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Outline

 Elements of I/O virtualization
 Machine emulator, Hypervisor, Transport

 Alternative designs for the device I/O path
 Device emulation (fully virtualized)

 Para-virtualized devices

 Direct device assignment (pass-through access)

 Follow the I/O path of hypervisor technologies most commonly 
used on Linux servers (x86 platform)
 xen, kvm

 Provide a glimpse of hypervisor internals *
 xen: device channels, grant tables

 kvm: virtio

 * VMware: market leader … but out-of-scope for this lecture
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I/O device types

 Dedicated
 E.g. Display

 Partitionable
 E.g. Disk

 Shared 
 E.g. NIC

 Devices that can be enumerated (PCI, PCI-Express)
 VMM needs to emulate ‘discovery’ over a system bus/interconnect

 Devices with hard-wired addresses (e.g. PS/2)
 VMM should maintain status information on virtual device ports

 Emulated (e.g. experimental hardware)
 VMM must define & emulate all H/W functionality

 GuestOS needs to load corresponding device drivers
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Why is I/O hard to virtualize ?

 Multiplexing/de-multiplexing  for guests  
 Programmed I/O (PIO): privileged CPU instructions specifically for I/O

 I/O devices have a separate address space from general memory

 Memory-mapped I/O (MMIO): CPU instructions for memory access are 
also used for accessing devices
 The memory-mapped I/O region is protected

 Direct Memory Access (DMA)
 Allow hardware subsystems within the computer to access system 

memory for reading and/or writing independently of the CPU
 Synchronous: triggered by software
 Asynchronous: triggered by devices (e.g. NIC)

 Implementation layers: 
 system calls (application to GuestOS)  trap to VMM
 driver calls (GuestOS)  paravirtualization

 Hypercall between modified driver in GuestOS and VMM 

 I/O operations (GuestOS driver to VMM)
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Processing an I/O Request from a VM
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Source: Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization" 
ACM Queue, Volume 9, issue 11, November 22, 2011 



Device Front-Ends & Back-Ends
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Source: Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization" 
ACM Queue, Volume 9, issue 11, November 22, 2011 



I/O stack: Host side 
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I/O stack: Host + Guest 
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 … possibly one more in image file



Device Emulation

 Hypervisor 
emulates devices 
traps I/O accesses 
(PIO, MMIO)

 Emulation of DMA 
and interrupts
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Para-virtualized drivers

 Hypervisor-specific 
virtual device 
drivers (front-end) 
in Guest OS

 Involvement of 
Hypervisor (for 
Back-end)
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Direct device assignment

 Bypass Hypervisor 
to directly access 
I/O devices

 Security & safety 
concerns 

 IO-MMU for 
address translation 
& isolation (DMA 
restrictions)

 SR-IOV for shared 
access
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xen history

 Developed at Systems Research Group, Cambridge 
University (UK)

 Creators: Keir Fraser, Steven Hand, Ian Pratt, et al (2003)

 Broad scope, for both Host and Guest

 Merged in Linux mainline:  2.4.22

 Company: Xensource.com 

 Acquired by Citrix Systems (2007)
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Xen VMM: Paravirtualization (PV) 1/2
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source: https://wiki.xenproject.org/wiki/Paravirtualization_(PV)

Type-I hypervisor

https://wiki.xenproject.org/wiki/Paravirtualization_(PV)


Xen VMM: Paravirtualization (PV) 2/2
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OS’es

• Dedicated control domain: 
Dom0

• Modified Guest OS 

Devices

• Front-end (net-front) for 
Guest OS to communicate 
with Dom0  

• I/O channel (zero copy)

• Backend (net-back) for 
Dom0 to communicate 
with underlying systems



kvm history

 Prime creator: Avi Kivity, Qumranet, circa. 2005 (IL)

 Company acquired by RedHat (2008)

 “Narrow” focus: x86 platform, Linux host 

 Assumes Intel VT-x or AMD svm

 Merged in Linux kernel mainline: 2.6.20

 … < 4 months after 1st announcement !
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kvm VMM: tightly integrated in the Linux kernel 
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QEMU QEMU QEMU

• Hypervisor: 

Kernel module

• Guest OS:

User-space 

process

(QEMU)

• Requires H/W 

virtualization 

extensions

Type-II hypervisor



xen vs kvm
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Xen

 Strong support for para-
virtualization with modified 
host-OS 
 Near-native performance 
for I/O devices

 Separate code based for 
DOM0 and device drivers

 Security model:
Rely on DOM0

 Maintainability: 
Hard to keep up with all 
versions of possible guests 
due to PV

KVM

 Requires H/W virtualization 
extension – Intel VT, AMD 
Pacifica (AMD-V)

 Limited support for para-
virtualization (via virtio)

 Code-base integrated into 
Linux kernel source tree

 Security model:
Rely on Commodity/Casual 
Linux systems

 Maintainability:
Easy – Integrated well into 
infrastructure, code-base



I/O virtualization in xen
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 Xen network I/O extension schemes

 Multiple RX queues, SR-IOV …

• Bridge in driver domain: 
multiplex/de-multiplex 
network I/Os from 
guests

• I/O Channel
– Zero-copy transfer 

with Grant-copy

– Enable driver domain 
to access I/O buffers in 
guest memory

Source: “Bridging the gap between software 

and hardware techniques for i/o virtualization” 

Usenix Annual Technical conference, 2008



Xen device channels

 Asynchronous shared-memory transport

 Event ring (for interrupts) 

 Xen “peer domains”

 Inter-guest communication

 Mapping one guest’s buffers to another 

 Grant tables for “DMA” (bulk transfers)

 Xen dom0 (privileged domain) can access all devices

 Exports subset to other domains

 Runs back-end of device drivers (e.g. net, block)
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Xen grant tables

 Share & Transfer pages between domains
 a software implementation of certain IOMMU functionality

 Transferred pages:
 Driver in local domain “advertises” buffer  notify hypervisor
 Driver then transfers page to remote domain _and_ takes a free page 

from a producer/consumer ring (“page-flip”)
 Use case: network drivers  receive their data asynchronously, i.e. 

may not know origin domain (need to inspect network packet before 
actual transfer between domains)

 With RDMA NICs, we can transfer (DMA) directly into domains …

 Shared pages: 
 Driver in local domain “advertises” buffer  notify hypervisor that this 

page can be access by other domains
 Use case: block drivers  receive their data synchronously, i.e. know 

which domain requested data to be transferred via DMA
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kvm run-time environment
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kvm

kvm-intel / kvm-amd Kernel space

Guest

QEMU

Guest

QEMU

Scheduler

User space

libvirtd



Run-time view of a kvm guest 

 Guest – Host switch 
via scheduler

 Use of Linux 
subsystems: 
scheduler, memory 
management, …

 Re-use of user-space 
tools

 VM images

 Network configuration
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kvm execution model 

 Processes create virtual machines

 A process together with /dev/kvm is in essence the Hypervisor

 VMs contain memory, virtual CPUs, and (in-kernel) devices

 Guest (“physical”) memory is part of the (virtual) address 
space of the creating process

 Virtual MMU+TLB, and APIC/IO-APIC (in-kernel)

 Machine instruction interpreter (in-kernel)

 vCPUs run in process context (i.e. as threads)

 To the host, the process that started the guest _is_ the guest! 
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kvm API demonstration: 

• https://lwn.net/Articles/658511/

• https://github.com/soulxu/kvmsample

https://github.com/soulxu/kvmsample
https://github.com/soulxu/kvmsample


kvm API sample

#include <linux/kvm.h>

struct kvm {

int dev_fd;

int vm_fd;

__u64 ram_size;

__u64 ram_start;

int kvm_version;

struct kvm_userspace_memory_region mem;

struct vcpu *vcpus;

int vcpu_number;

};

struct vcpu {

int vcpu_id;

int vcpu_fd;

pthread_t vcpu_thread;

struct kvm_run *kvm_run;

int kvm_run_mmap_size;

struct kvm_regs regs;

struct kvm_sregs sregs;

void *(*vcpu_thread_func)(void *);

};

struct kvm *kvm = malloc(sizeof(struct kvm));

kvm->dev_fd = open(KVM_DEVICE, O_RDWR);

kvm->vm_fd = ioctl(kvm->dev_fd, KVM_CREATE_VM, 0);

kvm->ram_size = ram_size;

kvm->ram_start =  (__u64)mmap(NULL, kvm->ram_size,

PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -
1, 0);

kvm->mem.slot = 0;

kvm->mem.guest_phys_addr = 0;

kvm->mem.memory_size = kvm->ram_size;

kvm->mem.userspace_addr = kvm->ram_start;

ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &(kvm->mem));

struct vcpu *vcpu = malloc(sizeof(struct vcpu));

vcpu->vcpu_id = 0;

vcpu->vcpu_fd = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, vcpu->vcpu_id);

vcpu->kvm_run_mmap_size = ioctl(kvm->dev_fd, KVM_GET_VCPU_MMAP_SIZE, 0);

vcpu->kvm_run = mmap(NULL, vcpu->kvm_run_mmap_size, PROT_READ | 
PROT_WRITE, MAP_SHARED, vcpu->vcpu_fd, 0);

pthread_create(&(kvm->vcpus->vcpu_thread), (const pthread_attr_t *)NULL, kvm-
>vcpus[i].vcpu_thread_func, kvm);

pthread_join(kvm->vcpus->vcpu_thread, NULL);
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I/O virtualization in kvm
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 Native KVM I/O model

 PIO: Trap

 MMIO: The machine emulator 
executes the faulting 
instruction

 Slow due to mode-switch!

 Extensions to support PV

 VirtIO:  An API  for Virtual I/O 
aims to support many 
hypervisors (of all types)



virtio

 A family of drivers which can be adapted for various hypervisors, 
by porting a shim layer

 Related: VMware tools, Xen para-virtualized drivers

 Explicit separation of Drivers, Transport, Configuration
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Guest
Front-end driver

kvm back-end driver

device emulation

lguest back-end driver

device emulation

virtio

Configuration: register for (device-id, vendor-id)



virtio architecture
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virtio driver

virtio PCI controller

Guest

vring

Transport

virtio device

Host 

(QEMU)
virtio PCI controller

• Virtqueues (per device)

• Vring (per virtqueue)

• Queue requests

Front-end
A kernel module in guest OS.
Accepts I/O requests from user process.
Transfer I/O requests to back-end.

Back-end
A device in QEMU.
Accepts I/O requests from front-end.
Perform I/O operation via physical device.



vring & virtqueue

 vring: transport implementation (ring-buffer)
 shared (memory-mapped) between Guest and QEMU

 Reduce the number of MMIOs

 published & used buffers
 descriptors  

 virtqueue API: 
 add_buf: expose buffer to other end
 get_buf: get next used buffer
 kick:  (after add_buf) notify QEMU to handle buffer
 disable_cb, enable_cb: disable/enable callbacks

 “buffer” :=  scatter/gather list  (address, length) pairs
 QEMU: virtqueue_pop, virtqueue_push
 virtio-blk:  1 queue
 virtio-net: 2 queues
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kvm with virtio
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[ kvm with ‘default’ device emulation ] [ kvm with ‘virtio’ device handling ]



virtio processing flow
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Virtual interrupts
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interrupt
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interrupt

End-of-Interrupt

End-of-Interrupt

(I/O APIC)

At least 2 exits:

- Delivery

- Completion signal



Sources

 Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization" 
ACM Queue, Volume 9, issue 11, November 22, 2011 
URL: http://queue.acm.org/detail.cfm?id=2071256

 Avi Kivity, et al: kvm: The Linux Virtual Machine Monitor,  Proceedings of 
the Linux Symposium, 2007
 http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf
 http://kerneltrap.org/node/8088

 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex 
Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield, Xen and the Art of 
Virtualization, SOSP’03

 Xen (v.3.0. for x86) Interface Manual
 http://pdub.net/proj/usenix08boston/xen_drive/resources/developer_

manuals/interface.pdf 
 Jun Nakajima, Asit Mallick, Ian Pratt, Keir Fraser, X86-64 Xen-Linux: 

Architecture, Implementation, and Optimizations, OLS 2006
 Xen: finishing the job, lwn.net - 2009
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http://queue.acm.org/detail.cfm?id=2071256
http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf


NVIDIA Virtual GPU (vGPU) + VMware Horizon
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source: https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/

https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/


VMware Virtual Desktop Infrastructure (VDI)
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VM I/O acceleration
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QEMU machine emulator

 Creator: Fabrice Bellard (circa. 2006)

 Machine emulator using a dynamic binary translator

 Run-time conversion of target CPU instructions to host ISA

 Translation cache

 Emulated Machine := { CPU emulator, Emulated Devices, 
Generic Devices } + “machine description”

 Link between emulated devices & underlying host devices

 Alternative storage back-ends – e.g. POSIX/AIO ( thread pool)

 Caching modes for devices:

 cache=none  O_DIRECT

 cache=writebackbuffered I/O

 Cache=writethrough buffered I/O, O_SYNC
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Emulated Platform
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Virtualization components

 Machine emulation

 CPU, Memory, I/O

 Hardware-assisted

 Hypervisor

 Hyper-call interface

 Page Mapper

 I/O

 Interrupts

 Scheduler

 Transport

 Messaging, and bulk-mode

38 I/O in Linux Hypervisors and Virtual Machines



Virtual disks

 Exported by host

 Physical device/partition

 … or logical device

 … or file (image) (e.g. : .qcow2, .vmdk, “raw” .img)
 file format that describes containers for virtual hard disk drives 

 features: compression, encryption, copy-on-write snapshots
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Device model  (with full-system virtualization)

 VMM intercepts I/O operations from GuestOS and passes 
them to device model at the host

 Device model emulates I/O operation interfaces:

 PIO, MMIO, DMA, … 

 Two different implementations:

 Part of the VMM

 User-space standalone service
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Virtualized I/O flow 
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Device emulation: full virtualization vs para-virtualization
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kvm guest initialization (command-line)

 qemu-system-x86_64 -L /usr/local/kvm/share/qemu

-hda /mnt/scalusMar2013/01/scalusvm.img

-drive 

file=/mnt/scalusMar2013/01/datavol.img,if=virtio,index=0

,cache=writethrough

-net nic -net user,hostfwd=tcp::12301-:22 

-nographic

-m 4096 -smp 2

43 I/O in Linux Hypervisors and Virtual Machines



Device I/O in kvm

 Configuration via MMIO/PIO

 eventfd for events between host/guest

 irqfd : host → guest

 ioeventfd : guest → host

 virtio: abstraction for virtualized devices

 Device types: PCI, MMIO

 Configuration

 Queues
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IO-MMU Emulation

 Shortcomings of device assignment for unmodified guests:

 Requires pinning all of the guest’s pages, thereby 
disallowing memory over-commitment

 Exposes the guest’s memory to buggy device drivers

 A single physical IO-MMU can emulate multiple IO-MMU’s 
(for multiple guests)

 Why?

 Allow memory over-commitment (pin/unpin during map/unmap
of I/O buffers)

 Intra-guest protection, redirection of DMA transactions

 … without compromising inter-guest protection
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I/O path via virtio
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QEMU
system
emulator

virtual-queue
(back-end)

Guest kernel-space

virtual-queue
(front-end)

Guest user-space

…

Host (Linux kernel + KVM module)

Native 
driver KVM module

Host 
kernel-space

Host 
user-space

emulated 
device

Notifications

Host -> Guest : interrupt injection
Guest -> Host : hyper-call (instruction emulation)


