
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

I/O in Linux Hypervisors and Virtual Machines
Lecture for the Embedded Systems Course
CSD, University of Crete (May 7 & 9, 2025)

Outline

 Elements of I/O virtualization
 Machine emulator, Hypervisor, Transport

 Alternative designs for the device I/O path
 Device emulation (fully virtualized)

 Para-virtualized devices

 Direct device assignment (pass-through access)

 Follow the I/O path of hypervisor technologies most commonly
used on Linux servers (x86 platform)
 xen, kvm

 Provide a glimpse of hypervisor internals *
 xen: device channels, grant tables

 kvm: virtio

 * VMware: market leader … but out-of-scope for this lecture

2 I/O in Linux Hypervisors and Virtual Machines

I/O device types

 Dedicated
 E.g. Display

 Partitionable
 E.g. Disk

 Shared
 E.g. NIC

 Devices that can be enumerated (PCI, PCI-Express)
 VMM needs to emulate ‘discovery’ over a system bus/interconnect

 Devices with hard-wired addresses (e.g. PS/2)
 VMM should maintain status information on virtual device ports

 Emulated (e.g. experimental hardware)
 VMM must define & emulate all H/W functionality

 GuestOS needs to load corresponding device drivers

3 I/O in Linux Hypervisors and Virtual Machines

Why is I/O hard to virtualize ?

 Multiplexing/de-multiplexing for guests
 Programmed I/O (PIO): privileged CPU instructions specifically for I/O

 I/O devices have a separate address space from general memory

 Memory-mapped I/O (MMIO): CPU instructions for memory access are
also used for accessing devices
 The memory-mapped I/O region is protected

 Direct Memory Access (DMA)
 Allow hardware subsystems within the computer to access system

memory for reading and/or writing independently of the CPU
 Synchronous: triggered by software
 Asynchronous: triggered by devices (e.g. NIC)

 Implementation layers:
 system calls (application to GuestOS)  trap to VMM
 driver calls (GuestOS)  paravirtualization

 Hypercall between modified driver in GuestOS and VMM

 I/O operations (GuestOS driver to VMM)

4 I/O in Linux Hypervisors and Virtual Machines

Processing an I/O Request from a VM

5 I/O in Linux Hypervisors and Virtual Machines

Source: Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"
ACM Queue, Volume 9, issue 11, November 22, 2011

Device Front-Ends & Back-Ends

6 I/O in Linux Hypervisors and Virtual Machines

Source: Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"
ACM Queue, Volume 9, issue 11, November 22, 2011

I/O stack: Host side

7 I/O in Linux Hypervisors and Virtual Machines

User-Level Applications

Storage Controller

Buffer

Cache
File System

SCSI Layer

Virtual File System (VFS)

System Calls

Block-level Device Drivers

Raw I/O

I/O stack: Host + Guest

8 I/O in Linux Hypervisors and Virtual Machines

Guest

Host

User-Level Applications

Storage Controller

Page

Cache

File

System

SCSI Layer

Virtual File System (VFS)

System Calls

Block-level Device Drivers

Raw

I/O

2 filesystems

 … possibly one more in image file

Device Emulation

 Hypervisor
emulates devices 
traps I/O accesses
(PIO, MMIO)

 Emulation of DMA
and interrupts

9 I/O in Linux Hypervisors and Virtual Machines

Guest

device

Device driver

Device emulation

1

2

Device driver

3

Host

device

4

Para-virtualized drivers

 Hypervisor-specific
virtual device
drivers (front-end)
in Guest OS

 Involvement of
Hypervisor (for
Back-end)

10 I/O in Linux Hypervisors and Virtual Machines

Guest

device

Front-end

device driver
1

2

Device driver

3

Host

Back-end

device driver

device

Direct device assignment

 Bypass Hypervisor
to directly access
I/O devices

 Security & safety
concerns

 IO-MMU for
address translation
& isolation (DMA
restrictions)

 SR-IOV for shared
access

11 I/O in Linux Hypervisors and Virtual Machines

Guest Front-end

device driver

1

Host

device

xen history

 Developed at Systems Research Group, Cambridge
University (UK)

 Creators: Keir Fraser, Steven Hand, Ian Pratt, et al (2003)

 Broad scope, for both Host and Guest

 Merged in Linux mainline: 2.4.22

 Company: Xensource.com

 Acquired by Citrix Systems (2007)

12 I/O in Linux Hypervisors and Virtual Machines

Xen VMM: Paravirtualization (PV) 1/2

13 I/O in Linux Hypervisors and Virtual Machines

source: https://wiki.xenproject.org/wiki/Paravirtualization_(PV)

Type-I hypervisor

https://wiki.xenproject.org/wiki/Paravirtualization_(PV)

Xen VMM: Paravirtualization (PV) 2/2

14 I/O in Linux Hypervisors and Virtual Machines

OS’es

• Dedicated control domain:
Dom0

• Modified Guest OS

Devices

• Front-end (net-front) for
Guest OS to communicate
with Dom0

• I/O channel (zero copy)

• Backend (net-back) for
Dom0 to communicate
with underlying systems

kvm history

 Prime creator: Avi Kivity, Qumranet, circa. 2005 (IL)

 Company acquired by RedHat (2008)

 “Narrow” focus: x86 platform, Linux host

 Assumes Intel VT-x or AMD svm

 Merged in Linux kernel mainline: 2.6.20

 … < 4 months after 1st announcement !

15 I/O in Linux Hypervisors and Virtual Machines

kvm VMM: tightly integrated in the Linux kernel

16 I/O in Linux Hypervisors and Virtual Machines

QEMU QEMU QEMU

• Hypervisor:

Kernel module

• Guest OS:

User-space

process

(QEMU)

• Requires H/W

virtualization

extensions

Type-II hypervisor

xen vs kvm

17 I/O in Linux Hypervisors and Virtual Machines

Xen

 Strong support for para-
virtualization with modified
host-OS
 Near-native performance
for I/O devices

 Separate code based for
DOM0 and device drivers

 Security model:
Rely on DOM0

 Maintainability:
Hard to keep up with all
versions of possible guests
due to PV

KVM

 Requires H/W virtualization
extension – Intel VT, AMD
Pacifica (AMD-V)

 Limited support for para-
virtualization (via virtio)

 Code-base integrated into
Linux kernel source tree

 Security model:
Rely on Commodity/Casual
Linux systems

 Maintainability:
Easy – Integrated well into
infrastructure, code-base

I/O virtualization in xen

18 I/O in Linux Hypervisors and Virtual Machines

 Xen network I/O extension schemes

 Multiple RX queues, SR-IOV …

• Bridge in driver domain:
multiplex/de-multiplex
network I/Os from
guests

• I/O Channel
– Zero-copy transfer

with Grant-copy

– Enable driver domain
to access I/O buffers in
guest memory

Source: “Bridging the gap between software

and hardware techniques for i/o virtualization”

Usenix Annual Technical conference, 2008

Xen device channels

 Asynchronous shared-memory transport

 Event ring (for interrupts)

 Xen “peer domains”

 Inter-guest communication

 Mapping one guest’s buffers to another

 Grant tables for “DMA” (bulk transfers)

 Xen dom0 (privileged domain) can access all devices

 Exports subset to other domains

 Runs back-end of device drivers (e.g. net, block)

19 I/O in Linux Hypervisors and Virtual Machines

Xen grant tables

 Share & Transfer pages between domains
 a software implementation of certain IOMMU functionality

 Transferred pages:
 Driver in local domain “advertises” buffer  notify hypervisor
 Driver then transfers page to remote domain _and_ takes a free page

from a producer/consumer ring (“page-flip”)
 Use case: network drivers  receive their data asynchronously, i.e.

may not know origin domain (need to inspect network packet before
actual transfer between domains)

 With RDMA NICs, we can transfer (DMA) directly into domains …

 Shared pages:
 Driver in local domain “advertises” buffer  notify hypervisor that this

page can be access by other domains
 Use case: block drivers  receive their data synchronously, i.e. know

which domain requested data to be transferred via DMA

20 I/O in Linux Hypervisors and Virtual Machines

kvm run-time environment

21 I/O in Linux Hypervisors and Virtual Machines

kvm

kvm-intel / kvm-amd Kernel space

Guest

QEMU

Guest

QEMU

Scheduler

User space

libvirtd

Run-time view of a kvm guest

 Guest – Host switch
via scheduler

 Use of Linux
subsystems:
scheduler, memory
management, …

 Re-use of user-space
tools

 VM images

 Network configuration

22 I/O in Linux Hypervisors and Virtual Machines

Guest

Memory

vCPU vCPU

Thread Thread I/O Thread

Hypervisor

Process

/dev/kvm

module Linux kernel

CPU CPU CPU

kvm execution model

 Processes create virtual machines

 A process together with /dev/kvm is in essence the Hypervisor

 VMs contain memory, virtual CPUs, and (in-kernel) devices

 Guest (“physical”) memory is part of the (virtual) address
space of the creating process

 Virtual MMU+TLB, and APIC/IO-APIC (in-kernel)

 Machine instruction interpreter (in-kernel)

 vCPUs run in process context (i.e. as threads)

 To the host, the process that started the guest _is_ the guest!

23 I/O in Linux Hypervisors and Virtual Machines

kvm API demonstration:

• https://lwn.net/Articles/658511/

• https://github.com/soulxu/kvmsample

https://github.com/soulxu/kvmsample
https://github.com/soulxu/kvmsample

kvm API sample

#include <linux/kvm.h>

struct kvm {

int dev_fd;

int vm_fd;

__u64 ram_size;

__u64 ram_start;

int kvm_version;

struct kvm_userspace_memory_region mem;

struct vcpu *vcpus;

int vcpu_number;

};

struct vcpu {

int vcpu_id;

int vcpu_fd;

pthread_t vcpu_thread;

struct kvm_run *kvm_run;

int kvm_run_mmap_size;

struct kvm_regs regs;

struct kvm_sregs sregs;

void *(*vcpu_thread_func)(void *);

};

struct kvm *kvm = malloc(sizeof(struct kvm));

kvm->dev_fd = open(KVM_DEVICE, O_RDWR);

kvm->vm_fd = ioctl(kvm->dev_fd, KVM_CREATE_VM, 0);

kvm->ram_size = ram_size;

kvm->ram_start = (__u64)mmap(NULL, kvm->ram_size,

PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -
1, 0);

kvm->mem.slot = 0;

kvm->mem.guest_phys_addr = 0;

kvm->mem.memory_size = kvm->ram_size;

kvm->mem.userspace_addr = kvm->ram_start;

ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &(kvm->mem));

struct vcpu *vcpu = malloc(sizeof(struct vcpu));

vcpu->vcpu_id = 0;

vcpu->vcpu_fd = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, vcpu->vcpu_id);

vcpu->kvm_run_mmap_size = ioctl(kvm->dev_fd, KVM_GET_VCPU_MMAP_SIZE, 0);

vcpu->kvm_run = mmap(NULL, vcpu->kvm_run_mmap_size, PROT_READ |
PROT_WRITE, MAP_SHARED, vcpu->vcpu_fd, 0);

pthread_create(&(kvm->vcpus->vcpu_thread), (const pthread_attr_t *)NULL, kvm-
>vcpus[i].vcpu_thread_func, kvm);

pthread_join(kvm->vcpus->vcpu_thread, NULL);

24 I/O in Linux Hypervisors and Virtual Machines

I/O virtualization in kvm

25 I/O in Linux Hypervisors and Virtual Machines

 Native KVM I/O model

 PIO: Trap

 MMIO: The machine emulator
executes the faulting
instruction

 Slow due to mode-switch!

 Extensions to support PV

 VirtIO: An API for Virtual I/O
aims to support many
hypervisors (of all types)

virtio

 A family of drivers which can be adapted for various hypervisors,
by porting a shim layer

 Related: VMware tools, Xen para-virtualized drivers

 Explicit separation of Drivers, Transport, Configuration

26 I/O in Linux Hypervisors and Virtual Machines

Guest
Front-end driver

kvm back-end driver

device emulation

lguest back-end driver

device emulation

virtio

Configuration: register for (device-id, vendor-id)

virtio architecture

27 I/O in Linux Hypervisors and Virtual Machines

virtio driver

virtio PCI controller

Guest

vring

Transport

virtio device

Host

(QEMU)
virtio PCI controller

• Virtqueues (per device)

• Vring (per virtqueue)

• Queue requests

Front-end
A kernel module in guest OS.
Accepts I/O requests from user process.
Transfer I/O requests to back-end.

Back-end
A device in QEMU.
Accepts I/O requests from front-end.
Perform I/O operation via physical device.

vring & virtqueue

 vring: transport implementation (ring-buffer)
 shared (memory-mapped) between Guest and QEMU

 Reduce the number of MMIOs

 published & used buffers
 descriptors

 virtqueue API:
 add_buf: expose buffer to other end
 get_buf: get next used buffer
 kick: (after add_buf) notify QEMU to handle buffer
 disable_cb, enable_cb: disable/enable callbacks

 “buffer” := scatter/gather list  (address, length) pairs
 QEMU: virtqueue_pop, virtqueue_push
 virtio-blk: 1 queue
 virtio-net: 2 queues

28 I/O in Linux Hypervisors and Virtual Machines

kvm with virtio

29 I/O in Linux Hypervisors and Virtual Machines

KVM

Hardware

QEMU

GUEST

Other

Processes

Driver

IO controller &

device

KVM

Hardware

QEMU

GUEST

Host

Other

Processes

Transport

VirtIO driver

VirtIO controller & device

Device

driver

[kvm with ‘default’ device emulation] [kvm with ‘virtio’ device handling]

virtio processing flow

30 I/O in Linux Hypervisors and Virtual Machines

virtqueue write

virtio device

virtio driver

virtqueue read

vring

IN/OUT vring

add_buf

kick pop push

get_buf

Virtual interrupts

31 I/O in Linux Hypervisors and Virtual Machines

Guest

Device

Hypervisor

Virtual

interrupt

Host

interrupt

End-of-Interrupt

End-of-Interrupt

(I/O APIC)

At least 2 exits:

- Delivery

- Completion signal

Sources

 Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"
ACM Queue, Volume 9, issue 11, November 22, 2011
URL: http://queue.acm.org/detail.cfm?id=2071256

 Avi Kivity, et al: kvm: The Linux Virtual Machine Monitor, Proceedings of
the Linux Symposium, 2007
 http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf
 http://kerneltrap.org/node/8088

 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield, Xen and the Art of
Virtualization, SOSP’03

 Xen (v.3.0. for x86) Interface Manual
 http://pdub.net/proj/usenix08boston/xen_drive/resources/developer_

manuals/interface.pdf
 Jun Nakajima, Asit Mallick, Ian Pratt, Keir Fraser, X86-64 Xen-Linux:

Architecture, Implementation, and Optimizations, OLS 2006
 Xen: finishing the job, lwn.net - 2009

32 I/O in Linux Hypervisors and Virtual Machines

http://queue.acm.org/detail.cfm?id=2071256
http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf

NVIDIA Virtual GPU (vGPU) + VMware Horizon

33 I/O in Linux Hypervisors and Virtual Machines

source: https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/

https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/

VMware Virtual Desktop Infrastructure (VDI)

34 I/O in Linux Hypervisors and Virtual Machines

VM I/O acceleration

35 I/O in Linux Hypervisors and Virtual Machines

QEMU machine emulator

 Creator: Fabrice Bellard (circa. 2006)

 Machine emulator using a dynamic binary translator

 Run-time conversion of target CPU instructions to host ISA

 Translation cache

 Emulated Machine := { CPU emulator, Emulated Devices,
Generic Devices } + “machine description”

 Link between emulated devices & underlying host devices

 Alternative storage back-ends – e.g. POSIX/AIO ( thread pool)

 Caching modes for devices:

 cache=none  O_DIRECT

 cache=writebackbuffered I/O

 Cache=writethrough buffered I/O, O_SYNC

36 I/O in Linux Hypervisors and Virtual Machines

Emulated Platform

37 I/O in Linux Hypervisors and Virtual Machines

System bus(es) and

I/O devices

Interrupt Controller(s)

(APIC)

MMU

Memory

Instruction Set

CPU

Misc. resources

Virtualization components

 Machine emulation

 CPU, Memory, I/O

 Hardware-assisted

 Hypervisor

 Hyper-call interface

 Page Mapper

 I/O

 Interrupts

 Scheduler

 Transport

 Messaging, and bulk-mode

38 I/O in Linux Hypervisors and Virtual Machines

Virtual disks

 Exported by host

 Physical device/partition

 … or logical device

 … or file (image) (e.g. : .qcow2, .vmdk, “raw” .img)
 file format that describes containers for virtual hard disk drives

 features: compression, encryption, copy-on-write snapshots

39 I/O in Linux Hypervisors and Virtual Machines

Device model (with full-system virtualization)

 VMM intercepts I/O operations from GuestOS and passes
them to device model at the host

 Device model emulates I/O operation interfaces:

 PIO, MMIO, DMA, …

 Two different implementations:

 Part of the VMM

 User-space standalone service

40 I/O in Linux Hypervisors and Virtual Machines

Virtualized I/O flow

41 I/O in Linux Hypervisors and Virtual Machines

Device emulation: full virtualization vs para-virtualization

42 I/O in Linux Hypervisors and Virtual Machines

GuestOS

VMM

(full virtualization)

Hardware

Traps

Device Emulation

GuestOS

VMM

(full virtualization)

Hardware

Traps

Device Emulation

PV drivers

kvm guest initialization (command-line)

 qemu-system-x86_64 -L /usr/local/kvm/share/qemu

-hda /mnt/scalusMar2013/01/scalusvm.img

-drive

file=/mnt/scalusMar2013/01/datavol.img,if=virtio,index=0

,cache=writethrough

-net nic -net user,hostfwd=tcp::12301-:22

-nographic

-m 4096 -smp 2

43 I/O in Linux Hypervisors and Virtual Machines

Device I/O in kvm

 Configuration via MMIO/PIO

 eventfd for events between host/guest

 irqfd : host → guest

 ioeventfd : guest → host

 virtio: abstraction for virtualized devices

 Device types: PCI, MMIO

 Configuration

 Queues

44 I/O in Linux Hypervisors and Virtual Machines

IO-MMU Emulation

 Shortcomings of device assignment for unmodified guests:

 Requires pinning all of the guest’s pages, thereby
disallowing memory over-commitment

 Exposes the guest’s memory to buggy device drivers

 A single physical IO-MMU can emulate multiple IO-MMU’s
(for multiple guests)

 Why?

 Allow memory over-commitment (pin/unpin during map/unmap
of I/O buffers)

 Intra-guest protection, redirection of DMA transactions

 … without compromising inter-guest protection

45 I/O in Linux Hypervisors and Virtual Machines

I/O path via virtio

46 I/O in Linux Hypervisors and Virtual Machines

QEMU
system
emulator

virtual-queue
(back-end)

Guest kernel-space

virtual-queue
(front-end)

Guest user-space

…

Host (Linux kernel + KVM module)

Native
driver KVM module

Host
kernel-space

Host
user-space

emulated
device

Notifications

Host -> Guest : interrupt injection
Guest -> Host : hyper-call (instruction emulation)

