
<td>Configures CAC traffic data rates and priorities on the access point.</td>
</tr>
<tr>
<td>debug cac</td>
<td>Provides debug information for CAC admission control on the access point.</td>
</tr>
</tbody>
</table>
show dot11 carrier busy

Use the `show dot11 carrier busy` privileged EXEC command to display recent carrier busy test results. You can display test results once using this command. After the display, you must use the `dot11 carrier busy` command to run the carrier busy test again.

```
show dot11 carrier busy
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to display the carrier busy test results:

```
AP# show dot11 carrier busy
```

This example shows the carrier busy test results:

```
Frequency Carrier Busy %
---------- --------------
5180 0
5200 2
5220 27
5240 5
5260 1
5280 0
5300 3
5320 2
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 carrier busy</td>
<td>Runs the carrier busy test</td>
</tr>
</tbody>
</table>
show dot11 directed-roam

Use the show dot11 directed-roam privileged EXEC command to display recent carrier busy test results. You can display test results once using this command. After the display, you must use the dot11 directed-roam command to run the carrier busy test again.

    show dot11 directed-roam [clients] [aps]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clients</td>
<td>Displays the candidate client list.</td>
</tr>
<tr>
<td>aps</td>
<td>Displays the candidate access point list.</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display the carrier busy test results:

```
AP# show dot11 carrier busy
```

This example shows the carrier busy test results:

```
Frequency Carrier Busy %
---------- --------------
5180 0
5200 2
5220 27
5240 5
5260 1
5280 0
5300 3
5320 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 carrier busy</td>
<td>Runs the carrier busy test</td>
</tr>
</tbody>
</table>
show dot11 ids eap

Use the show dot11 ids eap privileged EXEC command to display wireless IDS statistics.

```
show dot11 ids eap
```

### Syntax Description

This command has no arguments or keywords.

### Defaults

This command has no defaults.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command displays wireless IDS information only if you first enable IDS on a scanner access point in monitor mode.

### Examples

This example shows how to display wireless IDS statistics:

```
AP# show dot11 ids eap
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 ids eap attempts</td>
<td>Configures limits on authentication attempts and EAPOL flooding on scanner access points in monitor mode</td>
</tr>
</tbody>
</table>
show dot11 ids mfp

Use the `show dot11 ids mfp` privileged EXEC command to display Management Frame Protection (MFP) parameters on the access point.

```
show dot11 ids mfp
detector [statistics]
distributor {detectors | generators | statistics}
generator
client statistics
```

```
show dot11 ids mfp io
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detector</code></td>
<td>Indicates if the MFP detector is configured on the access point.</td>
</tr>
<tr>
<td><code>detector statistics</code></td>
<td>Displays the MFP statistics for the access point.</td>
</tr>
<tr>
<td><code>distributor detectors</code></td>
<td>Displays the MFP distributed detectors.</td>
</tr>
<tr>
<td><code>distributor generators</code></td>
<td>Displays the MFP distributed generators.</td>
</tr>
<tr>
<td><code>distributor statistics</code></td>
<td>Displays the MFP receive statistics on the access point.</td>
</tr>
<tr>
<td><code>generator</code></td>
<td>Displays the MFP generator.</td>
</tr>
<tr>
<td><code>io</code></td>
<td>Displays the MFP IO statistics.</td>
</tr>
<tr>
<td><code>client statistics</code></td>
<td>Displays the MFP-2 statistics on the access point.</td>
</tr>
</tbody>
</table>

**Defaults**

There are no defaults for this command.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display the MFP detectors configured on the access point:

```
ap(config)# show dot11 ids mfp detector
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot11 ids mfp</code></td>
<td>Configures the MFP parameters on the access point.</td>
</tr>
<tr>
<td><code>debug dot11 ids mfp</code></td>
<td>Debugs MFP operations on the access point.</td>
</tr>
</tbody>
</table>
show dot11 network-map

Use the `show dot11 network-map` privileged EXEC command to display the radio network map. The radio network map contains information from Cisco access points in the same Layer 2 domain as this access point.

```
show dot11 network-map
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command displays network map information only if you first enable the network map feature with the `dot11 network map` command.

**Examples**

This example shows how to display the radio network map:

```
AP# show dot11 network-map
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 network-map</td>
<td>Enables the network map feature</td>
</tr>
</tbody>
</table>
show dot11 statistics client-traffic

Use the **show dot11 statistics client-traffic** privileged EXEC command to display the radio client traffic statistics.

```
show dot11 statistics client-traffic
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display the radio client traffic statistics:

```
AP# show dot11 statistics client-traffic
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear dot11 client</code></td>
<td>Deauthenticates a client with a specified MAC address</td>
</tr>
<tr>
<td><code>clear dot11 statistics</code></td>
<td>Resets the statistics for a specified radio interface or client device</td>
</tr>
</tbody>
</table>
show dot11 traffic-streams

Use the `show dot11 traffic-streams` command to display a list of traffic streams admitted by the AP. It lists the access category and TSID of the streams as well as medium time allocated for the traffic stream.

```
show dot11 traffic-streams
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
```
Following are the Admitted TS on this AP:

<table>
<thead>
<tr>
<th>OrigSTA</th>
<th>OrigMethod</th>
<th>TSID</th>
<th>AC</th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>000a.f4bc.8de8</td>
<td>ADDTS</td>
<td>01</td>
<td>3</td>
<td>559</td>
</tr>
<tr>
<td>000a.f4bc.8de8</td>
<td>ASSOC</td>
<td>03</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>000a.fdea.beef</td>
<td>ADDTS</td>
<td>02</td>
<td>3</td>
<td>1554</td>
</tr>
</tbody>
</table>
```
show dot11 vlan-name

Use the show dot11 vlan-name privileged EXEC command to display VLAN name and ID pairs configured on the access point. If your access point is not configured with VLAN names or is configured only with VLAN IDs, there is no output for this command.

**show dot11 vlan-name [vlan-name]**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-name</td>
<td>(Optional) Displays the VLAN name and VLAN ID for a specific VLAN name</td>
</tr>
</tbody>
</table>

**Defaults**

When you do not specify a VLAN name, this command displays all VLAN name and ID pairs configured on the access point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display all VLAN name and ID pairs on an access point:

```
AP# show dot11 vlan-name
```

This example shows how to display the VLAN name and ID for a specific VLAN name:

```
AP# show dot11 vlan-name chicago
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot11 vlan-name</td>
<td>Assigns a VLAN name to a VLAN.</td>
</tr>
</tbody>
</table>
show dot1x

Use the `show dot1x` command to display dot1x information on the access point.

```
show dot1x [all | interface {dot11radio number | fastethernet number} [details | statistics] | statistics
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>(Optional) Displays all DOT1X information on the access point.</td>
</tr>
<tr>
<td>interface</td>
<td>(Optional) Displays DOT1X information specific to an interface.</td>
</tr>
<tr>
<td>dot11radio number</td>
<td>(Optional) Specifies the radio interface, where <code>number</code> is 0 for the 802.11b or 802.11g radios and 1 for the 802.11a radio.</td>
</tr>
<tr>
<td>fastethernet number</td>
<td>(Optional) Specifies the fast Ethernet interface, where <code>number</code> is 0.</td>
</tr>
<tr>
<td>details</td>
<td>(Optional) Displays DOT1x details for the interface.</td>
</tr>
<tr>
<td>statistics</td>
<td>(Optional) Displays DOT1x message statistics for the interface or the access point.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display all DOT1x information on an access point:

```
AP# show dot1x all
Sysauthcontrol Disabled
Dot1x Protocol Version 2

Dot1x Info for FastEthernet0

PAE = SUPPLICANT
StartPeriod = 30
AuthPeriod = 30
HeldPeriod = 60
MaxStart = 3
Credentials profile = cred-switch-eap
EAP profile = switch-tls
maldives-ap#
```

This example shows how to display all the DOT1x statistics:

```
AP# show dot1x statistics
Dot1x Supplicant Port Statistics for FastEthernet0

```
This example shows how to display the fast Ethernet interface statistics:

```
AP# show dot1x interface fastethernet 0 statistics
Dot1x Supplicant Port Statistics for FastEthernet0
--
RxReq = 0 RxInvalid = 0 RxLenErr = 0 RxTotal = 0
TxStart = 3 TxLogoff = 0 TxResp = 0 TxTotal = 3
RxVersion = 0 LastRxSrcMAC = 0000.0000.0000
```

This example shows how to display the fast Ethernet interface details:

```
AP# show dot1x interface fastethernet 0 details
Dot1x Info for FastEthernet0

PAE = SUPPLICANT
StartPeriod = 30
AuthPeriod = 30
HeldPeriod = 60
MaxStart = 3

Dot1x Supplicant Client List Empty
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eap profile</td>
<td>Configures an EAP profile.</td>
</tr>
<tr>
<td></td>
<td>method (eap profile configuration mode)</td>
<td>Specifies the method types for an EAP profile.</td>
</tr>
<tr>
<td></td>
<td>show eap registrations</td>
<td>Displays EAP registrations for the access point.</td>
</tr>
<tr>
<td></td>
<td>show eap sessions</td>
<td>Displays EAP statistics for the access point.</td>
</tr>
</tbody>
</table>
show dot1x credentials

Use the show dot1x credentials EXEC mode command to display the dot1x credentials configured on the access point.

```
show dot1x credentials
```

Syntax Description

This command has no arguments or keywords.

Defaults

This command has no defaults.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display the dot1x credentials on the access point:

```
AP# show dot1x credentials
Credential Name Username AnonID PKI-Trustpoint Hidden
 test John101 ZX101a PKI-Tpoint N
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x credentials</td>
<td>Configures dot1x credentials on the access point.</td>
</tr>
</tbody>
</table>

show eap registrations

Use the show eap registrations privileged EXEC command to display the EAP registrations configured on the access point.

```
show eap registrations [method [name] | transport [name]]
```

Syntax Description

- **method name**: Displays current registered EAP methods. The option name specifies an individual method name.
- **transport name**: Displays the registered EAP transport registrations. The option name specifies an individual transport name.

Defaults

There are no defaults for this command.
show eap registrations

Command Modes
Privileged EXEC

Command History
Release    Modification
12.3(8)JA  This command was introduced.

Examples
This example displays typical EAP registrations on an access point:

```
AP# show eap registrations
Registered EAP Methods:
 Method Type Name
 4 Peer MD5
 6 Peer GTC
 13 Peer TLS
 17 Peer LEAP
 26 Peer MSCHAPV2
 43 Peer FAST

Registered EAP Lower Layers:
 Handle Type Name
 3 Peer Dot1x-Supplicant
 2 Peer AP-WDS Auth Layer
 1 Peer EAP-FAST
```

This example displays typical EAP transport registrations on an access point:

```
AP# show eap registrations transport
Registered EAP Lower Layers:
 Handle Type Name
 3 Peer Dot1x-Supplicant
 2 Peer AP-WDS Auth Layer
 1 Peer EAP-FAST
```

This example displays typical EAP-FAST transport details on an access point:

```
AP# show eap registrations transport EAP-FAST
Configuration details for lower layer: 'EAP-FAST'
Peer Config:
 Credentials profile: None
 EAP profile name: None
 Idle timer: 60s
 Retransmit timer: 30s
 Maximum retrans: 2
 Auth Config: None
 Encap bytes: 0
```

Related Commands
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eap profile</td>
<td>Configures an EAP profile.</td>
</tr>
<tr>
<td>dot1x eap profile</td>
<td>Configures an EAP profile for an interface.</td>
</tr>
<tr>
<td>show eap sessions</td>
<td>Displays EAP session information on the access point.</td>
</tr>
</tbody>
</table>
show eap sessions

Use the `show eap sessions` privileged EXEC command to display the EAP sessions on the access point.

```
show eap sessions [credentials <name>] [interface <name>] [method <name>] [transport <name>]
```

**Syntax Description**

- `credentials <name>` Displays EAP session credentials on the access point. The `name` option specifies a credential profile name.
- `interface <name>` Displays EAP session information for a specific interface. The `name` option specifies an interface name.
- `method <name>` Displays EAP method information for the access point. The `name` option specifies a method name.
- `transport <name>` Displays EAP transport information for the access point. The `name` option specifies a transport name.

**Defaults**

There are no defaults for this command.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display EAP session information:

```
AP# show eap sessions
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x eap profile</code></td>
<td>Configures an EAP profile for an interface.</td>
</tr>
<tr>
<td><code>eap profile</code></td>
<td>Configures an EAP profile.</td>
</tr>
<tr>
<td><code>method (eap profile</code></td>
<td>Specifies the method types for an EAP profile.</td>
</tr>
<tr>
<td><code>configuration mode)</code></td>
<td></td>
</tr>
<tr>
<td><code>show eap registrations</code></td>
<td>Displays EAP registrations on the access point.</td>
</tr>
</tbody>
</table>
show environment

Use the `show environment` EXEC command to display information about the internal temperature of the bridge radio.

```
bridge# show environment
Environmental Statistics
Environmental status as of 00:10:45 UTC Thu Mar 27 2003
Data is 3 second(s) old, refresh in 57 second(s)

 Dot11Radio0 temperature measured at 37(C)
```

**Note**
This command is supported only on bridges. It measures and displays the internal temperature of the unit and should not be confused with the external temperature limits for the device.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to display temperature information for the bridge radio:

```
bridge# show environment
Environmental Statistics
 Environmental status as of 00:10:45 UTC Thu Mar 27 2003
 Data is 3 second(s) old, refresh in 57 second(s)

 Dot11Radio0 temperature measured at 37(C)
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server enable traps</code></td>
<td>Enable an SNMP trap to announce near-out-of-range bridge radio temperature.</td>
</tr>
<tr>
<td><code>envmon temperature</code></td>
<td></td>
</tr>
</tbody>
</table>
show iapp rogue-ap-list

Use the show iapp rogue-ap-list privileged EXEC command to display a list of rogue access points.

```
show iapp rogue-ap-list
```

**Note**
This command is not supported on bridges.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The list contains an entry for each access point that a client station reported as a possible rogue access point. Each list entry contains the following information:

- **Rogue AP**—MAC address of the reported rogue access point
- **Count**—The number of times the access point was reported
- **Last Rpt Src**—The MAC address of the last client to report the rogue access point
- **R**—The last reason code
- **Prev Rpt Src**—The MAC address of any previous client that reported the rogue access point
- **R**—The previous reason code
- **Last(Min)**—The number of minutes since the last report
- **1st(Min)**—The number of minutes since the access point was first reported as a possible rogue
- **Name**—The name of a Cisco rogue access point

The following reason codes are displayed:

1—The rogue was not running 802.1x
2—Authentication with the rogue timed out
3—Bad user password
4—Authentication challenge failed
show iapp standby-parms

Use the `show iapp standby-parms` privileged EXEC command to display IAPP standby parameters when a standby MAC address is configured. The information displayed includes the standby MAC address, the time-out value, and the poll-frequency value.

```
show iapp standby-parms
```

**Note**
This command is not supported on bridges.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to display the IAPP standby parameters:

```
AP# show iapp standby-parms
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging buffered</code></td>
<td>Configures an access point with a specified MAC address as the standby</td>
</tr>
<tr>
<td><code>iapp standby poll-frequency</code></td>
<td>Configures the standby access point polling interval</td>
</tr>
<tr>
<td><code>iapp standby timeout</code></td>
<td>Configures the standby access point polling time-out value</td>
</tr>
</tbody>
</table>
show iapp statistics

Use the `show iapp statistics` privileged EXEC command to display the IAPP transmit and receive statistics.

```
show iapp statistics
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command displays IAPP transmit and receive packet counts and IAPP error counts. The operating mode for the access point is also displayed.

**Examples**

This example shows how to display the IAPP statistics:

```
AP# show iapp statistics
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear iapp statistics</code></td>
<td>Clears the IAPP transmit and receive statistics</td>
</tr>
</tbody>
</table>
show interfaces dot11radio

Use the `show interfaces dot11radio` privileged EXEC command to display the radio interface configuration and statistics.

```
show interfaces dot11radio interface-number
```

**Syntax Description**

<table>
<thead>
<tr>
<th><strong>interface-number</strong></th>
<th>Specifies the radio interface number. The 2.4-GHz radio is radio 0. The 5-GHz radio is radio 1.</th>
</tr>
</thead>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display the radio interface configuration and statistics:

```
AP# show interfaces dot11radio 0
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface dot11radio</code></td>
<td>Configures a specified radio interface</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the access point run time configuration information</td>
</tr>
</tbody>
</table>


show interfaces dot11radio aaa

Use the `show interfaces dot11radio aaa` privileged EXEC command to display the radio interface information.

```
show interfaces dot11radio interface-number
 aaa [timeout]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-number</code></td>
<td>Specifies the radio interface number. The 2.4-GHz radio is radio 0. The 5-GHz radio is radio 1.</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Displays the AAA timeout value.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

```
Release Modification
------------- --------------------------------------
12.2(4)JA This command was introduced.
```

**Examples**

This example shows how to display AAA information for interface 0:

```
AP# show interfaces dot11radio 0 aaa
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug dot11 aaa</code></td>
<td>Debug radio AAA operations</td>
</tr>
<tr>
<td><code>show dot11 associations</code></td>
<td>Displays radio association information</td>
</tr>
</tbody>
</table>
show interfaces dot11radio statistics

Use the `show interfaces dot11radio statistics` privileged EXEC command to display the radio interface statistics.

```
show interfaces dot11radio interface-number statistics
```

**Syntax Description**

| `interface-number` | Specifies the radio interface number. The 2.4-GHz radio is radio 0. The 5-GHz radio is radio 1. |

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display the radio interface statistics for interface 0:

```
AP# show interfaces dot11radio 0 statistics
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear dot11 statistics</code></td>
<td>Resets the statistics for a specified radio interface</td>
</tr>
<tr>
<td><code>interface dot11radio</code></td>
<td>Configures a specified radio interface</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the access point run time configuration information</td>
</tr>
<tr>
<td><code>show interfaces dot11radio</code></td>
<td>Displays configuration and statistics for a specified radio interface</td>
</tr>
</tbody>
</table>
show ip igmp snooping groups

Use the `show ip igmp snooping groups` privileged EXEC command to display IGMP snooping status information.

```
show ip igmp snooping groups
[count] [network-id network-id]
[vlan vlan-id [group-address] [count]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Displays group count information.</td>
</tr>
<tr>
<td>network-id network-id</td>
<td>Displays group information by wireless Network ID.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>Displays group information by VLAN.</td>
</tr>
<tr>
<td>group address</td>
<td>Displays group information for the specified VLAN.</td>
</tr>
<tr>
<td>count</td>
<td>Displays the number of groups in the VLAN.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display the number of IGMP snooping groups configured on the access point:

```
AP# show ip igmp snooping groups count
Total number of groups: 0
```

This example shows how to display IGMP snooping group information by VLAN:

```
AP# show ip igmp snooping groups vlan 1
```

This example shows how to display the number of IGMP snooping group in a VLAN:

```
AP# show ip igmp snooping groups vlan 1 count
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Displays IGMP snooping group information.</td>
</tr>
<tr>
<td><code>ip igmp snooping vlan</code></td>
<td>Enables IGMP snooping for a Catalyst VLAN.</td>
</tr>
</tbody>
</table>
show led flash

Use the show led flash privileged EXEC command to display the LED flashing status.

show led flash

Syntax Description
This command has no arguments or keywords.

Defaults
This command has no defaults.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display the LED flashing status:

AP# show led flash

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>led flash</td>
<td>Enables or disables LED flashing</td>
</tr>
</tbody>
</table>
show power-injector

Use the show power-injector privileged EXEC command to view link statistics and the current operating mode for the two physical Ethernet ports (port 0 and port 1) of a Cisco Aironet power-injector.

show power-injector

Syntax Description
This command has no arguments or keywords.

Defaults
This command has no defaults.

Command Modes
Privileged EXEC

Command History
Release Modification
12.2(11)JA This command was introduced.

Usage Guidelines
The power injector provides power over Ethernet (PoE) to the access point or bridge. Port 0 connects to the access point or bridge and port 1 connects to the network switch or router. The following information is available for each of the two power-injector ports:
- port descriptors (port number, port speed, operating mode:auto, full or half duplex)
- total transmitted and received unicast, broadcast, and multicast packets
- transmit and receive error statistics including collisions, undersized packets and oversized packets

Note This command is supported on Cisco Aironet 1300 and 1400 series access points.

Examples
The following example shows a possible display for show power-injector.
- Both ports are operating at full duplex
- Ports 0 and 1 links are up.

Note Only ports 0 and 1 are used in the power-injector. Ports 2, 3, 4, 5 and 6 are not used and will always display as down or disabled.

Note The Ethernet port of the access point or bridge and the Ethernet port of the network switch or router that connect to the power-injector should be set to auto-negotiation. This will prevent an operating mismatch between the power injector, access point and network switch or router.
show power-injector

========== Power Injector Statistics ===========
Power Injector port 0 speed 100Mb/s duplex full link up enable yes
  tx bytes 194053 tx drops 0 tx bcasts 191 tx mcasts 1200
  tx unicasts 0 tx collisions 0 tx single collisions 0 tx multiples collisions 0
  tx deferred 0 tx late collisions 0 tx excessive collisions 0 tx frame disc 0
  tx pauses 0
  rx bytes 14356 rx undersizes 0 rx pauses 0 rx (<=64 bytes) pkts 105
  rx (<=127 bytes) pkts 7 rx (<=255 bytes) pkts 0 rx (<=511 bytes) pkts 18 rx (<=1023 bytes) pkts 0
  rx oversize 0 rx jumbos 0 rx align errs 0 rx fcs errs 0
  rx good bytes 14356 rx drops 0 rx unicasts 98 rx mcasts 19
  rx bcasts 13 rx SA chngs 9 rx frags 0 rx excessive sizes 0
  rx symbol errs 0
Power Injector port 1 speed 100Mb/s duplex full link up enable yes
  tx bytes 8084 tx drops 0 tx bcasts 13 tx mcasts 19
  tx unicasts 0 tx collisions 0 tx single collisions 0 tx multiples collisions 0
  tx deferred 0 tx late collisions 0 tx excessive collisions 0 tx frame disc 0
  tx pauses 0
  rx bytes 64473 rx undersizes 0 rx pauses 0 rx (<=64 bytes) pkts 533
  rx (<=127 bytes) pkts 165 rx (<=255 bytes) pkts 12 rx (<=511 bytes) pkts 41 rx (<=1023 bytes) pkts 0
  rx oversize 0 rx jumbos 0 rx align errs 0 rx fcs errs 0
  rx good bytes 64473 rx drops 0 rx unicasts 0 rx mcasts 557
  rx bcasts 194 rx SA chngs 141 rx frags 0 rx excessive sizes 0
  rx symbol errs 0
Power Injector port 2 link down
Power Injector port 3 link down
Power Injector port 4 is disabled
Power Injector port 5 is disabled
Power Injector port 6 is disabled

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show power-injector clear</td>
<td>Resets (clears) the statistics on the power-injector ports 0 and 1.</td>
</tr>
</tbody>
</table>
show radius local-server statistics

Use the `show radius local-server statistics` privileged EXEC command to view statistics collected by the local authenticator.

```
show radius local-server statistics
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display statistics from the local authenticator:

```
ap# show radius local-server statistics
```

This example shows local server statistics:

```
ap# show radius local-server statistics
Successes : 0 Unknown usernames : 0
Client blocks : 0 Invalid passwords : 0
Unknown NAS : 0 Invalid packet from NAS: 0

NAS : 10.91.6.158
Successes : 0 Unknown usernames : 0
Client blocks : 0 Invalid passwords : 0
Corrupted packet : 0 Unknown RADIUS message : 0
No username attribute : 0 Missing auth attribute : 0
Shared key mismatch : 0 Invalid state attribute: 0
Unknown EAP message : 0 Unknown EAP auth type : 0
PAC refresh : 0 Invalid PAC received : 0

Username Successes Failures Blocks
janee 0 0 0
jazke 0 0 0
jsmith 0 0 0
```

The first section of statistics lists cumulative statistics from the local authenticator.

The second section lists statistics for each access point (NAS) authorized to use the local authenticator.

The EAP-FAST statistics in this section include the following:

- Auto provision success—the number of PACs generated automatically
- Auto provision failure—the number of PACs not generated because of an invalid handshake packet or invalid username or password
- PAC refresh—the number of PACs renewed by clients
• Invalid PAC received—the number of PACs received that were expired, that the authenticator could not decrypt, or that were assigned to a client username not in the authenticator’s database.

The third section lists stats for individual users. If a user is blocked and the lockout time is set to infinite, blocked appears at the end of the stat line for that user. If the lockout time is not infinite, Unblocked in x seconds appears at the end of the stat line for that user.

Use this privileged exec mode command to reset local authenticator statistics to zero:

`AP# clear radius local-server statistics`

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>radius-server local</code></td>
<td>Configures the access point as a local or backup authenticator</td>
</tr>
</tbody>
</table>

### show running-config ssid

Use the `show running-config ssid` privileged EXEC command to view configuration details for SSIDs that are configured globally.

`show running-config ssid ssid`

### Syntax Description

| `ssid` | Displays configuration details for a specific SSID. |

### Defaults

This command has no defaults.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot11 ssid</code></td>
<td>Creates an SSID in global configuration mode</td>
</tr>
<tr>
<td><code>ssid</code></td>
<td>Creates an SSID for a specific radio interface or assigns a globally configured SSID to a specific interface</td>
</tr>
</tbody>
</table>
show spanning-tree

Use the `show spanning-tree` privileged EXEC command to display information about the spanning tree topology.

```
show spanning-tree
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Specifies a bridge group from 1 to 255</td>
</tr>
<tr>
<td><code>active</code></td>
<td>Displays information only on interfaces in the active state</td>
</tr>
<tr>
<td><code>blockedports</code></td>
<td>Lists blocked ports</td>
</tr>
<tr>
<td><code>bridge</code></td>
<td>Displays status and information for this bridge</td>
</tr>
<tr>
<td><code>brief</code></td>
<td>Displays a brief summary of interface information</td>
</tr>
<tr>
<td><code>inconsistentports</code></td>
<td>Lists inconsistent ports</td>
</tr>
<tr>
<td><code>interface interface</code></td>
<td>Displays information for a specific interface</td>
</tr>
<tr>
<td><code>root</code></td>
<td>Displays status and configuration information for the spanning tree root</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>Displays a summary of port states</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display STP information for bridge group 1:

```
bridge# show spanning-tree 1
```

This example shows how to display STP information for the bridge’s radio interface:

```
bridge# show spanning-tree interface dot11radio0
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge protocol ieee</code></td>
<td>Enables STP on the bridge</td>
</tr>
</tbody>
</table>
show wlccp

Use the `show wlccp` privileged EXEC command to display information on devices participating in Cisco Centralized Key Management (CCKM).

Use the `show wlccp` privileged EXEC command to display information on devices participating in Cisco Centralized Key Management (CCKM).

```
show wlccp
 ap [rm [context | accumulation]] | wnm status | wds [ap | detail | mac-address mac-address [mn-list]] | [mn [detail | mac-address mac-address]] | [statistics] | [nm] | [aaa authentication mac-authen filter-cache]
```

**Note**
This command is not supported on bridges.

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap [rm [context</td>
<td>accumulation]]</td>
</tr>
<tr>
<td>rm</td>
<td>Use this option to display information on radio measurement contexts or the radio measurement accumulation state.</td>
</tr>
</tbody>
</table>
### show wlccp

**wnm status**

(Optional) This command displays the IP address of the wireless network manager (WNM) and the status of the authentication between the WNM and the WDS access point. Possible statuses include `not authenticated`, `auth in progress`, `authentication fail`, `authenticated`, and `security keys setup`.

**wds | ap [detail | mac-address mac-address [mn-list]] | [mn [detail | mac-address mac-address]] | [statistics] | [nn] | [aaa authentication mac-authen filter-cache]**

(Optional) When you enter this option on the access point providing WDS, this option displays cached information about participating access points and client devices.

- **ap**—Use this option to display information about access points participating in CCKM. The command displays each access point’s MAC address, IP address, state (authenticating, authenticated, or registered), and lifetime (seconds remaining before the access point must reauthenticate). Use the `mac-addr` sub-option to display information about a specific access point. Use the `mn-list` sub-option to display all the mobile nodes registered through the access point.

- **nn**—Use this option to display cached information about client devices, also called mobile nodes. The command displays each client’s MAC address, IP address, the access point to which the client is associated (cur-AP), and state (authenticating, authenticated, or registered). Use the `detail` option to display the client’s lifetime (seconds remaining before the client must send a refreshed registration), SSID, and VLAN ID. Use the `mac-address` option to display information about a specific client device.

- **statistics**—Use this option to display statistics about devices participating in WDS and CCKM.

- **aaa authentication mac-authen filter-cache**—Use this option to display MAC addresses in the MAC authentication cache.

### Defaults

This command has no defaults.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(13)JA</td>
<td>This command was modified to include radio measurement options.</td>
</tr>
</tbody>
</table>

### Examples

This example shows the command you enter on the access point providing WDS to list all client devices (mobile nodes) participating in CCKM:

```
AP# show wlccp wds mn
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear wlccp wds</td>
<td>Resets WDS statistics and removes devices from the WDS database</td>
</tr>
<tr>
<td>show dot11 aaa authentication mac-authen filter-cache</td>
<td>Displays MAC addresses in the MAC authentication cache</td>
</tr>
<tr>
<td>wlccp wds priority</td>
<td>Configures an access point as a candidate to provide wireless domain services (WDS)</td>
</tr>
</tbody>
</table>
show wlccp ap mn

Use the `show wlccp ap mn` privileged EXEC command to display information on a mobile node.

```
show wlccp ap [mn mac address]
```

**Note**
This command is not supported on bridges.

### Syntax Description

| mac address | Specifies the MAC address of the mobile node. |

### Defaults

This command has no defaults.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

This example shows the command you enter on the access point providing WDS to display information on the mobile nodes:

```
AP# show wlccp ap mn
MN Mac Address MN IP Address VLAN Wireless Network-ID
--
123a.8a7d.1234 65.103.0.129 702(dynamic) 103 (Radius Assigned)
123a.8a6d.1236 65.101.0.129 100 101(Static)
```

This example shows the command you enter on the access point providing WDS to display information on the specified mobile node:

```
AP# show wlccp ap mn 123a.8a7d.1234
MN Mac Address MN IP Address VLAN Wireless Network-ID
--
123a.8a7d.1234 65.103.0.129 702(dynamic) 103 (Radius Assigned)
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot11 associations</td>
<td>Displays the radio association table, radio association statistics, or selectively display association information about all repeaters, all clients, a specific client, or basic service clients.</td>
</tr>
</tbody>
</table>
show wlccp ap rm enhanced-neighbor-list

Use the `show wlccp ap enhanced-neighbor-list` privileged EXEC command to display the enhanced neighbor list. The enhanced neighbor list feature is enabled on specific access points from the Cisco WLSE.

```
show wlccp ap rm enhanced-neighbor-list
```

**Note**
This command is not supported on bridges.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows the command you enter on the access point providing WDS to display information on the mobile nodes:

```
AP# show wlccp ap enhanced-neighbor-list
Enhanced Neighbor List: Enabled
Neighbor APs List

```

<table>
<thead>
<tr>
<th>AP</th>
<th>BSSID</th>
<th>Channel</th>
<th>Band</th>
<th>Phy-Type</th>
<th>Tx-power</th>
<th>Min-rssi</th>
<th>Hysteresis</th>
<th>Scan-threshold</th>
<th>Trans-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000.0123.0801</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>50</td>
<td>5</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>0000.0123.0802</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>50</td>
<td>5</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>0000.0123.0803</td>
<td>56</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>50</td>
<td>5</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>0000.0123.0804</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>30</td>
<td>50</td>
<td>5</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>0000.0123.0805</td>
<td>48</td>
<td>5</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>5</td>
<td>65</td>
<td>60</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug wlccp ap rm enhanced-neighbor-list</code></td>
<td>Displays internal debugging and error messages of the Enhanced Neighbor List feature.</td>
</tr>
<tr>
<td><code>show debugging</code></td>
<td>Displays all debug settings and the debug packet headers</td>
</tr>
<tr>
<td><code>show wlccp</code></td>
<td>Displays WLCCP information</td>
</tr>
</tbody>
</table>
**snmp-server enable traps**

To enable all Simple Network Management Protocol (SNMP) notification types that are available on your system, use the **snmp-server enable traps** command in global configuration mode. To disable all available SNMP notifications, use the **no** form of this command.

```
snmp-server enable traps [notification-type]

no snmp-server enable traps [notification-type]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>notification type</code></td>
<td>(Optional) Type of notification (trap) to enable or disable. If no type is specified, all notifications available on your device are enabled or disabled (if the no form is used). The notification type can be one of the following keywords:</td>
</tr>
<tr>
<td><strong>authenticate-fail</strong></td>
<td>(Optional) Enables the SNMP 802.11 authentication fail trap.</td>
</tr>
<tr>
<td><strong>deauthenticate</strong></td>
<td>(Optional) Enables the SNMP 802.11 deauthentication trap.</td>
</tr>
<tr>
<td><strong>disassociate</strong></td>
<td>(Optional) Enables the SNMP 802.11 disassociate trap.</td>
</tr>
<tr>
<td><strong>dot11-mibs</strong></td>
<td>(Optional) Enables all SNMP DOT 11 traps.</td>
</tr>
<tr>
<td><strong>dot11-qos</strong></td>
<td>(Optional) Enables the SNMP 802.11 QoS change trap.</td>
</tr>
<tr>
<td><strong>rogue-ap</strong></td>
<td>(Optional) Enables the SNMP 802.11 rogue access point trap.</td>
</tr>
<tr>
<td><strong>switch-over</strong></td>
<td>(Optional) Enables the SNMP 802.11 standby switchover trap.</td>
</tr>
<tr>
<td><strong>wlan-wep</strong></td>
<td>(Optional) Enables the SNMP 802.11 wireless LAN WEP trap.</td>
</tr>
</tbody>
</table>

### Command Default

This command is disabled by default. Most notification types are disabled. However, some notification types cannot be controlled with this command.

If you enter this command with no notification-type keyword extensions, the default is to enable (or disable, if the no form is used) all notification types controlled by this command.

### Command Modes

Global configuration

### Examples

This example shows how to enable the SNMP 802.11 deauthenticate trap:

```
AP(config)# snmp-server enable traps deauthenticate
```

This example shows how to enable all available SNMP 802.11 traps:

```
AP(config)# snmp-server enable dot11-mibs
```

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0 (1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

For additional notification types, see the Related Commands table for this command.

SNMP notifications can be sent as traps or inform requests. This command enables both traps and inform requests for the specified notification types. To specify whether the notifications should be sent as traps or informs, use the \texttt{snmp-server host [traps | informs]} command.

If you do not enter an \texttt{snmp-server enable traps} command, no notifications controlled by this command are sent. In order to configure the router to send these SNMP notifications, you must enter at least one \texttt{snmp-server enable traps} command. If you enter the command with no keywords, all notification types are enabled. If you enter the command with a keyword, only the notification type related to that keyword is enabled. In order to enable multiple types of notifications, you must issue a separate \texttt{snmp-server enable traps} command for each notification type and notification option.

The \texttt{snmp-server enable traps} command is used in conjunction with the \texttt{snmp-server host} command. Use the \texttt{snmp-server host} command to specify which host or hosts receive SNMP notifications. In order to send notifications, you must configure at least one \texttt{snmp-server host} command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\texttt{show environment}</td>
<td>Displays current temperature of the the radio in a wireless bridge</td>
</tr>
</tbody>
</table>
**snmp-server enable traps envmon temperature**

Use the `snmp-server enable traps envmon temperature` global configuration command to enable an SNMP trap for monitoring bridge radio temperature. This trap is sent out when the bridge radio temperature approaches the limits of its operating range (55° C to –33° C; 131° F to –27.4° F).

```
snmp-server enable traps envmon temperature
```

---

**Note**

This command is supported only on bridges.

---

**Syntax Description**

This command has no arguments or keywords.

---

**Defaults**

This command has no defaults.

---

**Command Modes**

Global configuration

---

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

---

**Examples**

This example shows how to enable the envmon temperature trap:

```
bridge# snmp-server enable traps envmon temperature
```

---

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show environment</code></td>
<td>Displays current temperature of the bridge radio</td>
</tr>
</tbody>
</table>
snmp-server group

To configure a new SNMP group, or a table that maps SNMP users to SNMP views, use the `snmp-server group` global configuration command. To remove a specified SNMP group, use the `no` form of this command.

```
[no] snmp-server group [groupname {v1 | v2c | v3 {auth | noauth | priv}}] [read readview] [write writeview] [notify notifyview] [access access-list]
```

**Syntax Description**

- **groupname** (Optional) Specifies the name of the group.
- **v1** (Optional) The least secure of the possible security models.
- **v2c** (Optional) The second-least secure of the possible security models. It allows for the transmission of informs and counter 64, which allows for integers twice the width of what is normally allowed.
- **v3** (Optional) The most secure of the possible security models.
- **auth** (Optional) Specifies authentication of a packet without encrypting it.
- **noauth** (Optional) Specifies no authentication of a packet.
- **priv** (Optional) Specifies authentication of a packet with encryption.
- **read** (Optional) The option that allows you to specify a read view.
- **readview** (Optional) A string (not to exceed 64 characters) that is the name of the view that enables a user only to view the contents of the agent.
- **write** (Optional) The option that allows you to specify a write view.
- **writeview** (Optional) A string (not to exceed 64 characters) that is the name of the view that enables a user to enter data and configure the contents of the agent.
- **notify** (Optional) The option that allows you to specify a notify view.
- **notifyview** (Optional) A string (not to exceed 64 characters) that is the name of the view that enables you to specify a notify, inform, or trap.
- **access** (Optional) The option that allows you to specify an access list.
- **access-list** (Optional) A string (not to exceed 64 characters) that is the name of the access list.

**Defaults**

Table 2-13 lists the default settings for the SNMP views:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>readview</code></td>
<td>Assumed to be every object belonging to the Internet (1.3.6.1) OID space, unless the user uses the read option to override this state.</td>
</tr>
<tr>
<td><code>writeview</code></td>
<td>Nothing is defined for the write view (that is, the null OID). You must configure write access.</td>
</tr>
<tr>
<td><code>notifyview</code></td>
<td>Nothing is defined for the notify view (that is, the null OID). If a view is specified, any notifications in that view that are generated will be sent to all users associated with the group (provided an SNMP server host configuration exists for the user).</td>
</tr>
</tbody>
</table>
### Command Modes
Global configuration

### Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
When a community string is configured internally, two groups with the name public are autogenerated, one for the v1 security model and the other for the v2c security model. Similarly, deleting a community string will delete a v1 group with the name public and a v2c group with the name public.

#### Configuring Notify Views
Although the notifyview option allows you to specify a notify view when configuring an SNMP group, Cisco recommends that you avoid specifying a notify view for these reasons:

- The `snmp-server host` command autogenerates a notify view for the user and adds it to the group associated with that user.
- Modifying the group’s notify view affects all users associated with that group.

The `notifyview` option is available for two reasons:

- If a group has a notify view that is set using SNMP, you might need to change the notify view.
- The `snmp-server host` command might have been configured before the `snmp-server group` command. In this case, you must either reconfigure the `snmp-server host` command or specify the appropriate notify view.

Instead of specifying the notify view for a group as part of the `snmp-server group` command, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>snmp-server user</code></td>
<td>Configures an SNMP user.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>snmp-server group</code></td>
<td>Configures an SNMP group without adding a notify view.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>snmp-server host</code></td>
<td>Autogenerates the notify view by specifying the recipient of a trap operation.</td>
</tr>
</tbody>
</table>

#### Working with Passwords and Digests
No default values exist for authentication or privacy algorithms when you configure the command. Also, no default passwords exist. The minimum length for a password is one character, although Cisco recommends using eight characters for security. If you forget a password, you cannot recover it and will need to reconfigure the user. You can specify either a plain-text password or a localized MD5 digest.

The following example shows how to enter a plain-text password for the string arizona2 for user John in group Johngroup, type the following command line:

```
snmp-server user John Johngroup v3 auth md5 arizona2
```

When you enter a `show running-config` command, you will not see a line for this user. To see if this user has been added to the configuration, type the `show snmp user` command.
If you have the localized MD5 or SHA digest, you can specify that string instead of the plain-text password. The digest should be formatted as aa:bb:cc:dd where aa, bb, and cc are hex values. Also, the digest should be exactly 16 octets long.


```
snmp-server user John Johngroup v3 encrypted auth md5
```

---

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server user</code></td>
<td>Configures a new user for an SNMP group</td>
</tr>
<tr>
<td><code>snmp-server view</code></td>
<td>Creates or modifies an SNMP view entry</td>
</tr>
</tbody>
</table>

---

**snmp-server location**

Use the `snmp-server location` global configuration command to specify the SNMP system location and the location-name attribute recommended by the Wi-Fi Alliance’s guidelines for Wireless Internet Service Provider roaming (WISPr).

```
snmp-server location location
```

**Syntax Description**

| `location` | Specifies the SNMP system location and the WISPr location-name attribute |

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The *WISPr Best Current Practices for Wireless Internet Service Provider (WISP) Roaming* document recommends that you enter the location name in this format:

```
hotspot_operator_name,location
```

This example shows how to configure the SNMP system location and the WISPr location-name attribute:

```
ap# snmp-server location ACMEWISP,Gate_14_Terminal_C_of_Newark_Airport
```
snmp-server user

To configure a new user to an SNMP group, use the `snmp-server user` global configuration command. To remove a user from an SNMP group, use the `no` form of the command.

```
[no] snmp-server user username [groupname remote ip-address [udp-port port]
 {v1 | v2c | v3}|[encrypted][auth {md5 | sha} auth-password [priv des56 priv password]]
 [access access-list]
```

**Syntax Description**

- `username` The name of the user on the host that connects to the agent.
- `groupname` (Optional) The name of the group to which the user is associated.
- `remote` (Optional) Specifies the remote copy of SNMP on the router.
- `ip-address` (Optional) The IP address of the device that contains the remote copy of SNMP.
- `udp-port` (Optional) Specifies a UDP port of the host to use.
- `port` (Optional) A UDP port number that the host uses. The default is 162.
- `v1` (Optional) The least secure of the possible security models.
- `v2c` (Optional) The second-least secure of the possible security models. It allows for the transmission of informs and counter 64, which allows for integers twice the width of what is normally allowed.
- `v3` (Optional) The most secure of the possible security models.
- `encrypted` (Optional) Specifies whether the password appears in encrypted format (a series of digits, masking the true characters of the string).
- `auth` (Optional) Initiates an authentication level setting session.
- `md5` (Optional) The HMAC-MD5-96 authentication level.
- `sha` (Optional) The HMAC-SHA-96 authentication level.
- `auth-password` (Optional) A string (not to exceed 64 characters) that enables the agent to receive packets from the host.
- `priv` (Optional) The option that initiates a privacy authentication level setting session.
- `des56` (Optional) The CBC-DES privacy authentication algorithm.
- `priv password` (Optional) A string (not to exceed 64 characters) that enables the host to encrypt the contents of the message it sends to the agent.
- `access` (Optional) The option that enables you to specify an access list.
- `access-list` (Optional) A string (not to exceed 64 characters) that is the name of the access list.
Table 2-14 describes default values for the `encrypted` option, passwords and access lists:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encrypted</td>
<td>Not present by default. Specifies that the <code>auth</code> and <code>priv</code> passwords are MD5 digests and not text passwords.</td>
</tr>
<tr>
<td>passwords</td>
<td>Assumed to be text strings.</td>
</tr>
<tr>
<td>access lists</td>
<td>Access from all IP access lists is permitted by default.</td>
</tr>
<tr>
<td>remote users</td>
<td>All users are assumed to be local to this SNMP engine unless you use the <code>remote</code> option to specify that they are remote.</td>
</tr>
</tbody>
</table>

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the command `snmp-server engineID` with the `remote` option. The remote agent’s SNMP engine ID is needed when computing the authentication/privacy digests from the password. If the remote engine ID is not configured first, the configuration command will fail.

SNMP passwords are localized using the SNMP engine ID of the authoritative SNMP engine. For informs, the authoritative SNMP agent is the remote agent. You need to configure the remote agent’s SNMP engine ID in the SNMP database before you can send proxy requests or informs to it.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server group</code></td>
<td>Configures a new SNMP group</td>
</tr>
<tr>
<td><code>snmp-server view</code></td>
<td>Creates or updates an SNMP view entry</td>
</tr>
</tbody>
</table>
### snmp-server view

To create or update a view entry, use the `snmp-server view` global configuration command. To remove the specified SNMP server view entry, use the `no` form of the command.

```plaintext
[no] snmp-server view view-name oid-tree {included | excluded}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>view-name</code></td>
<td>Label for the view record that you are updating or creating. The name is used to reference the record.</td>
</tr>
<tr>
<td><code>oid-tree</code></td>
<td>Object identifier of the ASN.1 subtree to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as <code>system</code>. Replace a single subidentifier with the asterisk (<em>) wildcard to specify a subtree family; for example, 1.3.</em>.4.</td>
</tr>
<tr>
<td><code>included</code></td>
<td><code>excluded</code></td>
</tr>
</tbody>
</table>

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Other SNMP commands require a view as an argument. You use this command to create a view to be used as arguments for other commands that create records including a view.

When a view is required, you can use one of two standard predefined views instead of defining a view. One predefined view is `everything`, which indicates that the user can see all objects. The other is `restricted`, which indicates that the user can see three groups: system, snmpStats, and snmpParties. The predefined views are described in RFC 1447.

The first `snmp-server` command that you enter enables both versions of SNMP.

**Examples**

The following example creates a view that includes all objects in the MIB-II subtree:

```
snmp-server view mib2 mib-2 included
```

The following example creates a view that includes all objects in the MIB-II system group and all objects in the Cisco enterprise MIB:

```
snmp-server view phred system included
snmp-server view phred cisco included
```
The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group:

```
snmp-server view agon system included
snmp-server view agon system.7 excluded
snmp-server view agon ifEntry.*.1 included
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server group</code></td>
<td>Creates a new SNMP group</td>
</tr>
<tr>
<td><code>snmp-server user</code></td>
<td>Configures an SNMP user to a group</td>
</tr>
</tbody>
</table>

### speed (Ethernet interface)

Use the `speed` (Ethernet) configuration interface command to configure the clock speed on the Ethernet port.

```
[no] speed {10 | 100 | auto}
```

**Note**

Cisco recommends that you use `auto`, the default setting, for both the speed and duplex settings on the Ethernet port.

#### Syntax Description

<table>
<thead>
<tr>
<th>Speed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Configures the interface to transmit at 10 Mbps.</td>
</tr>
<tr>
<td>100</td>
<td>Configures the interface to transmit at 100 Mbps.</td>
</tr>
<tr>
<td><code>auto</code></td>
<td>Turns on the Fast Ethernet auto-negotiation capability. The interface automatically operates at 10 or 100 Mbps depending on the speed setting on the switch port to which the device is connected. This is the default setting.</td>
</tr>
</tbody>
</table>

**Defaults**

The default speed setting is `auto`.

**Command Modes**

Interface configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
**Usage Guidelines**

Cisco recommends that you use `auto`, the default setting, for both the speed and duplex settings on the Ethernet port.

When the access point or bridge receives inline power from a switch, any change in the speed or duplex settings that resets the Ethernet link reboots the unit.

**Note**

The speed and duplex settings on the wireless device Ethernet port must match the Ethernet settings on the port to which the wireless device is connected. If you change the settings on the port to which the wireless device is connected, change the settings on the wireless device Ethernet port to match.

**Examples**

This example shows how to configure the Ethernet port for auto duplex:

```
AP(config-if)# speed auto
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>duplex</code></td>
<td>Configures the duplex setting for the Ethernet port</td>
</tr>
</tbody>
</table>

**speed (radio interface)**

Use the `speed` configuration interface command to configure the data rates supported by the access point radios. An individual data rate can be set only to a basic or a non-basic setting, not both. Use the `no` form of the command to remove one or more data rates from the configuration.

This command now includes Modulation Coding Scheme (MCS) settings for 2.4-GHz and 5-GHz 802.11n radios. MCS is a specification of PHY parameters consisting of modulation order (BPSK, QPSK, 16-QAM, 64-QAM) and FEC code rate (1/2, 2/3, 3/4, 5/6). MCS is used in the 1250 series 802.11n radios, which define 32 symmetrical settings (8 per spatial stream):

- MCS 0–7
- MCS 8–15
- MCS 16–23
- MCS 24–31

The 1250 series access point supports MCS 0–15. High throughput clients support at least MCS 0–7. MCS is an important setting because it provides for potentially greater throughput. High throughput data rates are a function of *MCS, bandwidth, and guard interval*. 
### Syntax Description

For the 802.11b, 2.4-GHz radio:

```
[1.0] [2.0] [5.5] [11.0]
```

For the 802.11g, 2.4-GHz radio:

```
[1.0] [2.0] [5.5] [6.0] [9.0] [11.0] [12.0] [18.0] [24.0] [36.0] [48.0] [54.0]
```

For the 5-GHz radio:

```
[6.0] [9.0] [12.0] [18.0] [24.0] [36.0] [48.0] [54.0]
```

For the 802.11b, 2.4-GHz radio:

```
[basic-1.0] [basic-2.0] [basic-5.5] [basic-11.0]
```

For the 802.11g, 2.4-GHz radio:

```
[basic-1.0] [basic-2.0] [basic-5.5] [basic-11.0]
```

For the 5-GHz radio:

```
[basic-6.0] [basic-9.0] [basic-12.0] [basic-18.0] [basic-24.0] [basic-36.0] [basic-48.0] [basic-54.0]
```

For the 2.4-GHz 802.11n radio:

```
[[1.0] [11.0] [12.0] [18.0] [2.0] [24.0] [36.0] [48.0] [5.5] [54.0] [6.0] [9.0] [basic-1.0] [basic-11.0] [basic-12.0] [basic-18.0] [basic-24.0] [basic-36.0] [basic-48.0] [basic-54.0] [basic-5.5] [basic-6.0] [basic-9.0] [default] [m0-7] [m0.] [m1.] [m10.] [m11.] [m12.] [m13.] [m14.] [m15.] [m2.] [m3.] [m4.] [m5.] [m6.] [m7.] [m8-15] [m8.] [m9.] [ofdm] [only-ofdm] | range | throughput]
```

(Ordinary) Sets the access point to allow packets to use the non-basic settings. The access point transmits only unicast packets at these rates; multicast packets are sent at one of the data rates set to a basic setting.

**Note** At least one of the access point’s data rates must be set to a basic setting.

(Ordinary) Sets the access point to require the use of the specified data rates for all packets, both unicast and multicast. At least one of the access point's data rates must be set to a basic setting.

**Note** The client must support the basic rate you select or it cannot associate to the access point.

**Note** The client must support the basic rate that you select or it cannot associate to the bridge. If you select 12 Mbps or higher for the basic data rate on the 802.11g radio, 802.11b client devices cannot associate to the bridge’s 802.11g radio.

Enter **basic-6.0**, **basic-9.0**, **basic-12.0**, **basic-18.0**, **basic-24.0**, **basic-36.0**, **basic-48.0**, and **basic-54.0** to set these data rates to **basic** on the 5-GHz radio.

(Ordinary) Enter **default** to set the data rates to factory default settings (not supported on 802.11b radios).

On the 802.11g radio, the **default** option sets rates 1, 2, 5.5, and 11 to basic, and rates 6, 9, 12, 18, 24, 36, 48, and 54 to enabled. These rate settings allow both 802.11b and 802.11g client devices to associate to the bridge’s 802.11g radio.

On the 5-GHz radio, the **default** option sets rates 6.0, 12.0, and 24.0 to basic, and rates 9.0, 18.0, 36.0, 48.0, and 54.0 to enabled.

On the 802.11n 2.4-GHz radio, the **default** option sets rates 1.0, 2.0, 5.5, and 11.0 to enabled.

The default MCS rate setting for both 802.11n radios is 0–15.
speed (radio interface)

For the 5-GHz 802.11n radio:

*default* option sets rates to 6.0, 12.0, and 24.0 to enabled.

For the 802.11b, 2.4-GHz radio and the 5-GHz radio:

*throughput* (Optional) Sets the data rate for best throughput. On the 2.4-GHz radio, all data rates are set to basic. On the 5-GHz radio, all data rates are set to basic.

For the 802.11g, 2.4-GHz radio:

*throughput [ofdm]* (Optional) On the 802.11g radio, enter speed throughput ofdm to set all OFDM rates (6, 9, 12, 18, 24, 36, and 48) to basic (required) and set all the CCK rates (1, 2, 5.5, and 11) to disabled. This setting disables 802.11b protection mechanisms and provides maximum throughput for 802.11g clients. However, it prevents 802.11b clients from associating to the access point.

*default* (Optional) Sets data rates to the default settings.

**Note** This option is supported on 5-GHz radios and 802.11g, 2.4-GHz radios and 802.11n radios only. It is not available for 802.11b, 2.4-GHz radios.

---

**Defaults**

On the 802.11b, 2.4-GHz radio, all data rates are set to basic by default.

On the 802.11g, 2.4-GHz radio, data rates 1.0, 2.0, 5.5, 6.0, 11.0, 12.0, and 24.0 are set to basic by default, and the other data rates are supported.

On the 5-GHz radio, data rates 6.0, 12.0 and 24.0 are set to basic by default, and the other data rates are supported.

On the 802.11n 2.4-GHz radio, data rates 1.0, 2.0, 5.5, and 11.0 are set to basic by default and the other data rates are supported.

On the 802.11n 5-GHz radio, data rates 6.0, 12.0, and 24.0 are set to basic by default and the other data rates are supported.

The default MCS rate setting for both 802.11n radios is 0–15.

---

**Command Modes**

Configuration interface
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(8)JA</td>
<td>Parameters were added to support the 5-GHz access point radio.</td>
</tr>
<tr>
<td>12.2(11)JA</td>
<td>Parameters were added to support the 5.8-GHz bridge radio.</td>
</tr>
<tr>
<td>12.2(13)JA</td>
<td>Parameters were added to support the 802.11g, 2.4-GHz access point radio.</td>
</tr>
<tr>
<td>12.3(2)JA</td>
<td>The ofdm parameter was added to the throughput option for the 802.11g, 2.4-GHz access point radio.</td>
</tr>
<tr>
<td>12.4(10b)JA</td>
<td>Parameters were added to support the 2.4- and 5-GHz 802.11n radios. The mcs parameter was added.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to set the radio data rates for best throughput:

```
AP(config-if)# speed throughput
```

This example shows how to set the radio data rates support a low-speed client device while still supporting higher-speed client devices:

```
AP(config-if)# speed basic-1.0 2.0 5.5 11.0
```

The following example shows a speed and mcs setting for an 802.11n 5-GHz radio:

```
AP(config-if)# interface Dot11Radio0
speed basic-1.0 2.0 5.5 11.0 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0 m0. m1. m2. m3. m4. m8. m9. m10. m11. m12. m13. m14. m15.
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current access point operation configuration</td>
</tr>
<tr>
<td>speed ofdm</td>
<td>Specifies the way that the access point advertises supported OFDM data rates in beacons and probe responses</td>
</tr>
</tbody>
</table>
speed ofdm

Use the `speed ofdm` configuration interface command to adjust the way that the access point advertises supported OFDM data rates in beacons and probe responses. Use the `no` form of the command to return to the default setting.

```
[no] speed ofdm {join | separate}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>join</code></td>
<td>Specifies that supported OFDM data rates appear in both information element (IE) 1 and IE 50. This is the default setting.</td>
</tr>
<tr>
<td><code>separate</code></td>
<td>Specifies that supported OFDM data rates appear only in IE 50.</td>
</tr>
</tbody>
</table>

### Defaults

By default, supported OFDM data rates are listed in beacons and probe responses in both IE 1 and in IE 50.

### Command Modes

Interface configuration mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

By default, access points are configured with the `speed ofdm join` command and advertise supported data rates in ascending order in both IE 1 and in IE 50 in beacons and probe responses:

- **IE 1**: 1, 2, 5.5, 6, 9, 11, 12, 18
- **IE 50**: 24, 36, 48, 54

However, some legacy 802.11b client devices cannot properly interpret the OFDM data rates in IE 1 and either associate at a data rate below 11 Mps or do not associate at all. To improve performance for these clients, you can use the `speed ofdm separate` command to list only 802.11b data rates in IE 1 and OFDM data rates in IE 50:

- **IE 1**: 1, 2, 5.5, 11
- **IE 50**: 6, 9, 12, 18, 24, 36, 48, 54

### Examples

This example shows how to configure the access point to advertise only 802.11b data rates in IE 1 in beacons and probe responses:

```
AP(config-if)# speed ofdm separate
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>speed (radio interface)</code></td>
<td>Configures the supported data rates on access point radio interfaces</td>
</tr>
</tbody>
</table>
ssid

Use the `ssid` interface configuration command to assign a globally configured SSID to a radio interface. Use the `no` form of the command to remove an SSID from a radio interface.

```plaintext
[no] ssid ssid-string
```

In Cisco IOS Release 12.3(4)JA, you can configure SSIDs globally or for a specific radio interface, but all SSIDs are stored globally. After you use the `dot11 ssid` global interface command to create an SSID, you use the `ssid` command to assign the SSID to a specific interface.

**Syntax Description**

- `ssid-string`: Specifies the SSID name for the radio, expressed as a case-sensitive alphanumeric string from 1 to 32 characters.

**Defaults**

- On access points, the factory default SSID is `tsunami`. On bridges, the default SSID is `autoinstall`.

**Command Modes**

- Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to specify a unique SSID for your wireless network. Several access points on a network, or subnetwork, can share an SSID. The `no` form of the command removes the SSID, which inhibits clients that use that SSID from associating with the access point.

**Examples**

This example shows how to:

- Create an SSID in global configuration mode
- Configure the SSID for RADIUS accounting
- Set the maximum number of client devices that can associate using this SSID to 15
- Assign the SSID to a VLAN
- Assign the SSID to a radio interface

```plaintext
AP# configure terminal
AP(config)# dot11 ssid batman
AP(config-ssid)# accounting accounting-method-list
AP(config-ssid)# max-associations 15
AP(config-ssid)# vlan 3762
AP(config-ssid)# exit
AP(config)# interface dot11radio 0
AP(config-if)# ssid batman
```
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>authentication open (SSID configuration mode)</code></td>
<td>Configures the radio interface (for the specified SSID) to support open authentication</td>
</tr>
<tr>
<td><code>authentication shared (SSID configuration mode)</code></td>
<td>Configures the radio interface (for the specified SSID) to support shared authentication</td>
</tr>
<tr>
<td><code>authentication network-eap (SSID configuration mode)</code></td>
<td>Configures the radio interface (for the specified SSID) to support network-EAP authentication</td>
</tr>
<tr>
<td><code>dot11 ssid</code></td>
<td>Creates an SSID in global configuration mode</td>
</tr>
<tr>
<td><code>guest-mode (SSID configuration mode)</code></td>
<td>Configures the radio interface (for the specified SSID) to support guest mode</td>
</tr>
<tr>
<td><code>max-associations (SSID configuration mode)</code></td>
<td>Configures the maximum number of associations supported by the radio interface (for the specified SSID)</td>
</tr>
<tr>
<td><code>show running-config ssid</code></td>
<td>Displays configuration details for SSIDs created in global configuration mode</td>
</tr>
<tr>
<td><code>vlan (SSID configuration mode)</code></td>
<td>Configures the radio interface (for the specified SSID) to support a specific Ethernet virtual LAN (VLAN)</td>
</tr>
</tbody>
</table>
**station-role**

Use the `station-role` configuration interface command to set the role of the radio interface. Use the `no` form of the command to reset the parameter to the default value.

### 1100 and 1130 AG Series Access Points

```
station-role
 { repeater |
 root [access-point [fallback {shutdown | repeater}]] |
 scanner |
 workgroup-bridge }
```

### 1200 and 1240AG Series Access Points

```
station-role
 { non-root [bridge [wireless-clients] | wireless clients] |
 repeater |
 root [access-point [fallback {shutdown | repeater}]] | ap-only |
 root [bridge [wireless-clients]] |
 scanner |
 workgroup-bridge }
```

### 1250 Series Access Points

**Note**

Bridge mode is not supported for 802.11n or non-802.11n data rates. Also, Cisco does not recommend configuring bridge mode on the 1250 series access point even though the commands for it are available.

### 350 Series Access Points

```
station-role
 { repeater |
 root [fallback {shutdown | repeater}] |
 scanner }
```

### 1310 Access Points/Bridges

```
station-role
 { install [automatic | non-root | root] |
 non-root [bridge | wireless clients] |
 repeater |
 root [access-point [fallback {shutdown | repeater}]] | ap-only |
 root [bridge [wireless-clients]] |
 scanner |
 workgroup-bridge }
```

### 1400 Series Bridges

```
station-role
 { install [automatic | non-root | root] |
 non-root bridge |
 root bridge }
```
### Chapter 2  Cisco IOS Commands for Access Points and Bridges

#### station-role

**repeater**

Specifies that the access point is configured for repeater operation. Repeater operation indicates the access point is not connected to a wired LAN and must associate to a root access point that is connected to the wired LAN.

**Note** This option is not supported on 1400 series bridges.

**root access-point**

Specifies that the access point and bridge is configured for root mode operation and connected to a wired LAN. This parameter also specifies that the access point should attempt to continue access point operation when the primary Ethernet interface is not functional.

**Note** This option is not supported on 1400 series bridges.

**root ap-only**

Specifies that the device functions only as a root access point. If the Ethernet interface is not functional, the unit attempts to continue access point operation. However, you can specify a fallback mode for the radio.

**Note** This option is supported only on 1200, 1240AG, and 1310 series access points and bridges.

**root bridge**

Specifies that the access point or bridge operates as the root bridge in a pair of bridges. This mode does not support wireless client associations.

**Note** On the 1200 and 1240AG series access points, this option supports only point-to-point bridge operation.

**Note** On the 1300 and 1400 series bridges, this option supports point-to-point and multipoint bridge operation.

**root bridge wireless-clients**

Specifies that the root bridge mode accepts associations from client devices.

**Note** This option is supported only on 1200, 1240AG, and 1310 series access points andbridges.

**non-root bridge**

Specifies that the access point or bridge operates as a non-root bridge and must associate to a root bridge.

This option is supported only on 1200, 1240AG, 1310, and 1400 series access points and bridges.

**non-root wireless clients**

Specifies that the non-root bridge mode accepts associations from client devices.

**Note** This option is supported only on 1200, 1240AG, and 1310 series access points and bridges.

**scanner**

This option is supported only when used with a WLSE device on your network. It specifies that the access point operates as a radio scanner only and does not accept associations from client devices. As a scanner, the access point collects radio data and sends it to the WDS access point on your network.

**Note** This option is supported only on 1100, 1130AG, 1200, 1240, and 1300 series access points and bridges.
## Chapter 2  Cisco IOS Commands for Access Points and Bridges

### station-role

**Defaults**

Access points operate as root access points by default. When set to defaults, Cisco Aironet 1400 Series Wireless Bridges start up in install mode and adopt the root role if they do not associate to another bridge. If a 1400 series bridge associates to another bridge at start-up, it automatically adopts the non-root role. Cisco Aironet 1310 Access Points/Bridges operate as root access points by default.

### Command Modes

Configuration interface

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(11)JA</td>
<td>This command was modified to support 5-GHz bridges.</td>
</tr>
<tr>
<td>12.2(13)JA</td>
<td>This command was modified to include access point scanner mode and settings for 1300 series bridges.</td>
</tr>
<tr>
<td>12.3(2)JA</td>
<td>This command was modified to support workgroup-bridge mode on 1100 series access points.</td>
</tr>
<tr>
<td>12.3(4)JA</td>
<td>This command was modified to support workgroup-bridge mode on 1200 series access points and repeater mode on 1310 access points/bridges.</td>
</tr>
<tr>
<td>12.3(7)JA</td>
<td>This command was modified to support root and non-root bridge modes for 1200 and 1240AG series access points, root bridge with wireless clients mode on 1310 series access points/bridges, workgroup bridge and scanner modes for 1130AG series access points, and scanner mode for 1100 series access points.</td>
</tr>
</tbody>
</table>

### fallback shutdown

Specifies that the access point should shutdown when the primary Ethernet interface is not functional.

**Note** This option is supported only on 1100, 1130AG, 1200, 1240AG, and 1310 series access points and bridges.

### fallback repeater

Specifies that the access point should operate in repeater mode when the primary Ethernet interface is not functional.

**Note** This option is supported only on 1100, 1130AG, 1200, 1240AG, and 1310 series access points and bridges.

### install

Configures the bridge for installation mode. In installation mode, the bridge flashes its LEDs to indicate received signal strength (RSSI) to assist in antenna alignment.

**Note** This option is supported only on 1310 and 1400 series bridges.

### workgroup-bridge

Specifies that the device operates in workgroup bridge mode. As a workgroup bridge, the device associates to an access point or bridge as a client and provides a wireless LAN connection for devices connected to its Ethernet port.

**Note** This option is supported only on 1100, 1130AG, 1200, 1240AG, and 1310 series access points and bridges.
Examples

This example shows how to configure an access point for root operation and shutdown when Ethernet is not functional:

```
AP(config-if)# station-role root fallback shutdown
```

This example shows how to configure an access point for repeater operation:

```
AP(config-if)# station-role repeater
```

This example shows how to reset an access point or bridge to default operation:

```
AP(config-if)# no station-role
```

This example shows how to set a bridge to root operation:

```
bridge(config-if)# station-role root
```

This example shows how to set a 1310 access point/bridge to root access point operation and shutdown when Ethernet is not functional:

```
bridge(config-if)# station-role root ap-only fallback shutdown
```

This example shows how to configure a 1310 access point/bridge as a non-root bridge that accepts associations from client devices:

```
bridge(config-if)# station-role non-root wireless clients
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration</td>
</tr>
</tbody>
</table>
station-role install

Use the `station-role install` configuration interface command to configure the bridge for installation mode. In installation mode, the bridge flashes the LEDs to indicate received signal strength.

```
station-role install
 [automatic | non-root | root]
```

**Note**

This command is supported only on 1310 and 1400 series bridges.

### Syntax Description

- **automatic**
  - (Optional) Specifies that the bridge automatically selects the root or non-root role in install mode when it starts up. If the bridge does not associate to another bridge at start-up, the bridge adopts the root role. If a bridge associates to another bridge at start-up, it adopts the non-root role.

- **non-root**
  - (Optional) Specifies that bridge starts up in install mode as a non-root bridge.

- **root**
  - (Optional) Specifies that bridge starts up in install mode as a non-root bridge.

### Defaults

When set to defaults, 1400 series bridges start up in install automatic mode and adopt the root role if they do not associate to another bridge. If a bridge associates to another bridge at start-up, it automatically adopts the non-root role.

### Command Modes

- Configuration interface

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to set the bridge to install mode, non-root:

```
bridge(config-if)# station-role install non-root
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>station-role</td>
<td>Configures the bridge for root, non-root, or install mode</td>
</tr>
</tbody>
</table>
transmit-op (QOS Class interface configuration mode)

Use the `transmit-op` QOS Class interface configuration mode command to configure the CAC transmit opportunity time for a radio interface. Use the `no` form of the command to remove the setting.

```
transmit-op 0-65535

no transmit-op
```

**Note**
This command is not supported when operating in repeater mode.

**Syntax Description**

```
0-65535 Specifies the transmit opportunity time (0 to 65535 usec).
```

**Defaults**
When QoS is enabled, the default transmit-op settings for access points match the values in Table 2-15, and the default transmit-op settings for bridges match the values in Table 2-16.

**Table 2-15  Default transmit op Definitions for Access Points**

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Transmit Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>0</td>
</tr>
<tr>
<td>Best Effort</td>
<td>0</td>
</tr>
<tr>
<td>Video &lt;100ms Latency</td>
<td>3008&lt;sup&gt;1&lt;/sup&gt;</td>
</tr>
<tr>
<td>Voice &lt;100ms Latency</td>
<td>1504&lt;sup&gt;2&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

1. 6016—On access points with IEEE 802.11b radios
2. 3264—On access points with IEEE 802.11b radios

**Table 2-16  Default transmit op Definitions for Bridges**

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Transmit Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>0</td>
</tr>
<tr>
<td>Best Effort</td>
<td>0</td>
</tr>
<tr>
<td>Video &lt;100ms Latency</td>
<td>3008</td>
</tr>
<tr>
<td>Voice &lt;100ms Latency</td>
<td>1504</td>
</tr>
</tbody>
</table>

**Command Modes**
QOS Class interface configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
This example shows how to configure the CAC transmit opportunity time for the radio interface:

```
AP(config)# interface dot11radio 0
AP(config-if)# dot11 qos class voice
AP(config-if-qosclass)# transmit-op 100
```

This example shows how to remove the CAC transmit opportunity time for the radio interface:

```
AP(config-if-qosclass)# no transmit-op
```

---

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admission-control (QOS Class interface configuration mode)</td>
<td>Specifies that CAC admission control is required for the radio interface.</td>
</tr>
<tr>
<td>admit-traffic (QOS Class interface configuration mode)</td>
<td>Specifies that CAC traffic is enabled for the radio interface.</td>
</tr>
<tr>
<td>cw-max (QOS Class interface configuration mode)</td>
<td>Specifies the CAC maximum contention window size for the radio interface.</td>
</tr>
<tr>
<td>cw-min (QOS Class interface configuration mode)</td>
<td>Specifies the CAC minimum contention window size for the radio interface.</td>
</tr>
<tr>
<td>fixed-slot (QOS Class interface configuration mode)</td>
<td>Specifies the CAC fixed fallback slot time for the radio interface.</td>
</tr>
</tbody>
</table>

---

### traffic-class

Use the `traffic-class` configuration interface mode command to configure the radio interface quality-of-service (QoS) traffic class parameters for each of the eight traffic types. Use the `no` form of the command to reset a specific traffic class to the default values.

```
[no] traffic-class { best-effort | background | video | voice }
 cw-min 0-10
 cw-max 0-10
 fixed-slot 0-20
```

---

### Syntax Description

- **best-effort**: Specifies the best-effort traffic class category
- **background**: Specifies the background traffic class category
- **video**: Specifies the video traffic class category
- **voice**: Specifies the voice traffic class category
- **cw-min 0-10**: Specifies the minimum value (0 to 10) for the contention window
- **cw-max 0-10**: Specifies the maximum value (0 to 10) for the contention window
- **fixed-slot 0-20**: Specifies the fixed slot backoff interval value (0 to 20)

---

### Defaults

When QoS is enabled, the default traffic class settings for access points match the values in Table 2-17, and the default traffic class settings for bridges match the values in Table 2-18.
traffic-class

Table 2-17  Default QoS Radio Traffic Class Definitions for Access Points

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Min Contention Window</th>
<th>Max Contention Window</th>
<th>Fixed Slot Time</th>
<th>Transmit Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Best Effort</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Video &lt;100ms Latency</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3008^1</td>
</tr>
<tr>
<td>Voice &lt;100ms Latency</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1504^2</td>
</tr>
</tbody>
</table>

1. 6016—On access points with IEEE 802.11b radios
2. 3264—On access points with IEEE 802.11b radios

Table 2-18  Default QoS Radio Traffic Class Definitions for Bridges

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Min Contention Window</th>
<th>Max Contention Window</th>
<th>Fixed Slot Time</th>
<th>Transmit Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Best Effort</td>
<td>4</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Video &lt;100ms Latency</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3008</td>
</tr>
<tr>
<td>Voice &lt;100ms Latency</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1504</td>
</tr>
</tbody>
</table>

Command Modes  Configuration interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(13)JA</td>
<td>This command was modified to support four traffic classes (best-effort, background, video, and voice) instead of eight (0–7).</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to control the backoff parameters for each class of traffic. Backoff parameters control how the radio accesses the airwaves. The cw-min and cw-max arguments specify the collision window as a power of 2. For example, if the value is set to 3, the contention window is 0 to 7 backoff slots (2 to the power 3 minus 1). The fixed-slot arguments specify the number of backoff slots that are counted before the random backoff counter starts to count down.

For best performance on your bridge links, adjust the CW-min and CW-max contention window settings according to the values listed in Table 2-19. The default settings, CW-min 3 and CW-max 10, are best for point-to-point links. However, for point-to-multipoint links, you should adjust the settings depending on the number of non-root bridges that associate to the root bridge.

Note  If packet concatenation is enabled on the bridge, adjust the CW-min and CW-max settings only for traffic class 0. Concatenation is enabled by default.
Table 2-19  CW-min and CW-max Settings for Point-to-Point and Point-to-Multipoint Bridge Links

<table>
<thead>
<tr>
<th>Setting</th>
<th>Point-to-Point Links</th>
<th>Point-to-Multipoint Links with up to 5 Non-Root Bridges</th>
<th>Point-to-Multipoint Links with up to 10 Non-Root Bridges</th>
<th>Point-to-Multipoint Links with up to 17 Non-Root Bridges</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW-min</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>CW-max</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the best-effort traffic class for contention windows and fixed slot backoff values. Each time the backoff for best-effort is started, the backoff logic waits a minimum of the 802.11 SIFS time plus 2 backoff slots. Then it begins counting down the 0 to 15 backoff slots in the contention window.

```ap
AP(config-if)# traffic-class best-effort cw-min 4 cw-max 10 fixed-slot 2
```

This example shows how to disable traffic class support:

```ap
AP(config-if)# no traffic-class
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>concatenation</code> (bridges only)</td>
<td>Enables packet concatenation on the bridge radio</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration</td>
</tr>
</tbody>
</table>

traffic-stream

Use the `traffic-stream` configuration interface command to specify CAC traffic stream properties for a radio interface. Use the `no` form of the command to disable the properties.

```ap
traffic-stream priority 0-7 sta-rates rate1 [rate2] [rate3]
no traffic-stream priority 0-7 sta-rates
```

Note  This command is not supported on repeaters.

Syntax Description

- `0-7` Specifies the priority level for the traffic stream.
- `rate1 ... rateN` Specifies the rates allowed on the 802.11g and 802.11a radio interfaces. The supported rates are listed below:
  - 12.0—allow 12 Mbps
  - 24.0—allow 24 Mbps
  - 6.0—allow 6 Mbps
  - nom-12.0—allow nominal 12 Mbps
  - nom-24.0—allow nominal 24 Mbps
  - nom-6.0—allow nominal 6 Mbps
**username (dot1x credentials configuration mode)**

Use the `username` dot1x credentials configuration mode command to specify dot1x credential username. Use the `no` form of the command to disable the credential username.

```
[no] username name
```

### Syntax Description

**name**

Specifies the username for the dot1x credential.

### Defaults

This command has no defaults.

### Command Modes

Dot1x credentials configuration interface
## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

## Examples

This example shows how to specify the dot1x credential username:

```plaintext
AP(config-dot1x-creden)# username john101
```

This example shows how to disable the credential username:

```plaintext
AP(config-dot1x-creden)# no username
```

## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x credentials</td>
<td>Configures the dot1x credentials on the access point.</td>
</tr>
<tr>
<td>show dot1x credentials</td>
<td>Displays the configured dot1x credentials on the access point.</td>
</tr>
</tbody>
</table>
user (local server configuration mode)

Use the `user` local server configuration command to specify the users allowed to authenticate using the local authenticator. As a local authenticator, the access point performs LEAP, EAP-FAST, and MAC-based authentication for up to 50 client devices. The access point performs up to 5 authentications per second.

```
user username
 { password | nthash } password
 [group group-name]
 [mac-auth-only]
```

**Note**
This command is not supported on bridges.

**Syntax Description**
- `username` Specifies the user’s username. To add a client device for MAC-based authentication, enter the device’s MAC address.
- `password password` Specifies the password assigned to the user. To add a client device for MAC-based authentication, enter the device’s MAC address.
- `nthash password` Specifies the NT value of the user’s password. If you only know the NT value of the password, which you can often find in the authentication server database, you can enter the NT hash as a string of hexadecimal digits.
- `group group-name` (Optional) Specifies the user group to which the user is assigned
- `mac-auth-only` (Optional) Specifies that the user is allowed to authenticate using only MAC authentication.

**Defaults**
This command has no defaults.

**Command Modes**
Local server configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(15)JA</td>
<td>This command was modified to support MAC address authentication on the local authenticator.</td>
</tr>
<tr>
<td>12.3(2)JA</td>
<td>This command was modified to support EAP-FAST authentication on the local authenticator.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to add a user to the list of clients allowed to authenticate using LEAP on the local authenticator:

```
AP(config-radsrv)# user sam password rover32 group cashiers
```
This example shows how to add a user to the list of clients allowed to authenticate using MAC-based authentication on the local authenticator:

```
AP(config-radsrv)# user 00074218d01b password 00074218d01b group cashiers
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>group (local server configuration mode)</strong></td>
<td>Creates a user group on the local authenticator and enters user group configuration mode</td>
</tr>
<tr>
<td><strong>nas (local server configuration mode)</strong></td>
<td>Adds an access point to the list of NAS access points on the local authenticator</td>
</tr>
<tr>
<td><strong>radius-server local</strong></td>
<td>Enables the access point as a local authenticator and enters local server configuration mode</td>
</tr>
<tr>
<td><strong>show running-config</strong></td>
<td>Displays the current access point operating configuration</td>
</tr>
</tbody>
</table>

### vlan (SSID configuration mode)

Use the `vlan` SSID configuration mode command to configure the radio interface (for the specified SSID) to support a specific Ethernet virtual LAN (VLAN). Use the `no` form of the command to reset the parameter to the default value.

```
[no] vlan vlan-id
```

**Syntax Description**

- `vlan-id`: Specifies the virtual Ethernet LAN identification number for the SSID

**Defaults**

This command has no defaults.

**Command Modes**

SSID configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure the VLAN that uses the radio SSID (wireless LAN):

```
AP(config-if-ssid)# vlan 2
```

This example shows how to reset the VLAN parameter to default values:

```
AP(config-if-ssid)# no vlan
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssid</td>
<td>Specifies the SSID and enters the SSID configuration mode</td>
</tr>
</tbody>
</table>

**wlccp ap eap profile**

Use the `wlccp ap eap profile` global configuration command to enable an EAP profile for WLSM. Use the `no` form of this command to disable the EAP profile.

```
wlccp ap eap profile profile name
no wlccp ap eap profile
```

**Syntax Description**

- **profile name** Specifies the EAP profile name.

**Defaults**

This command has no default setting.

**Command Modes**

Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `wlccp ap eap profile` command to enable an eap profile for WLSM.

This example shows how to create an EAP profile:

```
AP(config)# wlccp ap eap profile test
```

This example shows how to disable the EAP profile:

```
AP(config)# no wlccp ap eap profile
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eap profile</td>
<td>Configures an EAP profile on the access point.</td>
</tr>
<tr>
<td>method (eap profile configuration mode)</td>
<td>Configures EAP types for the EAP profile.</td>
</tr>
<tr>
<td>show eap registrations</td>
<td>Displays EAP registrations for the access point.</td>
</tr>
<tr>
<td>show eap sessions</td>
<td>Displays EAP statistics for the access point.</td>
</tr>
<tr>
<td>dot1x eap profile</td>
<td>Configures a dot1x EAP profile for an interface.</td>
</tr>
</tbody>
</table>
**wlccp ap username**

Use the `wlccp ap username` global configuration command to configure an access point to authenticate through the device configured for wireless domain services (WDS) and participate in Cisco Centralized Key Management (CCKM). Use the `no` form of the command to disable the username.

```
wlccp ap username username password password

no wlccp ap username username
```

**Note**

This command is not supported on bridges.

**Syntax Description**

- `username username`: Specifies the username that the access point uses when it authenticates through the device configured for WDS
- `password password`: Specifies the password that the access point uses when it authenticates through the device configured for WDS

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure the username and password for an access point that will participate in CCKM:

```
AP(config)# wlccp ap username birdman password 8675309
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlccp authentication-server</code></td>
<td>Specifies server lists for 802.1x authentication for client and infrastructure devices participating in CCKM</td>
</tr>
</tbody>
</table>
**wlccp authentication-server**

Use the `wlccp authentication-server` global configuration command to configure the list of servers to be used for 802.1x authentication for infrastructure devices and client devices enabled for Cisco Centralized Key Management (CCKM).

```
wlc cp authentication-server
 client { any | eap | leap | mac } list |
 infrastructure list
```

**Note**
This command is not supported on bridges and 350 series access points.

**Syntax Description**
- `client { any | eap | leap | mac } list` Specifies the server list to be used for 802.1x authentication for client devices. You can specify a server list for a specific 802.1x authentication method, or use the **any** option to specify a list to be used for all 802.1x authentication methods.
  - **eap**—usually used with non-Cisco wireless adapters. Any wireless LAN client which uses a value of 0 in the algorithm field in the 802.11 association request frame can use EAP. This authentication-server setting must be used with the `authentication open eap` statement under the SSID configuration for each access point participating in WDS.
  - **leap**—usually used with Cisco Aironet wireless adapters. Any WLAN client which uses a value of 128 in the algorithm field in the 802.11 association request frame can use LEAP. This authentication-server setting must be used with the `authentication network-eap` statement under the SSID configuration for each access point participating in WDS.
  - **mac**—used for any RADIUS-based MAC authentication used with WDS. This authentication-server setting must be used with the `authentication open mac` or the `authentication network-eap mac` statement under the SSID configuration for each access point participating in WDS.
- `infrastructure list` Specifies the server list to be used for 802.1x authentication for infrastructure devices, such as other access points.

**Defaults**
This command has no defaults.

**Command Modes**
Global configuration

**Command History**
- **Release**
  - 12.2(11)JA: This command was introduced.
Examples

This example shows how to configure the server list for LEAP authentication for client devices:

```
AP(config)# wlccp authentication-server client leap leap-list1
```

This example shows how to configure the server list for 802.1x authentication for infrastructure devices participating in CCKM:

```
AP(config)# wlccp authentication-server infrastructure wlan-list1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>authentication network-eap</code></td>
<td>Configures the radio interface (for the specified SSID) to support network-EAP authentication with optional MAC address authentication</td>
</tr>
<tr>
<td><code>authentication open</code></td>
<td>Configures the radio interface (for the specified SSID) to support open authentication and optionally MAC address authentication or EAP authentication</td>
</tr>
<tr>
<td><code>wlccp ap username</code></td>
<td>Configures an access point to participate in CCKM</td>
</tr>
<tr>
<td><code>wlccp wds priority</code></td>
<td>Configures an access point for WDS</td>
</tr>
</tbody>
</table>

wlccp wds aaa authentication mac-authen filter-cache

Use the `wlccp wds aaa authentication mac-authen filter-cache` global configuration command to enable MAC authentication caching on the access point. MAC authentication caching reduces overhead because the access point authenticates devices in its MAC-address cache without sending the request to your authentication server. When a client device completes MAC authentication to your authentication server, the access point adds the client’s MAC address to the cache.

```
wlccp wds aaa authentication mac-authen filter-cache [timeout seconds]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timeout seconds</code></td>
<td>Specifies a timeout value for MAC authentications in the cache.</td>
</tr>
</tbody>
</table>

Defaults

MAC authentication caching is disabled by default. When you enable it, the default timeout value is 1800 (30 minutes).

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure MAC authentication caching with a one-hour timeout:

```
ap(config)# wlccp wds aaa authentication mac-authen filter-cache timeout 3600
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear dot11 aaa authentication</td>
<td>Clear MAC addresses from the MAC authentication cache.</td>
</tr>
<tr>
<td>mac-authen filter-cache</td>
<td></td>
</tr>
<tr>
<td>dot11 aaa authentication</td>
<td>Enable MAC authentication caching on the access point.</td>
</tr>
<tr>
<td>mac-authen filter-cache</td>
<td></td>
</tr>
<tr>
<td>show dot11 aaa authentication</td>
<td>Display MAC addresses in the MAC authentication cache.</td>
</tr>
<tr>
<td>mac-authen filter-cache</td>
<td></td>
</tr>
<tr>
<td>show wlccp</td>
<td>Display information on devices participating in Cisco Centralized Key</td>
</tr>
<tr>
<td></td>
<td>Management (CCKM) and WDS, including addresses in the MAC authentication</td>
</tr>
<tr>
<td></td>
<td>cache.</td>
</tr>
</tbody>
</table>

wlccp wds mode wds-only

Use the `wlccp wds mode wds-only` global configuration command to configure 16b access points to operate in the WDS-only mode. After issuing this command and restarting, the access point starts working in the WDS-only mode. In WDS-only mode, the dot11 subsystems are not initialized and the dot11 interface related commands cannot be configured. In WDS-only mode, the WDS supports up to 60 infrastructure access points and up to 1200 clients.

This command is supported only on 16 Mb access points (1100 and 1200 series). It is not supported on 32 Mb access points (1130, 1240 series, etc.) It is intended to be used to free up memory necessary to run as a WDS. To run a 32 Mb access point in WDS-only mode, set the Dot11Radio0 and Dot11Radio1 interfaces to shutdown.

To set the WDS access point to operate in both AP and WDS modes, use the `no wlccp wds mode wds-only` command and restart the access point immediately. After the access point restarts, the dot11 radio subsystems initialize. The access point and WDS associate directly to wireless clients. In this mode, the WDS supports 30 infrastructure access points and 600 clients in addition to 20 direct wireless client associations.

```
wlc cp wds mode wds-only
```

Defaults

This command has no default

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)JEB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure WDS-only mode:

```
ap(config)# wlccp wds mode wds-only
```
Use the `wlccp wds priority` global configuration command to configure an access point to provide Wireless Domain Services (WDS). When configuring Cisco Centralized Key Management (CCKM), you configure one or more access points or switches as candidates to provide WDS. The device with the highest priority provides WDS.

```
wlccp wds
priority priority
interface interface
```

**Note** This command is not supported on bridges and 350 series access points.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority priority</code></td>
<td>Specifies the priority of the access point among devices configured to provide WDS. Enter a priority number from 1 to 255.</td>
</tr>
<tr>
<td><code>interface interface</code></td>
<td>Specifies the interface on which the access point sends out WDS advertisements. For this release, you must use <code>bvi 1</code> as the interface for WDS advertisements.</td>
</tr>
</tbody>
</table>

**Defaults**
This command has no defaults.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show wlccp</code></td>
<td>Display information on devices participating in Cisco Centralized Key Management (CCKM) and WDS, including addresses in the MAC authentication cache.</td>
<td></td>
</tr>
</tbody>
</table>
Examples

This example shows how to configure the priority for an access point as a candidate to provide WDS:

```
AP(config)# wlccp wds priority 200 interface bvi 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlccp ap username</code></td>
<td>Configures an access point to participate in CCKM</td>
</tr>
<tr>
<td><code>wlccp authentication-server</code></td>
<td>Specifies server lists for 802.1x authentication for client and infrastructure devices participating in CCKM</td>
</tr>
</tbody>
</table>

**wlccp wnm ip address**

Use the `wlccp wnm ip address` global configuration command to configure the IP address of the wireless network manager (WNM) that performs network management for the wireless LAN to which the access point belongs.

```
wlccp wnm ip address
```

**Note**

This command is not supported on bridges.

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no defaults.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to configure the IP address of the wireless network manager:

```
AP(config)# wlccp wnm ip address 10.10.0.101
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlccp ap username</code></td>
<td>Configures an access point to participate in CCKM</td>
</tr>
<tr>
<td><code>wlccp authentication-server</code></td>
<td>Specifies server lists for 802.1x authentication for client and infrastructure devices participating in CCKM</td>
</tr>
</tbody>
</table>
workgroup-bridge client-vlan

Use the `workgroup-bridge client-vlan` global configuration command to assign a VLAN to the devices attached to a workgroup bridge. This command enables VLAN trunking on the workgroup bridge's radio and Ethernet interfaces.

```
workgroup-bridge client-vlan vlan-id
```

**Note**
This command is supported only on 1100 and 1200 series access points and 1300 series access points/bridges.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no defaults.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.3(2)JA</td>
<td>This command was modified to support 1100 series access points.</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to assign a VLAN to the devices attached to a workgroup bridge:
```
wgb(config-if)# workgroup-bridge client-vlan 17
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration</td>
</tr>
</tbody>
</table>
workgroup-bridge timeouts assoc-response

Use the **workgroup-bridge timeouts assoc-response** global configuration command to fine tune the association response timeout for WGB. This CLI command is applicable to an AP working in WGB mode.

```
workgroup-bridge timeouts assoc-response ms
```

**Note**

This command is supported only on APs that support a station role of “WGB.”

**Syntax Description**

```
ms
```

Enter a number from 800 to 5000.

**Defaults**

The default **association response timeout** is 5000 ms.

**Command Modes**

Global configuration

**Command History**

```
Release Modification
12.4(25d)JA This command was introduced.
```

**Examples**

This example shows how to assign an authentication response timeout for a workgroup bridge:

```
wgb(config-if)# workgroup-bridge timeouts assoc-response 800
```
workgroup-bridge timeouts auth-response

Use the `workgroup-bridge timeouts auth-response` global configuration command to fine tune the authentication response timeout for WGB. This CLI command is applicable to an AP working in WGB mode.

```
workgroup-bridge timeouts auth-response ms
```

**Note**

This command is supported only on APs that support a station role of “WGB.”

**Syntax Description**

```
ms Enter a number from 800 to 5000.
```

**Defaults**

The default `authentication response timeout` is 5000 ms.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(25d)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to assign an authentication response timeout for a workgroup bridge:

```
wgb(config-if)# workgroup-bridge timeouts auth-response 800
```
workgroup-bridge timeouts client-add

Use the `workgroup-bridge timeouts client-add` global configuration command to fine tune the client add timeout for WGB. This CLI command is applicable to an AP working in WGB mode.

```
workgroup-bridge timeouts client-add ms
```

**Note**
This command is supported only on APs that support a station role of “WGB.”

**Syntax Description**

```
ms Enter a number from 800 to 5000.
```

**Defaults**

The default client add timeout is 5000 ms.

**Command Modes**

Global configuration

**Command History**

```
Release Modification
12.4(25d)JA This command was introduced.
```

**Examples**

This example shows how to assign a client add timeout to a workgroup bridge:

```
wgb(config-if)# workgroup-bridge timeouts client-add 800
```
workgroup-bridge timeouts eap-timeout

Use the `workgroup-bridge timeouts eap-timeout` global configuration command to fine tune the EAP timeout for WGB. This CLI command is applicable to an AP working in WGB mode.

```
workgroup-bridge timeouts eap-timeout sec
```

**Note**

This command is supported only on APs that support a station role of “WGB.”

**Syntax Description**

`sec` Enter a number from 2 to 600.

**Defaults**

The default `eap-timeout` is 0 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(25d)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This is the timeout to complete the full EAP authentication on a workgroup bridge.

This value highly depends on the EAP authentication algorithm. Ensure that you understand the deployment scenario (depending on the turn-around time to the radius server and the number of transactions) and use this command appropriately. If you want to use 802.1x EAP, you should not assign a timeout value of less than 30 seconds.

When this command is used along with the CLI command “mobile station scan period <>”, it is suggested to use “scan period” > “eap timeout”.

**Examples**

This example shows how to assign an EAP timeout on a workgroup bridge:

```
wgb(config)# workgroup-bridge timeouts eap-timeout 20
```
workgroup-bridge timeouts iapp-refresh

Use the `workgroup-bridge timeouts iapp-refresh` global configuration command to fine tune the IAPP refresh timeout. This CLI command is applicable to an AP working in WGB mode only.

```
workgroup-bridge timeouts iapp-refresh ms
```

**Note**

This command is supported only on APs that support a station role of “WGB.”

**Syntax Description**

- `ms`: Enter a number from 100 to 1000.

**Defaults**

The default `iapp refresh timeout` is 1000 ms.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(25d)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to assign an IAPP refresh timeout to a workgroup bridge:

```
wgb(config-if)# workgroup-bridge timeouts iapp-refresh 100
```
**workgroup-bridge unified-vlan-client**

Use the **workgroup-bridge unified-vlan-client** global configuration command to enable the Workgroup Bridge (WGB) VLAN tagging feature.

```
[no] workgroup-bridge unified-vlan-client [broadcast-replicate]
```

**Note**

This command is supported only on APs that support a station role of “WGB.”

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Enables/disables the Workgroup-Bridge (WGB) VLAN tagging feature.</td>
</tr>
<tr>
<td>broadcast-replicate</td>
<td>Enables WGB broadcast to all VLANs.</td>
</tr>
</tbody>
</table>

**Defaults**

The default is disabled.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(25d)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is used for the unified solution.

**Examples**

This example shows how to enable WGB broadcast to all VLANs:

```
wgb(config-if)# workgroup-bridge unified-vlan-client broadcast-replicate
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration</td>
</tr>
</tbody>
</table>
world-mode

Use the world-mode configuration interface mode command to enable access point world mode operation. You can configure the access point to support 802.11d world mode or Cisco legacy world mode. Use the no form of the command to disable world mode operation.

```
[no] world-mode
dot11d country_code code {both | indoor | outdoor}
legacy
```

**Syntax Description**
- `dot11d country_code code`: Enables 802.11d world mode.
- `both | indoor | outdoor`: Indicates the placement of the access point.
- `legacy`: Enables Cisco legacy world mode.

**Defaults**
World mode is disabled by default.

**Command Modes**
Configuration interface

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)JA</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(15)JA</td>
<td>This command was modified to support 802.11d world mode.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
With world mode enabled, the access point advertises the local settings, such as allowed frequencies and transmitter power levels. Clients with this capability then passively detect and adopt the advertised world settings, and then actively scan for the best access point. Cisco client devices running firmware version 5.30.17 or later detect whether the access point is using 802.11d or Cisco legacy world mode and automatically use world mode that matches the mode used by the access point.

**Examples**
This example shows how to enable 802.11d world mode operation:

```
AP(config-if)# world-mode dot11d country-code TH both
```

This example shows how to disable world mode operation:

```
AP(config-if)# no world-mode dot11d
```
Use the `wpa-psk` SSID interface configuration command to configure a pre-shared key for use in WPA authenticated key management. To support WPA on a wireless LAN where 802.1x-based authentication is not available, you must configure a pre-shared key for the SSID.

```
wpa-psk { hex | ascii } [0 | 7] encryption-key
```

**Note**
This command is not supported on bridges.

### Syntax Description
- **hex**: Specifies entry of the pre-shared key in hexadecimal characters. If you use hexadecimal, you must enter 64 hexadecimal characters to complete the 256-bit key.
- **ascii**: Specifies ASCII entry of the pre-shared key. If you use ASCII, you must enter a minimum of 8 letters, numbers, or symbols, and the access point expands the key for you. You can enter a maximum of 63 ASCII characters.

- **encryption-key**: Specifies the pre-shared key

### Defaults
This command has no defaults.

### Command Modes
SSID configuration interface

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)JA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples
This example shows how to configure a WPA pre-shared key for an SSID:

```
AP(config-if-ssid)# wpa-psk ascii shared-secret-key
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>authentication key-management</code></td>
<td>Specifies authenticated key management for an SSID</td>
</tr>
<tr>
<td><code>encryption mode ciphers</code></td>
<td>Specifies a cipher suite</td>
</tr>
<tr>
<td><code>ssid</code></td>
<td>Specifies the SSID and enters SSID configuration mode</td>
</tr>
</tbody>
</table>
**write memory**

Use the `write memory` command to copy the running configuration into flash memory (NVRAM).

```
write memory
```

### Syntax Description
This command has no arguments or keywords.

### Defaults
This command has no defaults.

### Command Modes
Privileged EXEC command.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
If an error message similar to the following displays, then there is no available space for the configuration file in the flash memory:

```
Error writing new config file "flash:/config.txt.new", nv_done:unable to open "flash:/config.txt.new." Error writing new block-fs "file flash:/private-multiple-fs.new"
```

### Examples
This example shows the command entry and the resulting command response:

```
AP1242aG#write memory
Building configuration...
[OK]
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| `copy system:/running-config url` | Writes the running configuration onto a server on the network. Previously, the `write network` command.  
**Note** See the Cisco IOS mainline documentation for more details on this command. |
| `write terminal` | Writes (displays) the running configuration to a terminal screen. |
write terminal

Use the write terminal command to write the running configuration to the terminal screen.

```
write terminal
```

Syntax Description

This command has no arguments or keywords.

Defaults

This command has no defaults.

Command Modes

Privileged EXEC command.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

None.

Examples

This example shows the command entry and the resulting command response:

```
AP1242aG#write terminal
Building configuration...

Current configuration : 1541 bytes
!
version 12.4
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
!
hostname AP1242AG
!
enable secret 5 1/oiR$795MDnTXNfV1xC.jf7YFd/
!
aaa new-model
!
!
!aaa session-id common
!
resource policy
!
ip subnet-zero
!
--More--
--More-- power inline negotiation prestandard source
--More--
--More-- username Cisco password 7 02250D480809
--More--
```

--More--  bridge irb
--More--  
--More--  
--More--  interface Dot11Radio0
--More--  no ip address
--More--  no ip route-cache
--More--  shutdown
--More--  station-role root
--More--  bridge-group 1
--More--  bridge-group 1 subscriber-loop-control
--More--  bridge-group 1 block-unknown-source
--More--  no bridge-group 1 source-learning
--More--  no bridge-group 1 unicast-flooding
--More--  bridge-group 1 spanning-disabled
--More--  
--More--  interface Dot11Radio1
--More--  no ip address
--More--  no ip route-cache
--More--  shutdown
--More--  dfs band 3 block
--More--  channel dfs
--More--  station-role root
--More--  bridge-group 1
--More--  bridge-group 1 subscriber-loop-control
--More--  bridge-group 1 block-unknown-source
--More--  no bridge-group 1 source-learning
--More--  no bridge-group 1 unicast-flooding
--More--  bridge-group 1 spanning-disabled
--More--  
--More--  interface FastEthernet0
--More--  no ip address
--More--  no ip route-cache
--More--  duplex auto
--More--  speed auto
--More--  bridge-group 1
--More--  no bridge-group 1 source-learning
--More--  bridge-group 1 spanning-disabled
--More--  
--More--  interface BVI1
--More--  ip address 10.91.107.16 255.255.255.192
--More--  no ip route-cache
--More--  
--More--  ip default-gateway 10.91.107.1
--More--  ip http server
--More--  no ip http secure-server
--More--  ip http help-path
--More--  
--More--  control-plane
--More--  
--More--  bridge 1 route ip
--More--  
--More--  
--More--  line con 0
--More--  exec-timeout 0 0
--More--  logging synchronous
--More--  line vty 0 4
--More--  exec-timeout 0 0
--More--  logging synchronous
--More--  
--More--  end
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>write memory</strong></td>
<td>Writes the running configuration into flash memory (NVRAM) of an access point.</td>
</tr>
<tr>
<td><strong>copy system:/running-config url</strong></td>
<td>Writes the running configuration onto a server on the network. Previously, the <strong>write network</strong> command. <strong>Note</strong> See the Cisco IOS mainline documentation for more details on this command.</td>
</tr>
</tbody>
</table>
write terminal
List of Supported Cisco IOS Commands

This appendix lists the Cisco IOS commands that access points and bridges support. Cisco IOS commands that are not in this list have not been tested on access points and bridges and might not be supported.

Commands related to wireless LANs are described in Chapter 2, “Cisco IOS Commands for Access Points and Bridges” and appear in blue in this list. You can click those commands to browse to a description of the command. You can find descriptions and usage instructions for the rest of the commands in this list in the Cisco IOS Release 12.3 Master Indexes. Click this URL to browse to the master indexes:


aaa accounting
aaa accounting delay-start
aaa accounting update
aaa authentication
aaa authentication login
aaa authentication login default local cache
aaa authorization exec default local cache
aaa cache profile
aaa pod server
aaa new-model
aaa pod server access-class

Note

The access-class command is supported only on access points that have a console port.

access-list
accounting (SSID configuration mode)
admission-control (QOS Class interface configuration mode)

Note This command is not supported on repeaters.

admit-traffic (SSID configuration mode)

Note This command is not supported on repeaters.

admit-traffic (QOS Class interface configuration mode)

Note This command is not supported on repeaters.

anonymous-id (dot1x credentials configuration mode)

antenna

ampdu

archive download-sw

archive upload

arp

authentication (local server configuration mode)

authentication client

authentication key-management

authentication network-eap (SSID configuration mode)

authentication open (SSID configuration mode)

authentication shared (SSID configuration mode)

beacon

beacon privacy guest-mode

boot buffersize

boot ios-break

boot mode-button

boot upgrade

bridge

Note The bridge protocol ieee command is not supported on access points and bridges. You cannot disable this command unless you reboot the unit.

bridge aging-time

bridge forward-time
bridge hello-time
bridge max-age
bridge priority
bridge protocol ieee
bridge-group block-unknown-source
bridge-group input-address-list
bridge-group input-pattern-list
bridge-group input-type-list
bridge-group output-address-list
bridge-group output-pattern-list
bridge-group output-type-list
bridge-group path-cost
bridge-group port-protected
bridge-group priority
bridge-group spanning-disabled
bridge-group subscriber-loop-control
bridge-group source-learning
bridge-group unicast-flooding
broadcast-key

cache authentication profile
cache authorization profile
cache expiry
cca
cd
cdp enable
cdp holdtime
cdp run
cdp timer
channel
channel-match (LBS configuration mode)
class-map
clear access-list counters
clear cdp counters
clear cdp table
clear dot11 aaa authentication mac-authen filter-cache
clear dot11 cckm-statistics
clear dot11 client
clear dot11 hold-list
clear dot11 statistics
clear dot11 ids mfp client statistics
clear eap sessions
clear iapp rogue-ap-list
clear iapp statistics
clear ip igmp snooping membership
clear logging
clear vlan
clear wlcp wds
clear wlcp wds recovery statistics
clock timezone
clock summer-time
concatenation
configure terminal
copy
countermeasure tkip hold-time
crypto pki authenticate
crypto pki enroll
crypto pki import
crypto pki trustpoint
cw-max (QOS Class interface configuration mode)
cw-min (QOS Class interface configuration mode)

databits

**Note** The databits command is supported only on access points that have a console port.

debug aaa pod
debug cdp adjacency
debug cdp events
debug cdp packets
debug dot11
debug dot11 aaa
debug dot11 cac

Note This command is not supported on repeaters.

deploy dot11 dot11radio
deploy dot11 ids
deploy dot11 ids mfp
deploy eap
deploy iapp
debug interface fastethernet
debug ip http authentication
debug ip http ssi
debug ip http tokens
debug ip http transactions
debug ip http url
debug ip igmp snooping
deploy radius local-server
debug vlan packets
deploy wlccp ap
deploy wlccp ap mn---tbd
deploy wlccp ap rm enhanced-neighbor-list
deploy wlccp packet
deploy wlccp rmlib
deploy wlccp wds
delete
description (dot1x credentials configuration mode)
dfs band
dir
disable
disconnect
distance
dot11 aaa authentication attributes service
dot11 aaa authentication mac-authen filter-cache
dot11 aaa csid
dot11 activity-timeout
dot11 adjacent-ap age-timeout
dot11 antenna-alignment
dot11 arp-cache
dot11 association mac-list
dot11 auto-immune
dot11 carrier busy
dot11 extension aironet
dot11 extension power native
dot11 holdoff-time
dot11 ids eap attempts
dot11 ids mfp
dot11 igmp snooping-helper
dot11 lbs
dot11 linktest
dot11 location isocc
dot11 mbssid
dot11 meter
dot11 network-map
dot11 phone
dot11 priority-map avvid
dot11 qos class
dot11 ssid
dot11 update-group-key
dot11 vlan-name
dot11 wpa handshake init-delay
dot11 wpa handshake timeout
dot1x credentials
dot1x eap profile (configuration interface mode)
dot1x eap profile (SSID configuration mode)
dot1x timeout reauth-period
dot1x timeout supp-response
duplex
eap profile
eapfast authority
eapfast pac expiry
eapfast server-key
enable
encapsulation dot1q
encryption
encryption key
encryption mode ciphers
encryption mode wep
end
erase
exception core-file
exception crashinfo buffersize
exception crashinfo file
exception dump
exception flash
exception memory
exec-timeout
exit

fair-queue
fixed-slot (QOS Class interface configuration mode)
format
fragment-threshold
full-duplex

group (local server configuration mode)
guard-interval
guest-mode (SSID configuration mode)
half-duplex
help
hold-queue
holdoff-time
hostname

iapp standby mac-address
iapp standby poll-frequency
iapp standby primary-shutdown
iapp standby timeout
ids mfp client
information-element ssid (SSID configuration mode)
infrastructure-client
infrastructure-ssid (SSID configuration mode)
interface
interface dot11 (LBS configuration mode)
interface dot11radio
interface fastethernet

⚠️ Caution
Access points and bridges do not support the interface loopback command. Configuring a loopback interface might generate an IAPP GENINFO storm on your network.

interface virtual-dot11Radio
ip access-group
ip access-list
ip address
ip address dhcp
ip default-gateway
ip dhcp-server
ip domain-lookup
ip http authentication
ip http help-path
ip http path
ip http port
ip http server
ip igmp snooping vlan
ip name-server
ip redirection
ip telnet

l2-filter bridge-group-acl
l2-filter-block-arp
led display
led flash
length

Note: The length command is supported only on access points that have a console port.

line
logging
logging buffered
logging snmp-trap
logging console
logging history
logging history size
logging facility
logging monitor
logging on
logging rate-limit
logging trap
login
logout

Note: The loopback command is not supported on access points and bridges.

match (class-map configuration)
max-associations (SSID configuration mode)
mbssid
mbssid (SSID configuration mode)
method (eap profile configuration mode)
method (LBS configuration mode)
mobile station
mobility network-id
monitor

**Note** The `monitor` command is supported only on access points that have a console port.

more
multicast address (LBS configuration mode)

nas (local server configuration mode)

packet max-retries
packet retries
packet speed
packet timeout
packet-type (LBS configuration mode)
parent
parent timeout
parity

**Note** The `parity` command is supported only on access points that have a console port.

password (dot1x credentials configuration mode)
payload-encapsulation
pki-trustpoint (dot1x credentials configuration mode)
ping
policy-map
power client
power inline negotiation
power local
preamble-short
privilege

**Note** The `privilege` command is supported only on access points that have a console port.

probe-response gratuitous
pwd

radius local-server pac-generate
radius-server attribute
radius-server deadtime
radius-server host
radius-server local
radius-server retransmit
radius-server timeout
radius-server vsa send accounting
reload
rts

server-address (LBS configuration mode)
service-policy output
service sequence-number
service timestamps
session-timeout

**Note** The `session-timeout` command is supported only on access points that have a console port.

short-slot-time
show access-lists
show boot
show boot mode-button
show bridge
show bridge group
show buffers
show cdp
show cdp entry
show cdp interface
show cdp neighbors
show cdp traffic
show clock
show controllers dot11radio
show controllers fastethernet
show debugging
show dhcp server
show dot11 aaa authentication mac-authen filter-cache
show dot11 adjacent-ap
show dot11 associations
show dot11 bssid
show dot11 cac

Note This command is not supported on repeaters.

show dot11 carrier busy
show dot11 directed-roam
show dot11 ids eap
show dot11 ids mfp
show dot11 network-map
show dot11 statistics client-traffic
show dot11 traffic-streams
show dot11 vlan-name
show dot1x
show dot1x credentials
show eap registrations
show eap sessions
show environment
show file information
show file systems
show flash
show history
show hosts
show html users
show iapp rogue-ap-list
show iapp standby-parms
show iapp statistics
show interfaces dot11radio
show interfaces dot11radio aaa
show interfaces dot11radio statistics
show interfaces fastethernet
show ip access-list

Note The show ip local command is not supported on access points and bridges.

show ip igmp snooping groups
show ip igmp snooping vlan
show led flash
show line
show logging
show memory
show power-injector
show privilege
show processes
show queueing
show radius
show radius local-server statistics
show registry
show running-config
show running-config ssid
show sessions
show smf
show snmp
show snmp engineID
show snmp group
show snmp user
show spanning-tree
show stacks
show startup-config
show subsys
show tech-support
show terminal
show users
show version
show vlan
show wlccp
show wlccp ap mn
show wlccp ap rm enhanced-neighbor-list
shutdown
snmp ifindex
snmp-server
snmp-server chassis-id
snmp-server community
snmp-server contact
snmp-server enable traps
snmp-server enable traps envmon temperature
snmp-server group
snmp-server host
snmp-server location
snmp-server system-shutdown
snmp-server user
snmp-server view
snmp trap link-status
speed (Ethernet interface)
speed (radio interface)
speed (serial line interface)

Note The speed (serial line interface) command is supported only on access points that have a console port.

speed ofdm
ssid
station-role
station-role install
stopbit

Note The stop bit command is supported only on access points that have a console port.
T

terminal-type

**Note** The `terminal-type` command is supported only on access points that have a console port.

test fastethernet
test led
timeout (serial line interface)

**Note** The `timeout` (serial line interface) command is supported only on access points that have a console port.

traffic-class
traffic-stream

**Note** This command is not supported on repeaters.

transmit-op (QOS Class interface configuration mode)

U

undebug

user (local server configuration mode)
username (dot1x credentials configuration mode)

V

verify

vlan (SSID configuration mode)

W

width

wlccp ap eap profile
wlccp ap username
wlccp authentication-server
wlccp wds aaa authentication mac-authen filter-cache
wlccp wds mode wds-only
wlccp wds priority
wlccp wnm ip address
workgroup-bridge client-vlan
workgroup-bridge timeouts assoc-response
workgroup-bridge timeouts auth-response
workgroup-bridge timeouts client-add
workgroup-bridge timeouts eap-timeout
workgroup-bridge timeouts iapp-refresh
workgroup-bridge unified-vlan-client
world-mode
wpa-psk
write memory
write terminal
802.3af
The IEEE standard that describes a mechanism for Power over Ethernet (PoE). The standard provides the capability to deliver both power and data over standard Ethernet cabling.

802.11
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 1- and 2-megabit-per-second (Mbps) wireless LANs operating in the 2.4-GHz band.

802.11a
The IEEE standard that specifies carrier sense media access control and physical layer specifications for wireless LANs operating in the 5-GHz frequency band.

802.11b
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 5.5- and 11-Mbps wireless LANs operating in the 2.4-GHz frequency band.

802.11g
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 6, 9, 12, 18, 24, 36, 48, and 54 Mbps wireless LANs operating in the 2.4-GHz frequency band.

802.11n
An IEEE standard that builds upon previous 802.11 standards by adding MIMO (multiple-input multiple-output). IEEE 802.11n offers high throughput wireless transmission at 100Mbps – 200 Mbps.

access point
A wireless LAN data transceiver that uses radio waves to connect a wired network with wireless stations.

ad hoc network
A wireless network composed of stations without access points.

AES-CCMP
Based on the Advanced Encryption Standard (AES) defined in the National Institute of Standards and Technology’s *FIPS Publication 197*, AES-CCMP is a symmetric block cipher that can encrypt and decrypt data using keys of 128, 192, and 256 bits. AES-CCMP is superior to WEP encryption and is defined in the IEEE 802.11i standard.

antenna gain
The gain of an antenna is a measure of the antenna’s ability to direct or focus radio energy over a region of space. High gain antennas have a more focused radiation pattern in a specific direction.
ampdu  Aggregate MAC protocol unit. An A-MPDU is a structure containing multiple MPDUs transported as a single PSDU by the PHY.

associated  A station is configured properly to allow it to wirelessly communicate with an Access Point.

B

beacon  A wireless LAN packet that signals the availability and presence of the wireless device.

BID  Bridge identifier used in spanning tree calculations. The BID contains the bridge MAC address and its spanning tree priority value. If all bridges in the spanning tree are assigned the same priority, the bridge with the lowest MAC address becomes the spanning tree root.

BOOTP  Boot Protocol. A protocol used for the static assignment of IP addresses to devices on the network.

BPDU  Bridge protocol data unit. When spanning tree is enabled, bridges send and receive spanning-tree frames, called BPDUs, at regular intervals and use the frames to maintain a loop-free network.

BPSK  A modulation technique used by IEEE 802.11b-compliant wireless LANs for transmission at 1 Mbps.

broadcast packet  A single data message (packet) sent to all addresses on the same subnet.

C

CCK  Complementary code keying. A modulation technique used by IEEE 802.11b-compliant wireless LANs for transmission at 5.5 and 11 Mbps.

CCKM  Cisco Centralized Key Management. Using CCKM, authenticated client devices can roam from one access point to another without any perceptible delay during reassociation. An access point on your network acts as a subnet context manager (SCM) and creates a cache of security credentials for CCKM-enabled client devices on the subnet. The SCM’s cache of credentials dramatically reduces the time required for reassociation when a CCKM-enabled client device roams to a new access point.

cell  The area of radio range or coverage in which the wireless devices can communicate with the base station. The size of the cell depends upon the speed of the transmission, the type of antenna used, and the physical environment, as well as other factors.
client  A radio device that uses the services of an Access Point to communicate wirelessly with other devices on a local area network.

CSMA  Carrier sense multiple access. A wireless LAN media access method specified by the IEEE 802.11 specification.

data rates  The range of data transmission rates supported by a device. Data rates are measured in megabits per second (Mbps).

dBi  A ratio of decibels to an isotropic antenna that is commonly used to measure antenna gain. The greater the dBi value, the higher the gain, and the more acute the angle of coverage.

DFS  Dynamic Frequency Selection. In some regulatory domains, 5-GHz radios are required to use DFS to avoid interfering with radar signals.

DHCP  Dynamic host configuration protocol. A protocol available with many operating systems that automatically issues IP addresses within a specified range to devices on the network. The device retains the assigned address for a specific administrator-defined period.

dipole  A type of low-gain (2.2-dBi) antenna consisting of two (often internal) elements.

domain name  The text name that refers to a grouping of networks or network resources based on organization-type or geography; for example: name.com—commercial; name.edu—educational; name.gov—government; ISPname.net—network provider (such as an ISP); name.ar—Argentina; name.au—Australia; and so on.

DNS  Domain Name System server. A server that translates text names into IP addresses. The server maintains a database of host alphanumeric names and their corresponding IP addresses.

DSSS  Direct sequence spread spectrum. A type of spread spectrum radio transmission that spreads its signal continuously over a wide frequency band.

EAP  Extensible Authentication Protocol. An optional IEEE 802.1x security feature ideal for organizations with a large user base and access to an EAP-enabled Remote Authentication Dial-In User Service (RADIUS) server.

Ethernet  The most widely used wired local area network. Ethernet uses carrier sense multiple access (CSMA) to allow computers to share a network and operates at 10, 100, or 1000 Mbps, depending on the physical layer used.
<table>
<thead>
<tr>
<th><strong>F</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>file server</strong></td>
<td>A repository for files so that a local area network can share files, mail, and programs.</td>
</tr>
<tr>
<td><strong>firmware</strong></td>
<td>Software that is programmed on a memory chip.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>G</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>gateway</strong></td>
<td>A device that connects two otherwise incompatible networks together.</td>
</tr>
<tr>
<td><strong>GHz</strong></td>
<td>Gigahertz. One billion cycles per second. A unit of measure for frequency.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>I</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>IEEE</strong></td>
<td>Institute of Electrical and Electronic Engineers. A professional society serving electrical engineers through its publications, conferences, and standards development activities. The body responsible for the Ethernet 802.3 and wireless LAN 802.11 specifications.</td>
</tr>
<tr>
<td><strong>infrastructure</strong></td>
<td>The wired Ethernet network.</td>
</tr>
<tr>
<td><strong>IP address</strong></td>
<td>The Internet Protocol (IP) address of a station.</td>
</tr>
<tr>
<td><strong>IP Subnet Mask</strong></td>
<td>The number used to identify the IP subnetwork, indicating whether the IP address can be recognized on the LAN or if it must be reached through a gateway. This number is expressed in a form similar to an IP address; for example: 255.255.255.0.</td>
</tr>
<tr>
<td><strong>isotropic</strong></td>
<td>An antenna that radiates its signal in a spherical pattern.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>M</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MAC</strong></td>
<td>Media Access Control address. A unique 48-bit number used in Ethernet data packets to identify an Ethernet device, such as an access point or your client adapter.</td>
</tr>
<tr>
<td><strong>MBSSID</strong></td>
<td>Multiple basic SSID. Each multiple basic SSID is assigned a unique MAC address. You use multiple BSSIDs to assign a unique DTIM setting for each SSID and to broadcast SSIDs in beacons (one SSID per beacon).</td>
</tr>
<tr>
<td><strong>modulation</strong></td>
<td>Any of several techniques for combining user information with a transmitter’s carrier signal.</td>
</tr>
<tr>
<td><strong>multipath</strong></td>
<td>The echoes created as a radio signal bounces off of physical objects.</td>
</tr>
<tr>
<td><strong>multicast packet</strong></td>
<td>A single data message (packet) sent to multiple addresses.</td>
</tr>
</tbody>
</table>
omni-directional

This typically refers to a primarily circular antenna radiation pattern.

Orthogonal Frequency Division Multiplex (OFDM)

A modulation technique used by IEEE 802.11a-compliant wireless LANs for transmission at 6, 9, 12, 18, 24, 36, 48, and 54 Mbps.

packet

A basic message unit for communication across a network. A packet usually includes routing information, data, and sometimes error detection information.

Quadruple Phase Shift Keying

A modulation technique used by IEEE 802.11b-compliant wireless LANs for transmission at 2 Mbps.

range

A linear measure of the distance that a transmitter can send a signal.

receiver sensitivity

A measurement of the weakest signal a receiver can receive and still correctly translate it into data.

RF

Radio frequency. A generic term for radio-based technology.

roaming

A feature of some Access Points that allows users to move through a facility while maintaining an unbroken connection to the LAN.

RP-TNC

A connector type unique to Cisco Aironet radios and antennas. Part 15.203 of the FCC rules covering spread spectrum devices limits the types of antennas that may be used with transmission equipment. In compliance with this rule, Cisco Aironet, like all other wireless LAN providers, equips its radios and antennas with a unique connector to prevent attachment of non-approved antennas to radios.
**S**

**Spread Spectrum**
A radio transmission technology that spreads the user information over a much wider bandwidth than otherwise required in order to gain benefits such as improved interference tolerance and unlicensed operation.

**SSID**
Service Set Identifier (also referred to as Radio Network Name). A unique identifier used to identify a radio network and which stations must use to be able to communicate with each other or to an access point. The SSID can be any alphanumeric entry up to a maximum of 32 characters.

**T**

**transmit power**
The power level of radio transmission.

**U**

**UNII**
Unlicensed National Information Infrastructure—regulations for UNII devices operating in the 5.15 to 5.35 GHz and 5.725 to 5.825 GHz frequency bands.

**UNII-1**
Regulations for UNII devices operating in the 5.15 to 5.25 GHz frequency band.

**UNII-2**
Regulations for UNII devices operating in the 5.25 to 5.35 GHz frequency band.

**UNII-3**
Regulations for UNII devices operating in the 5.725 to 5.825 GHz frequency band.

**unicast packet**
A single data message (packet) sent to a specific IP address.

**W**

**WDS**
Wireless Domain Services. An access point providing WDS on your wireless LAN maintains a cache of credentials for CCKM-capable client devices on your wireless LAN. When a CCKM-capable client roams from one access point to another, the WDS access point forwards the client’s credentials to the new access point with the multicast key. Only two packets pass between the client and the new access point, greatly shortening the reassociation time.

**WEP**
Wired Equivalent Privacy. An optional security mechanism defined within the 802.11 standard designed to make the link integrity of wireless devices equal to that of a cable.

**WLCCP**
WLSE  Wireless LAN Solutions Engine. The WLSE is a specialized appliance for managing Cisco Aironet wireless LAN infrastructures. It centrally identifies and configures access points in customer-defined groups and reports on throughput and client associations. WLSE's centralized management capabilities are further enhanced with an integrated template-based configuration tool for added configuration ease and improved productivity.

workstation  A computing device with an installed client adapter.

WPA  Wi-Fi Protected Access (WPA) is the new interim security solution from the Wireless Ethernet Compatibility Alliance (WECA). WPA, mostly synonymous to Simple Security Network (SSN), relies on the interim version of IEEE Standard 802.11i. WPA supports WEP and TKIP encryption algorithms as well as 802.1X and EAP for simple integration with existing authentication systems. WPA key management uses a combination of encryption methods to protect communication between client devices and the access point.
INDEX

A

aaa authentication login default local cache command 2-2
aaa pod server command 2-6
accounting command 2-8
admin-traffic command 2-11
admission-control command 2-9
admit-traffic command 2-12
anonymous-id command 2-13
antenna receive command 2-14
authentication client command 2-17
authentication command 2-16
authentication key-management command 2-18
authentication network-eap command 2-19
authentication open command 2-20
authentication shared command 2-21

B

beacon command 2-22
beacon privacy guest-mode command 2-24
boot buffersize command 2-25
boot ios-break command 2-25
boot mode-button command 2-27
boot upgrade command 2-28
bridge aging-time command 2-29
bridge forward-time command 2-30
bridge-group block-unknown-source command 2-35
bridge-group command 2-37
bridge-group path-cost command 2-36
bridge-group priority command 2-38
bridge-group spanning-disabled command 2-39
bridge-group subscriber-loop-control command 2-40
bridge-group unicast-flooding command 2-41
bridge hello-time command 2-31
bridge max-age command 2-32
bridge priority command 2-33
bridge protocol ieee command 2-34
broadcast-key command 2-42

C

cache authentication profile 2-43, 2-44
cache expiry command 2-45
cautions, description iii-v
cca command 2-46
channel command 2-47
channel-match command 2-49
channel width 2-47
class map command 2-50
creating 2-50
defining the match criteria 2-162
clear dot11 aaa authentication mac-authen filter-cache command 2-52
clear dot11 aaa client command 2-54
clear dot11 cckm-statistics command 2-53
clear dot11 hold-list command 2-55
clear dot11 ids mfp client statistics command 2-57
clear dot11 statistics command 2-56
clear eap sessions command 2-58
clear iapp rogue-ap-list command 2-60
clear iapp statistics command 2-61
clear ip igmp snooping membership command 2-62
clear wlccp wds command 2-63
clear wlc pp wds recovery statistics command 2-64
command modes defined 1-1
concatenation command 2-65
conventions
command iii-vi
publication iii-vi
text iii-vi
countermeasure tkip hold-time command 2-66
country codes 2-109
cw-max command 2-67
cw-min command 2-69
dot11 adjacent-ap command 2-95
dot11 antenna-alignment 2-96
dot11 association mac-list 2-98
dot11 extension aironet command 2-100
dot11 extension power native command 2-101
dot11 ids eap attempts command 2-103
dot11 ids mfp command 2-104
dot11 igmp snooping-helper command 2-105
dot11 lbs command 2-106
dot11 linktest command 2-107
dot11 location isocc 2-109
dot11 mbssid command 2-110
dot11 meter command 2-111
dot11 network-map command 2-112
dot11 phone command 2-112
dot11 priority_map avvid command 2-114
dot11 qos class command 2-115
dot11 ssid command 2-116
dot11 vlan-name command 2-118
dot11 wpa handshake init-delay 2-119
dot11 wpa handshake timeout 2-120
dot1x credentials command 2-120
dot1x eap profile (configuration interface mode) command 2-121
dot1x eap profile (SSID configuration mode) command 2-123
dot1x timeout supp-response command 2-124
duplex command 2-124
description dot1x credentials command 2-88
dfs band command 2-89
distance command 2-90
documentation related iii-vi
document conventions iii-vi
dot11 aaa authentication attributes service command 2-91
dot11 aaa authentication mac-authen filter-cache command 2-92
dot11 aaa csid 2-93
dot11 activity-timeout command 2-94
eap profile command 2-126
enetration command 2-130, 2-134
exception crashinfo buffersize command 2-135
exception crashinfo file command 2-136

F

fixed-slot command 2-137
Index

fragment-threshold command  2-139
frequencies  2-48

G

global configuration mode  1-2, 1-3
group command  2-140
guard-interval command  2-141
guest-mode command  2-142

H

holdoff-time command  2-102

I

iapp standby mac-address command  2-143
iapp standby poll-frequency command  2-144
iapp standby primary-shutdown command  2-145
iapp standby timeout command  2-146
ids mfp client command  2-147
information-element ssid command  2-149
infrastructure-client command  2-150
infrastructure-ssid command  2-151
interface configuration mode  1-2, 1-3
interface dot11 command  2-152
interface dot11radio command  2-153
ip igmp snooping vlan command  2-154
ip redirection command  2-155
ISO country codes  2-109
ITU country and area codes  2-109

L

led display command  2-158
led flash command  2-158
logging buffered command  2-160
logging snmp-trap command  2-161

M

manual
  audience  iii-v
  organization of  iii-v
  purpose of  iii-v
match (class-map configuration) command  2-162
match command  2-162
max-associations command  2-164
mbssid (SSID configuration mode) command  2-166
mbssid command  2-165
mcs command  2-254
MCS rates  2-257
method command  2-168, 2-169
mobile station command  2-170
mobility network-id command  2-172
modes, commands  1-1
modulation coding scheme  2-254
multicast address command  2-173

N

nas command  2-174
note, description  iii-vi

P

packet max-retries command  2-176
packet retries command  2-177
packet timeout command  2-179
packet-type command  2-180
parent command  2-181, 2-182
password command  2-183
payload-encapsulation command  2-184
pki-trustpoint command  2-185
power client command  2-186
power inline negotiation command  2-188
power local command  2-190
preamble-short command  2-192
privileged EXEC mode 1-2
publications, related iii-vi

Q
QoS class map
creating 2-50
defining the match criteria 2-162

R
radius local-server pac-generate command 2-195
radius-server local command 2-196
regulatory domains 2-48
rts command 2-197

S
sample configuration 2-257
server-address command 2-199
short-slot-time command 2-200
show boot mode-button command 2-201
show controllers dot11radio command 2-202
show dot11 aaa mac-authen filter-cache command 2-203
show dot11 adjacent-ap command 2-204
show dot11 bssid command 2-209
show dot11 carrier busy command 2-212
show dot11 directed-roam command 2-213
show dot11 ids eap command 2-214
show dot11 ids mfp command 2-215
show dot11 network-map command 2-216
show dot11radio associations command 2-206
show dot11 statistics client-traffic command 2-217
show dot11 vlan-name command 2-218, 2-219
show dot1x command 2-220
show dot1x credentials command 2-222
show eap registrations command 2-222
show eap sessions command 2-224
show environment command 2-225
show iapp rogue-ap-list command 2-226
show iapp standby-parms command 2-227
show iapp statistics command 2-228
show int dot11radio command 2-230
show interfaces dot11radio command 2-229
show interfaces dot11radio statistics command 2-231
show ip igmp snooping groups command 2-232
show led flash 2-233
show radius local-server statistics command 2-236
show running-config ssid command 2-237
show spanning-tree command 2-238
show wlccp ap enhanced-neighbor-list command 2-243
show wlccp ap mn command 2-242
show wlccp command 2-239
snmp-server enable traps envmon temperature command 2-246
snmp-server group command 2-247
snmp-server location command 2-249
snmp-server user command 2-250
snmp-server view command 2-252
speed (Ethernet interface) command 2-253
speed (radio interface) command 2-254
speed ofdm command 2-258
ssid command 2-259
station-role command 2-259
station-role install command 2-261
STP 2-34

T
traffic-class command 2-267
traffic-stream command 2-269
transmit-op command 2-266

U
user command 2-272
user EXEC mode 1-2
username command  2-270

V

vlan command  2-273

W

warnings  iii-vi
WISPr  2-249
wlccp ap eap profile command  2-274
wlccp ap username command  2-275
wlccp authentication-server command  2-276
wlccp wds aaa authentication mac-authen filter-cache command  2-277
wlccp wds mode wds-only command  2-278
wlccp wds priority command  2-279
wlccp wnm ip address command  2-280
workgroup-bridge client-vlan command  2-281
workgroup-bridge timeouts assoc-response command  2-282
workgroup-bridge timeouts auth-response command  2-283
workgroup-bridge timeouts client-add command  2-284
workgroup-bridge timeouts eap-timeout command  2-285
workgroup-bridge timeouts iapp-refresh command  2-286
world-mode command  2-287
wpa-psk command  2-288
write memory command  2-289
write terminal command  2-290