
Network Technology & Programming LaboratoryCS-435
spring semester 2020

Stefanos PapadakisUniversity of Crete
Computer Science Department

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

CS-435

Lecture #5 preview

• The Transport Layer

• User Datagram Protocol (UDP)

• Transmission Control Protocol (TCP)

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

What does it do layer-wise?

• provide logical communication between different end systems
application processes

• transport protocols instances run in end systems

• SOURCE:

• breaks application messages into segments

• passes down segments to the Network Layer

• DESTINATION:

• reassembles segments into messages

• passes messages up to Application layer

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Transport / Network?

• network layer:

• logical communication between hosts

• transport layer:

• logical communication between processes

The Transport layer:

relies on & enhances the Network layer Services

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The Internet transport layer:  
TCP & UDP

• services available:

• TCP: Reliable in-order delivery with congestion control

• flow control

• connection setup

• UDP: unreliable, unordered delivery

• services not available:

• delay guarantees

• bandwidth guarantees

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The User Datagram
Protocol

• Provides a “bare bones” Internet transport protocol

• “best effort” service, UDP segments may be:

• lost

• delivered out of order to application

• connectionless:

• No connection setup before data transfer (no handshakes)

• each UDP segment handled independently of others

• More control required by the application

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The UDP

• often used for streaming multimedia applications

• loss tolerant

• rate & delay sensitive

• other UDP uses

• DNS

• SNMP

• reliable transfer over UDP: add reliability at application layer

• application-specific error recovery!

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The UDP header

• The checksum applies to the entire UDP segment

• The checksum field is optional. If it is not used, it is set to zero.

• NOTE: the IP checksum applies only to the IP header and not to the data
field, which in this case consists of the UDP header and the user segment.
Thus, if no checksum calculation is performed by UDP, then no check will
be made on the user data at either the transport or network layer.

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The TCP in a nutshell
• Connection-oriented

• handshaking (exchange of control msgs) init’s sender, receiver state before data exchange

• point-to-point

• one sender, one receiver

• Byte-stream

• app writes bytes

• TCP sends segments

• app reads bytes

• send & receive buffers

• pipelined - window size set by:

• TCP congestion and

• flow control

• Error control (retransmissions)

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The TCP Segment

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP the segment header
fields

• Source Port (16 bits):
Source TCP user.

• Destination Port (16 bits):
Destination TCP user. eg.
Telnet = 23; HTTP = 80.

• Sequence Number (32
bits): of first data octet in
this segment except when
the SYN flag is set.

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP the segment header
fields

• Acknowledgment Number
(32 bits): Contains the
sequence number of the
next data octet that the TCP
entity expects to receive.

• Data Offset (4 bits):
Number of 32-bit words in
the header.

• Reserved (6 bits):
Reserved for future use.

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP the segment header
fields

• Flags (6 bits): SYN, FIN, RESET,
PUSH, URG, ACK

• Window (16 bits): Flow control credit
allocation, in octets.

• Checksum (16 bits): The ones
complement of the ones complement
sum of all the 16-bit words in the
segment plus a pseudoheader.

• Urgent Pointer (16 bits): allows the
receiver to know how much urgent data
is coming.

• Options (Variable): eg. option that
specifies the maximum segment size.

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Sequence numbers in TCP

• Segments can have different length, hence
sequence numbers are byte stream numbers

• Sequence number of one segment = byte stream
number of first byte in segment

• ACK numbers = sequence number of next byte
receiver is expecting

• Cumulative acknowledgements: when an ACK is
received, all bytes with sequence number smaller
than the ACK number have been correctly received.

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP Connection
Management

• TCP sender & receiver establish a
“connection” before exchanging data
segments

• initialize TCP variables:

• Sequence Numbers

• buffers,

• flow control info (e.g. RcvWindow)

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The 3-way handshake
Step 1

• client host sends TCP_SYN segment to server

• Specifies initial sequenceNum

• Carries no data

Step 2

• server host receives SYN, replies with SYN-ACK
segment

• server allocates buffers

• specifies server initial sequenceNum

Step 3

• client receives SYN-ACK, replies with ACK segment,
which may contain data

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Window Scaling Option
RFC 1323:

The three-byte Window Scale option may be sent in a SYN segment by a
TCP.

It has two purposes:

1.indicate that the TCP is prepared to do both send and receive
window scaling, and

2.communicate a scale factor to be applied to its receive window.

The scale factor is limited to a power of two and encoded logarithmically,
so it may be implemented by binary shift operations.

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

When is a TCP segment
sent

• MSS (Maximum Segment Size):

• includes only the data of the TCP segment

• Receiver indicates MSS it can accept at connection setup

• MSS = MTU – (IP+TCP/UDP/ICMP hdr size) = MTU – (20 + ?)

• A segment sent when

• an MSS fills, or if

• TCP uses “no delay”

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

The TCP MSS

• TCP MSS should be smaller or equal to MTU - 40

• BEWARE: 40 bytes is typical (minimum) length of TCP + IP header

• If no options are used

• If other protocols used “40” means nothing to them…

• Ethernet MTU=1500 bytes

• Ethernet header: 14 bytes, tail: 4 bytes

• IPv4 default/min value MSS=536, MTU=576 bytes (IPv6 MTU=1280)

• Used when path MTU discovery not used

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Connection Teardown

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim
ed

 w
ai

t

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Sliding Window

• Three purposes

• Reliable, In-order data delivery

• Flow control

• Congestion control

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Window Size & throughput

• Sliding-window based flow
control:

• Higher window ➔ higher
throughput

• Throughput = window/RTT

• Need to worry about
sequence number wrapping

• Remember: window size
controls throughput

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Congestion Collapse
• How might this happen?

• assume network is congested (a router drops packets)

• you learn the receiver didn’t get the packet

• either by ACK or Timeout

• what do you do?

• retransmit packet

• still receiver didn’t get the packet (because it is dropped again)

• retransmit again

• … and so on …

• and now assume that everyone is doing the same!

• Network will become more and more congested

• with duplicate packets rather than new packets!

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Manifestation

• Knee (point after which):

• throughput increases very
slow

• delay increases fast

• Cliff (point after which):

• throughput starts to decrease
very fast towards zero
(congestion collapse)

• delay approaches infinity

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Solutions?

• Increase buffer size

• Why is this not THE solution??

• Slow down

• If you know that your packets are not delivered because of
network congestion

• Questions:

• How do you detect network congestion?

• In what fashion to slow down?

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Solutions?

• Detect when network approaches/reaches knee point

• Stay there

• How do you get there?

• What if you overshoot? (i.e. go over knee point)

• Possible solutions:

• Increase window size until you notice congestion

• Decrease window size if network congested

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP: Slow Start

• Goal: discover congestion quickly

• How?

• Quickly increase cwnd until network congested to get a rough
estimate of the optimal of cwnd

• How do we know when network is congested?

• Packet loss (TCP)

• Over the cliff ➔ DO congestion control

• Congestion notification

• Over the knee but before the cliff ➔ congestion avoidance

• How do we know a packet is lost?

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP: Slow Start

• Whenever starting traffic on a new connection, -OR-

• whenever increasing traffic after congestion was
experienced:

• Set cwnd =1

• Each time a segment is received increment cwnd
by one (cwnd++).

• Does Slow Start increment slowly?

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP: Slow Start

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP: Slow Start

• TCP slows down the increase of cwnd when

cwnd >= ssthresh

• Slow-start threshold (ssthresh) is used to
determine whether the slow-start or congestion
avoidance algorithm is used to control data
transmission

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP: CA

Goal:

• maintain operating point
at the left of the cliff:

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP: CA

• How?

• Additive increase: starting from the rough
estimate, slowly increase cwnd to probe for
additional available bandwidth

• Multiplicative decrease: cut congestion
window size aggressively if packet loss
detected

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

TCP: CA

• Slowing down “Slow Start”:

• If cwnd > ssthresh then

• each time a segment is acknowledged
increment cwnd by 1/cwnd (cwnd += 1/
cwnd).

• Effectively cwnd is increased by one only
if all segments have been acknowledged

(approx. by one in one RTT)

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Fast Retransmit

• if segment lost TCP slow to retransmit

• fast retransmit

• if receive 3 ACKs for same segment then immediately
retransmit since likely lost

• fast recovery

• lost segment means congestion

• halve window then increase linearly

• avoids slow-start

<CS-435> Network Technology and Programming Laboratory

CSD.UoC Stefanos Papadakis spring 2020

Slow start, CA, Fast
Retransmit, Fast Recovery

