
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

I/O in Linux Hypervisors and Virtual Machines
Lecture for the Embedded Systems Course
CSD, University of Crete (May 7 & 9, 2025)

Outline

 Elements of I/O virtualization
 Machine emulator, Hypervisor, Transport

 Alternative designs for the device I/O path
 Device emulation (fully virtualized)

 Para-virtualized devices

 Direct device assignment (pass-through access)

 Follow the I/O path of hypervisor technologies most commonly
used on Linux servers (x86 platform)
 xen, kvm

 Provide a glimpse of hypervisor internals *
 xen: device channels, grant tables

 kvm: virtio

 * VMware: market leader … but out-of-scope for this lecture

2 I/O in Linux Hypervisors and Virtual Machines

I/O device types

 Dedicated
 E.g. Display

 Partitionable
 E.g. Disk

 Shared
 E.g. NIC

 Devices that can be enumerated (PCI, PCI-Express)
 VMM needs to emulate ‘discovery’ over a system bus/interconnect

 Devices with hard-wired addresses (e.g. PS/2)
 VMM should maintain status information on virtual device ports

 Emulated (e.g. experimental hardware)
 VMM must define & emulate all H/W functionality

 GuestOS needs to load corresponding device drivers

3 I/O in Linux Hypervisors and Virtual Machines

Why is I/O hard to virtualize ?

 Multiplexing/de-multiplexing for guests
 Programmed I/O (PIO): privileged CPU instructions specifically for I/O

 I/O devices have a separate address space from general memory

 Memory-mapped I/O (MMIO): CPU instructions for memory access are
also used for accessing devices
 The memory-mapped I/O region is protected

 Direct Memory Access (DMA)
 Allow hardware subsystems within the computer to access system

memory for reading and/or writing independently of the CPU
 Synchronous: triggered by software
 Asynchronous: triggered by devices (e.g. NIC)

 Implementation layers:
 system calls (application to GuestOS) trap to VMM
 driver calls (GuestOS) paravirtualization

 Hypercall between modified driver in GuestOS and VMM

 I/O operations (GuestOS driver to VMM)

4 I/O in Linux Hypervisors and Virtual Machines

Processing an I/O Request from a VM

5 I/O in Linux Hypervisors and Virtual Machines

Source: Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"
ACM Queue, Volume 9, issue 11, November 22, 2011

Device Front-Ends & Back-Ends

6 I/O in Linux Hypervisors and Virtual Machines

Source: Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"
ACM Queue, Volume 9, issue 11, November 22, 2011

I/O stack: Host side

7 I/O in Linux Hypervisors and Virtual Machines

User-Level Applications

Storage Controller

Buffer

Cache
File System

SCSI Layer

Virtual File System (VFS)

System Calls

Block-level Device Drivers

Raw I/O

I/O stack: Host + Guest

8 I/O in Linux Hypervisors and Virtual Machines

Guest

Host

User-Level Applications

Storage Controller

Page

Cache

File

System

SCSI Layer

Virtual File System (VFS)

System Calls

Block-level Device Drivers

Raw

I/O

2 filesystems

 … possibly one more in image file

Device Emulation

 Hypervisor
emulates devices
traps I/O accesses
(PIO, MMIO)

 Emulation of DMA
and interrupts

9 I/O in Linux Hypervisors and Virtual Machines

Guest

device

Device driver

Device emulation

1

2

Device driver

3

Host

device

4

Para-virtualized drivers

 Hypervisor-specific
virtual device
drivers (front-end)
in Guest OS

 Involvement of
Hypervisor (for
Back-end)

10 I/O in Linux Hypervisors and Virtual Machines

Guest

device

Front-end

device driver
1

2

Device driver

3

Host

Back-end

device driver

device

Direct device assignment

 Bypass Hypervisor
to directly access
I/O devices

 Security & safety
concerns

 IO-MMU for
address translation
& isolation (DMA
restrictions)

 SR-IOV for shared
access

11 I/O in Linux Hypervisors and Virtual Machines

Guest Front-end

device driver

1

Host

device

xen history

 Developed at Systems Research Group, Cambridge
University (UK)

 Creators: Keir Fraser, Steven Hand, Ian Pratt, et al (2003)

 Broad scope, for both Host and Guest

 Merged in Linux mainline: 2.4.22

 Company: Xensource.com

 Acquired by Citrix Systems (2007)

12 I/O in Linux Hypervisors and Virtual Machines

Xen VMM: Paravirtualization (PV) 1/2

13 I/O in Linux Hypervisors and Virtual Machines

source: https://wiki.xenproject.org/wiki/Paravirtualization_(PV)

Type-I hypervisor

https://wiki.xenproject.org/wiki/Paravirtualization_(PV)

Xen VMM: Paravirtualization (PV) 2/2

14 I/O in Linux Hypervisors and Virtual Machines

OS’es

• Dedicated control domain:
Dom0

• Modified Guest OS

Devices

• Front-end (net-front) for
Guest OS to communicate
with Dom0

• I/O channel (zero copy)

• Backend (net-back) for
Dom0 to communicate
with underlying systems

kvm history

 Prime creator: Avi Kivity, Qumranet, circa. 2005 (IL)

 Company acquired by RedHat (2008)

 “Narrow” focus: x86 platform, Linux host

 Assumes Intel VT-x or AMD svm

 Merged in Linux kernel mainline: 2.6.20

 … < 4 months after 1st announcement !

15 I/O in Linux Hypervisors and Virtual Machines

kvm VMM: tightly integrated in the Linux kernel

16 I/O in Linux Hypervisors and Virtual Machines

QEMU QEMU QEMU

• Hypervisor:

Kernel module

• Guest OS:

User-space

process

(QEMU)

• Requires H/W

virtualization

extensions

Type-II hypervisor

xen vs kvm

17 I/O in Linux Hypervisors and Virtual Machines

Xen

 Strong support for para-
virtualization with modified
host-OS
 Near-native performance
for I/O devices

 Separate code based for
DOM0 and device drivers

 Security model:
Rely on DOM0

 Maintainability:
Hard to keep up with all
versions of possible guests
due to PV

KVM

 Requires H/W virtualization
extension – Intel VT, AMD
Pacifica (AMD-V)

 Limited support for para-
virtualization (via virtio)

 Code-base integrated into
Linux kernel source tree

 Security model:
Rely on Commodity/Casual
Linux systems

 Maintainability:
Easy – Integrated well into
infrastructure, code-base

I/O virtualization in xen

18 I/O in Linux Hypervisors and Virtual Machines

 Xen network I/O extension schemes

 Multiple RX queues, SR-IOV …

• Bridge in driver domain:
multiplex/de-multiplex
network I/Os from
guests

• I/O Channel
– Zero-copy transfer

with Grant-copy

– Enable driver domain
to access I/O buffers in
guest memory

Source: “Bridging the gap between software

and hardware techniques for i/o virtualization”

Usenix Annual Technical conference, 2008

Xen device channels

 Asynchronous shared-memory transport

 Event ring (for interrupts)

 Xen “peer domains”

 Inter-guest communication

 Mapping one guest’s buffers to another

 Grant tables for “DMA” (bulk transfers)

 Xen dom0 (privileged domain) can access all devices

 Exports subset to other domains

 Runs back-end of device drivers (e.g. net, block)

19 I/O in Linux Hypervisors and Virtual Machines

Xen grant tables

 Share & Transfer pages between domains
 a software implementation of certain IOMMU functionality

 Transferred pages:
 Driver in local domain “advertises” buffer notify hypervisor
 Driver then transfers page to remote domain _and_ takes a free page

from a producer/consumer ring (“page-flip”)
 Use case: network drivers receive their data asynchronously, i.e.

may not know origin domain (need to inspect network packet before
actual transfer between domains)

 With RDMA NICs, we can transfer (DMA) directly into domains …

 Shared pages:
 Driver in local domain “advertises” buffer notify hypervisor that this

page can be access by other domains
 Use case: block drivers receive their data synchronously, i.e. know

which domain requested data to be transferred via DMA

20 I/O in Linux Hypervisors and Virtual Machines

kvm run-time environment

21 I/O in Linux Hypervisors and Virtual Machines

kvm

kvm-intel / kvm-amd Kernel space

Guest

QEMU

Guest

QEMU

Scheduler

User space

libvirtd

Run-time view of a kvm guest

 Guest – Host switch
via scheduler

 Use of Linux
subsystems:
scheduler, memory
management, …

 Re-use of user-space
tools

 VM images

 Network configuration

22 I/O in Linux Hypervisors and Virtual Machines

Guest

Memory

vCPU vCPU

Thread Thread I/O Thread

Hypervisor

Process

/dev/kvm

module Linux kernel

CPU CPU CPU

kvm execution model

 Processes create virtual machines

 A process together with /dev/kvm is in essence the Hypervisor

 VMs contain memory, virtual CPUs, and (in-kernel) devices

 Guest (“physical”) memory is part of the (virtual) address
space of the creating process

 Virtual MMU+TLB, and APIC/IO-APIC (in-kernel)

 Machine instruction interpreter (in-kernel)

 vCPUs run in process context (i.e. as threads)

 To the host, the process that started the guest _is_ the guest!

23 I/O in Linux Hypervisors and Virtual Machines

kvm API demonstration:

• https://lwn.net/Articles/658511/

• https://github.com/soulxu/kvmsample

https://github.com/soulxu/kvmsample
https://github.com/soulxu/kvmsample

kvm API sample

#include <linux/kvm.h>

struct kvm {

int dev_fd;

int vm_fd;

__u64 ram_size;

__u64 ram_start;

int kvm_version;

struct kvm_userspace_memory_region mem;

struct vcpu *vcpus;

int vcpu_number;

};

struct vcpu {

int vcpu_id;

int vcpu_fd;

pthread_t vcpu_thread;

struct kvm_run *kvm_run;

int kvm_run_mmap_size;

struct kvm_regs regs;

struct kvm_sregs sregs;

void *(*vcpu_thread_func)(void *);

};

struct kvm *kvm = malloc(sizeof(struct kvm));

kvm->dev_fd = open(KVM_DEVICE, O_RDWR);

kvm->vm_fd = ioctl(kvm->dev_fd, KVM_CREATE_VM, 0);

kvm->ram_size = ram_size;

kvm->ram_start = (__u64)mmap(NULL, kvm->ram_size,

PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -
1, 0);

kvm->mem.slot = 0;

kvm->mem.guest_phys_addr = 0;

kvm->mem.memory_size = kvm->ram_size;

kvm->mem.userspace_addr = kvm->ram_start;

ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &(kvm->mem));

struct vcpu *vcpu = malloc(sizeof(struct vcpu));

vcpu->vcpu_id = 0;

vcpu->vcpu_fd = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, vcpu->vcpu_id);

vcpu->kvm_run_mmap_size = ioctl(kvm->dev_fd, KVM_GET_VCPU_MMAP_SIZE, 0);

vcpu->kvm_run = mmap(NULL, vcpu->kvm_run_mmap_size, PROT_READ |
PROT_WRITE, MAP_SHARED, vcpu->vcpu_fd, 0);

pthread_create(&(kvm->vcpus->vcpu_thread), (const pthread_attr_t *)NULL, kvm-
>vcpus[i].vcpu_thread_func, kvm);

pthread_join(kvm->vcpus->vcpu_thread, NULL);

24 I/O in Linux Hypervisors and Virtual Machines

I/O virtualization in kvm

25 I/O in Linux Hypervisors and Virtual Machines

 Native KVM I/O model

 PIO: Trap

 MMIO: The machine emulator
executes the faulting
instruction

 Slow due to mode-switch!

 Extensions to support PV

 VirtIO: An API for Virtual I/O
aims to support many
hypervisors (of all types)

virtio

 A family of drivers which can be adapted for various hypervisors,
by porting a shim layer

 Related: VMware tools, Xen para-virtualized drivers

 Explicit separation of Drivers, Transport, Configuration

26 I/O in Linux Hypervisors and Virtual Machines

Guest
Front-end driver

kvm back-end driver

device emulation

lguest back-end driver

device emulation

virtio

Configuration: register for (device-id, vendor-id)

virtio architecture

27 I/O in Linux Hypervisors and Virtual Machines

virtio driver

virtio PCI controller

Guest

vring

Transport

virtio device

Host

(QEMU)
virtio PCI controller

• Virtqueues (per device)

• Vring (per virtqueue)

• Queue requests

Front-end
A kernel module in guest OS.
Accepts I/O requests from user process.
Transfer I/O requests to back-end.

Back-end
A device in QEMU.
Accepts I/O requests from front-end.
Perform I/O operation via physical device.

vring & virtqueue

 vring: transport implementation (ring-buffer)
 shared (memory-mapped) between Guest and QEMU

 Reduce the number of MMIOs

 published & used buffers
 descriptors

 virtqueue API:
 add_buf: expose buffer to other end
 get_buf: get next used buffer
 kick: (after add_buf) notify QEMU to handle buffer
 disable_cb, enable_cb: disable/enable callbacks

 “buffer” := scatter/gather list (address, length) pairs
 QEMU: virtqueue_pop, virtqueue_push
 virtio-blk: 1 queue
 virtio-net: 2 queues

28 I/O in Linux Hypervisors and Virtual Machines

kvm with virtio

29 I/O in Linux Hypervisors and Virtual Machines

KVM

Hardware

QEMU

GUEST

Other

Processes

Driver

IO controller &

device

KVM

Hardware

QEMU

GUEST

Host

Other

Processes

Transport

VirtIO driver

VirtIO controller & device

Device

driver

[kvm with ‘default’ device emulation] [kvm with ‘virtio’ device handling]

virtio processing flow

30 I/O in Linux Hypervisors and Virtual Machines

virtqueue write

virtio device

virtio driver

virtqueue read

vring

IN/OUT vring

add_buf

kick pop push

get_buf

Virtual interrupts

31 I/O in Linux Hypervisors and Virtual Machines

Guest

Device

Hypervisor

Virtual

interrupt

Host

interrupt

End-of-Interrupt

End-of-Interrupt

(I/O APIC)

At least 2 exits:

- Delivery

- Completion signal

Sources

 Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"
ACM Queue, Volume 9, issue 11, November 22, 2011
URL: http://queue.acm.org/detail.cfm?id=2071256

 Avi Kivity, et al: kvm: The Linux Virtual Machine Monitor, Proceedings of
the Linux Symposium, 2007
 http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf
 http://kerneltrap.org/node/8088

 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield, Xen and the Art of
Virtualization, SOSP’03

 Xen (v.3.0. for x86) Interface Manual
 http://pdub.net/proj/usenix08boston/xen_drive/resources/developer_

manuals/interface.pdf
 Jun Nakajima, Asit Mallick, Ian Pratt, Keir Fraser, X86-64 Xen-Linux:

Architecture, Implementation, and Optimizations, OLS 2006
 Xen: finishing the job, lwn.net - 2009

32 I/O in Linux Hypervisors and Virtual Machines

http://queue.acm.org/detail.cfm?id=2071256
http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf

NVIDIA Virtual GPU (vGPU) + VMware Horizon

33 I/O in Linux Hypervisors and Virtual Machines

source: https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/

https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/

VMware Virtual Desktop Infrastructure (VDI)

34 I/O in Linux Hypervisors and Virtual Machines

VM I/O acceleration

35 I/O in Linux Hypervisors and Virtual Machines

QEMU machine emulator

 Creator: Fabrice Bellard (circa. 2006)

 Machine emulator using a dynamic binary translator

 Run-time conversion of target CPU instructions to host ISA

 Translation cache

 Emulated Machine := { CPU emulator, Emulated Devices,
Generic Devices } + “machine description”

 Link between emulated devices & underlying host devices

 Alternative storage back-ends – e.g. POSIX/AIO (thread pool)

 Caching modes for devices:

 cache=none O_DIRECT

 cache=writebackbuffered I/O

 Cache=writethrough buffered I/O, O_SYNC

36 I/O in Linux Hypervisors and Virtual Machines

Emulated Platform

37 I/O in Linux Hypervisors and Virtual Machines

System bus(es) and

I/O devices

Interrupt Controller(s)

(APIC)

MMU

Memory

Instruction Set

CPU

Misc. resources

Virtualization components

 Machine emulation

 CPU, Memory, I/O

 Hardware-assisted

 Hypervisor

 Hyper-call interface

 Page Mapper

 I/O

 Interrupts

 Scheduler

 Transport

 Messaging, and bulk-mode

38 I/O in Linux Hypervisors and Virtual Machines

Virtual disks

 Exported by host

 Physical device/partition

 … or logical device

 … or file (image) (e.g. : .qcow2, .vmdk, “raw” .img)
 file format that describes containers for virtual hard disk drives

 features: compression, encryption, copy-on-write snapshots

39 I/O in Linux Hypervisors and Virtual Machines

Device model (with full-system virtualization)

 VMM intercepts I/O operations from GuestOS and passes
them to device model at the host

 Device model emulates I/O operation interfaces:

 PIO, MMIO, DMA, …

 Two different implementations:

 Part of the VMM

 User-space standalone service

40 I/O in Linux Hypervisors and Virtual Machines

Virtualized I/O flow

41 I/O in Linux Hypervisors and Virtual Machines

Device emulation: full virtualization vs para-virtualization

42 I/O in Linux Hypervisors and Virtual Machines

GuestOS

VMM

(full virtualization)

Hardware

Traps

Device Emulation

GuestOS

VMM

(full virtualization)

Hardware

Traps

Device Emulation

PV drivers

kvm guest initialization (command-line)

 qemu-system-x86_64 -L /usr/local/kvm/share/qemu

-hda /mnt/scalusMar2013/01/scalusvm.img

-drive

file=/mnt/scalusMar2013/01/datavol.img,if=virtio,index=0

,cache=writethrough

-net nic -net user,hostfwd=tcp::12301-:22

-nographic

-m 4096 -smp 2

43 I/O in Linux Hypervisors and Virtual Machines

Device I/O in kvm

 Configuration via MMIO/PIO

 eventfd for events between host/guest

 irqfd : host → guest

 ioeventfd : guest → host

 virtio: abstraction for virtualized devices

 Device types: PCI, MMIO

 Configuration

 Queues

44 I/O in Linux Hypervisors and Virtual Machines

IO-MMU Emulation

 Shortcomings of device assignment for unmodified guests:

 Requires pinning all of the guest’s pages, thereby
disallowing memory over-commitment

 Exposes the guest’s memory to buggy device drivers

 A single physical IO-MMU can emulate multiple IO-MMU’s
(for multiple guests)

 Why?

 Allow memory over-commitment (pin/unpin during map/unmap
of I/O buffers)

 Intra-guest protection, redirection of DMA transactions

 … without compromising inter-guest protection

45 I/O in Linux Hypervisors and Virtual Machines

I/O path via virtio

46 I/O in Linux Hypervisors and Virtual Machines

QEMU
system
emulator

virtual-queue
(back-end)

Guest kernel-space

virtual-queue
(front-end)

Guest user-space

…

Host (Linux kernel + KVM module)

Native
driver KVM module

Host
kernel-space

Host
user-space

emulated
device

Notifications

Host -> Guest : interrupt injection
Guest -> Host : hyper-call (instruction emulation)

