/0 in Linux Hypervisors and Virtual Machines
Lecture for the Embedded Systems Course
CSD, University of Crete (May 7 & 9, 2025)

» Manolis Marazakis (maraz@ics.forth.gr)

forTHcs |nstitute of Computer Science (ICS)
Foundation for Research and Technology — Hellas (FORTH)

Outline

» Elements of /0 virtualization
Machine emulator, Hypervisor, Transport

» Alternative designs for the device /0 path
Device emulation (fully virtualized)
Para-virtualized devices
Direct device assignment (pass-through access)
» Follow the I/O path of hypervisor technologies most commonly
used on Linux servers (x86 platform)
xen, kvm

» Provide a glimpse of hypervisor internals *
xen: device channels, grant tables
kvm: virtio
* VMware: market leader ... but out-of-scope for this lecture

2 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

/O device types

4

Dedicated
E.g. Display
Partitionable
E.g. Disk
Shared
E.g. NIC
Devices that can be enumerated (PCl, PCI-Express)
VMM needs to emulate ‘discovery’ over a system bus/interconnect

Devices with hard-wired addresses (e.g. PS/2)
VMM should maintain status information on virtual device ports
Emulated (e.g. experimental hardware)

VMM must define & emulate all H/W functionality
GuestOS needs to load corresponding device drivers

I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Why is I/O hard to virtualize ?

» Multiplexing/de-multiplexing for guests
Programmed |/O (PIO): privileged CPU instructions specifically for /0
I/O devices have a separate address space from general memory

Memory-mapped I/O (MMIO): CPU instructions for memory access are
also used for accessing devices

The memory-mapped I/O region is protected

» Direct Memory Access (DMA)

Allow hardware subsystems within the computer to access system
memory for reading and/or writing independently of the CPU

Synchronous: triggered by software
Asynchronous: triggered by devices (e.g. NIC)
» Implementation layers:

system calls (application to GuestOS) = trap to VMM
driver calls (GuestOS) = paravirtualization

Hypercall between modified driver in GuestOS and VMM
|/O operations (GuestOS driver to VMM)

4 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

FIGURE

Processing an 1I/0O Request from a VM

]. Processing an 1/0 Application Request from a VM

virtwal maching

host

applications
app ' app ' app '
guestos

buffer cache '
V0 scheduler .
device driver '

- oy,
. L

,\vtnual hardwa re“

' - =

)

disk device

V0 stack

I/0 request issued by an application is
processed first by the guest operating
system I/0 stack running within the WM,
and then by the hypervisor 0 stack
managing physical hardware,

-~ -] virwal machines

hypervisor

wvirtual-to-physical ranslation '
interpose/transfom [e.g. log, encrypt] .
V0 scheduler '

device driver '
—

. L]

,phgslml ha mnla\.

10 stack

L y—
' MIC HAS
| J
disk device

Source: Mendel Rosenblum, Carl Waldspurger: "l/O Virtualization"
ACM Queue,Volume 9, issue | I, November 22,201 |

I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

Institute of Computar Science

FIGURE

Device Front-Ends & Back-Ends

Modern Hypervisors Split Device Virtualization

hypervisor

—t b)

disf frontends: \ IDE ' SCS) ' p:m'l.rlrtl IDE '
* om s ™

I]m«.tlsln.-endsi, hlt::;sl: I LE?EEE?II | SAN I

Source: Mendel Rosenblum, Carl Waldspurger: "l/O Virtualization"
ACM Queue,Volume 9, issue | |, November 22,201 |

I/0 in Linux Hypervisors and Virtual Machines FORTH-ICS

Institute of Computar Science

1/O stack: Host side

User-Level Applications

System Calls

Virtual File System (VFS) -
) Buffer Raw I/O
File System \/

SCSI Layer

Storage Controller

D 7 I/O in Linux Hypervisors and Virtual Machines ~~iFORTl—I ICS

< Institute of Computar Science

1/O stack: Host + Guest

User-Level Applications

System Calls

Virtual File System (VFS)

' . File Page Raw
Host '~ System)} Cache &

il

—

Storage hw emulation

SCSI Layer

N\
Image format ~

/

Storage Controller
N
. « € € € €
ST

2 filesystems

2 ... possibly one more in image file

: /O in Linux Hypervisors and Virtual Machines ' FORTH-ICS

Device Emulation

» Hypervisor
emulates devices =2
Device driver traps I/O accesses

Guest 1
" (PIO, MMIO)
» Emulation of DMA

\ and interrupts

Host

Device emulation

l 4 3/
Device driver

9 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Para-virtualized drivers

Host » Hypervisor-specific
virtual device
Guest 1 Front-end drivers (front-end)
/ device driver

In Guest OS

» Involvement of
Hypervisor (for
Back-end)

\4

Back-end
l / device driver

Device driver

10 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Direct device assignment

» Bypass Hypervisor
to directly access

Guest Front-end |/O devices
device driver

Host

» Security & safety
concerns

1 |O-MMU for
address translation
& isolation (DMA

restrictions)
SR-IOV for shared

dCCesSS

11 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

xen history

» Developed at Systems Research Group, Cambridge
University (UK)

» Creators: Keir Fraser, Steven Hand, lan Pratt, et al (2003)
» Broad scope, for both Host and Guest
» Merged in Linux mainline: 2.4.22

» Company: Xensource.com
Acquired by Citrix Systems (2007)

12 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Xen VMM: Paravirtualization (PV) 1/2

Applications

Dom0 Kernel Guest OS

PV back-end 2 PV front-end

Type-| hypervisor

source: https://wiki.xenproject.org/wiki/Paravirtualization (PV)

13 I/0 in Linux Hypervisors and Virtual Machines / FORTH-ICS

» " xinstitute of Computar Science

Vg

https://wiki.xenproject.org/wiki/Paravirtualization_(PV)

Xen VMM: Paravirtualization (PV) 2/2

Domain 0 VM1 VM2 VM3
Unmodified Unmodified Unmodified
application application application

Guest 0S Guest 0S Unmodified
(XenLinux) (XenLinux) guest 0S on
SMP Intel Virtualization
Back end Technology
A (Windows XP)
Native Native
device device Front-end Front-end
driver driver device drivers device drivers
k) 1 T
Safe Virtual memory

Control Event ,

. hardware Virtual CPU management
interface interface channel unit (MMU)

14

\ l Virtual Machine Monitor

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

I/O in Linux Hypervisors and Virtual Machines

OS’es

Dedicated control domain:
Dom0

Modified Guest OS

Devices

Front-end (net-front) for
Guest OS to communicate
with DomO

I/O channel (zero copy)

Backend (net-back) for
Dom0 to communicate
with underlying systems

‘FORTH-ICS

. Institute of Computar Science

kvm history

» Prime creator: Avi Kivity, Qumranet, circa. 2005 (IL)
Company acquired by RedHat (2008)

» “Narrow” focus: x86 platform, Linux host
Assumes Intel VT-x or AMD svm

» Merged in Linux kernel mainline: 2.6.20
... <4 months after 15t announcement !

15 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

kvm VMM: tightly integrated in the Linux kernel

* Hypervisor:
User User User Kernel module
VM
- e Guest OS:
User-space
. process
(QEMU)
_ * Requires HIW
Linux . . .
virtualization
;_?_l extensions
Hardware
Type-Il hypervisor

16 I/O in Linux Hypervisors and Virtual Machines :::"iFQRTH-ICS

” | institute of Computar Science

>

xen vs kvm

Xen

Strong support for para-
virtualization with modified
host-OS

- Near-native performance
for 1/O devices

Separate code based for
DOMO and device drivers

Security model:
Rely on DOMO

Maintainability:
Hard to keep up with all

versions of possible guests
due to PV

17 I/O in Linux Hypervisors and Virtual Machines

KVM

Requires H/W virtualization
extension — Intel VT, AMD
Pacifica (AMD-V)

Limited support for para-
virtualization (via virtio)
Code-base integrated into
Linux kernel source tree

Security model:
Rely on Commodity/Casual
Linux systems

Maintainability:
Easy — Integrated well into
infrastructure, code-base

FORTH-ICS

driver domain

/O virtualization in xen

guest domain

IO channels
packet o
——4GRF TX buffer
b . d free S1b" :) Free buffer
HCOCIN ot copyg— n RX buffer
*GR] » RX packet
device netback netfront
driver
LA_\
Xen hypervisor
N Z
N
Hardware

» Xen network I/O extension schemes

Multiple RX queues, SR-IOV ...

18

I/O in Linux Hypervisors and Virtual Machines

Bridge in driver domain:
multiplex/de-multiplex
network 1/Os from
guests

/O Channel

— Zero-copy transfer
with Grant-copy

— Enable driver domain
to access |/O buffers in
guest memory

Source: “Bridging the gap between software

and hardware techniques for i/o virtualization”
Usenix Annual Technical conference, 2008

FDRTHJCS

» of Computar Science

Xen device channels

» Asynchronous shared-memory transport
» Event ring (for interrupts)
» Xen “peer domains”

Inter-guest communication

Mapping one guest’s buffers to another
Grant tables for “DMA” (bulk transfers)

» Xen domO (privileged domain) can access all devices
Exports subset to other domains
Runs back-end of device drivers (e.g. net, block)

19 I/O in Linux Hypervisors and Virtual Machines

E_QR'[H-IE:S

» of Computar Science

Xen grant tables

» Share & Transfer pages between domains

a software implementation of certain IOMMU functionality

» Transferred pages:

Driver in local domain “advertises” buffer = notify hypervisor

Driver then transfers page to remote domain _and_ takes a free page
from a producer/consumer ring (“page-flip”)

Use case: network drivers = receive their data asynchronously, i.e.
may not know origin domain (need to inspect network packet before
actual transfer between domains)

With RDMA NICs, we can transfer (DMA) directly into domains ...

» Shared pages:

> 20

Driver in local domain “advertises” buffer = notify hypervisor that this
page can be access by other domains

Use case: block drivers = receive their data synchronously, i.e. know
which domain requested data to be transferred via DMA

I/O in Linux Hypervisors and Virtual Machines 'FORTH-ICS

of Computar Science

kvm run-time environment

(Guest) Guest N\
libvirtd
\§ J
QEMU ~ 7 Emu
User space
kvm-intel / kvm-amd Kernel space
Scheduler
kvm

21 I/0 in Linux Hypervisors and Virtual Machines FORTH-ICS

o of Computar Science

Run-time view of a kvm guest

» Guest — Host switch
Guest Hypervisor via scheduler
Memory Process » Use of Linux
subsystemes:
vcPU | [vcpu scheduler, memory
management, ...
Thread | | Thread 1/O Thread
7 \ » Re-use of user-space
/ \ tools
/dev/kvm . VM images
module Linux ker1e| Network configuration

22 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

kvm execution model

» Processes create virtual machines
A process together with /dev/kvm is in essence the Hypervisor

» VMs contain memory, virtual CPUs, and (in-kernel) devices

» Guest (“physical”) memory is part of the (virtual) address
space of the creating process
Virtual MMU+TLB, and APIC/IO-APIC (in-kernel)
Machine instruction interpreter (in-kernel)

» VCPUs run in process context (i.e. as threads)
To the host, the process that started the guest is_ the guest!

kvm APl demonstration:

23 I/0 in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

https://github.com/soulxu/kvmsample
https://github.com/soulxu/kvmsample

kvm APl sample

#include <linux/kvm.h>
struct kvm {
int dev_fd;
intvm_fd;
___ub4 ram_size;
___ub4 ram_start;
int kvm_version;

struct kvm_userspace_memory_region mem;

struct vcpu *vcpus;
int vcpu_number;

2

struct vcpu {
int vepu_id;
int vepu_fd;
pthread_t vcpu_thread,;
struct kvm_run *kvm_run;
int kvm_run_mmap_size;
struct kvm_regs regs;
struct kvm_sregs sregs;
void *(*vcpu_thread_func)(void *);

24

struct kvm *kvm = malloc(sizeof(struct kvm));
kvm->dev_fd = open(KVM_DEVICE, O_RDWR);
kvm->vm_fd = ioctl(kvm->dev_fd, KVM_CREATE_VM, 0);
kvm->ram_size = ram_size;

kvm->ram_start = (__u64)mmap(NULL, kvm->ram_size,

PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -
1, 0);

kvm->mem.slot = 0;

kvm->mem.guest_phys_addr = 0;

kvm->mem.memory_size = kvm->ram_size;

kvm->mem.userspace_addr = kvm->ram_start;

ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &(kvm->mem));

struct vepu *vcpu = malloc(sizeof(struct vcpu));

vcpu->vcpu_id = 0;

vcpu->vepu_fd = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, vcpu->vcpu_id);
vcpu->kvm_run_mmap_size = ioctl(kvm->dev_fd, KYM_GET_VCPU_MMAP_SIZE, 0);

vcpu->kvm_run = mmap(NULL, vcpu->kvm_run_mmap_size, PROT_READ |
PROT_WRITE, MAP_SHARED, vcpu->vcpu_fd, 0);

pthread_create(&(kvm->vcpus->vcpu_thread), (const pthread_attr_t *)NULL, kvm-
>vcpus|i].vcpu_thread_func, kvm);

pthread_join(kvm->vcpus->vcpu_thread, NULL);

I/O in Linux Hypervisors and Virtual Machines EORTHICS

1/0 virtualization in kvm

User mode i Kernel mode Guest mode
’ Isuue.Guglm
Execution ioct] |
Y
Enter
—®= Guest
Al
Y
Execute natively
in Guest Mode
Handle |
Exit
Y
way it
Headle I} handles the
/O

25 I/O in Linux Hypervisors and Virtual Machines

Native KVM 1/O model
PIO: Trap

MMIO: The machine emulator
executes the faulting
instruction

Slow due to mode-switch!

Extensions to support PV

VirtlO: An API for Virtual I/O
aims to support many
hypervisors (of all types)

FDRTH-ICS

Institute of Computar Science

virtio

» A family of drivers which can be adapted for various hypervisors,
by porting a shim layer

» Related: VMware tools, Xen para-virtualized drivers

» Explicit separation of Drivers, Transport, Configuration

kvm back-end driver
7
. 7
7 device emulation
7
/ [] [}
Guest virtio
Front-end driver S N
N
N
~ o |lsuest| back-end driver
Configuration: register for (device-id, vendor-id) device emulation

26 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

virtio architecture

virtio driver Guest
virtio PCI controller
A
Transport
Y
vring
\ 4
virtio PCI controller Host
(QEMU)

virtio device

27

Front-end

A kernel module in guest OS.
Accepts I/O requests from user process.
Transfer 1/O requests to back-end.

Back-end

A device in QEMU.
Accepts I/O requests from front-end.
Perform |/O operation via physical device.

Virtqueues (per device)
Vring (per virtqueue)

Queue requests

I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

o of Computar Science

vring & virtqueue

4

vV VvV Vv Vv

vring: transport implementation (ring-buffer)

shared (memory-mapped) between Guest and QEMU
Reduce the number of MMIOs
published & used buffers

descriptors

virtqueue API:
add_buf: expose buffer to other end
get_buf: get next used buffer
kick: (after add_buf) notify QEMU to handle buffer
disable cb, enable_cb: disable/enable callbacks

“buffer” := scatter/gather list > (address, length) pairs
QEMU: virtqueue_pop, virtqueue_push

virtio-blk: 1 queue

virtio-net: 2 queues

28 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

kvm with virtio

\,

(GUEST)
Y ~N
Driver

Q y
(10 controller &) o
L device A p ALELS
| OEMU] [Processes
[KVM]

Hardware

[kvm with ‘default’ device emulation]

29

VirtlO driver
v
r N
Transport
L Yy
7 N
VirtlO controller & device Other
QEMU Processes
\ Yy
KVM L Device
driver
l Host
o
[Hardware

[kvm with ‘virtio’ device handling]

I/O in Linux Hypervisors and Virtual Machines

FORTH-ICS

virtio processing flow

virtio driver

A
add_buf l get_buf
virtqueue write virtqueue read
vring ‘ \
IN/OUT '
kick pop push
\ 2 \ 4

virtio device

30 I/0 in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Virtual interrupts

Virtual

interrupt

Host

interrupt

31

At least 2 exits:
Delivery

Completion signal

End-of-Interrupt

End-of-Interrupt
(1/0 APIC)

Guest
v
Hypervisor
v
Device

I/0 in Linux Hypervisors and Virtual Machines FORTH-ICS

o of Computar Science

Sources

» Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"
ACM Queue, Volume 9, issue 11, November 22, 2011
URL:

» Avi Kivity, et al: kvm: The Linux Virtual Machine Monitor, Proceedings of
the Linux Symposium, 2007

http://kerneltrap.org/node/8088

» Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, lan Pratt, Andrew Warfield, Xen and the Art of
Virtualization, SOSP’03

» Xen (v.3.0. for x86) Interface Manual

http://pdub.net/proj/usenix08boston/xen_drive/resources/developer
manuals/interface.pdf

» Jun Nakajima, Asit Mallick, lan Pratt, Keir Fraser, X86-64 Xen-Linux:
Architecture, Implementation, and Optimizations, OLS 2006

» Xen: finishing the job, lwn.net - 2009

32 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

http://queue.acm.org/detail.cfm?id=2071256
http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf

NVIDIA Virtual GPU (vGPU) + VMware Horizon

¥YMwarzHorizor™ Clients

NETWNRK Virtual Desktops
VMwareHorizon® Virtual Des ktops
R
VIRTUAL MACHINE ACHINE CHINE CHINE b
= e - i
] []
NVIDIA GRID NVIDIA GRID NVIDIA Quadro Virtual

Microsaft Windows

Virtual Applications Virtual PC Data Center Workstation

Applications

Use with Citrix XenApp or other For virtual desktop delivering For professional graphics
ROSH solutions like VMware standard PC applications, applications; includes an
Horizon Hosted Apps browser, and multimedia. NVIDIA® Quadro® driver

Graphics Driver

GRAPHIC CUMMENIS

VMware (o
Hypervisor

NVIDA
VGPU Manager

source: https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/

D 33 I/O in Linux Hypervisors and Virtual Machines ORTH-ICS

. Institute of Computar Science

https://www.nvidia.com/en-eu/data-center/virtual-gpu-technology/

VMware Virtual Desktop Infrastructure (VDI)

Windows Linux Mac
VDM Client VDM Web Access VDM Web Access Thin Client

VDM VDM ~
Administrator Connection |
(browser) Server N

e & o
~ ~
& & * o @
Microsoft VirtualCenter

Active Directory Management Server

virtual desktops
desktop OS .
ESX Server hosts running
CJ D D Virtual Desktop VMs
ESX Server host

virtual machine

34 I/0 in Linux Hypervisors and Virtual Machines ' FORTH-ICS

. Institute of Computar Science

VM |/O acceleration

Hardware Acceleration >

Device AP Mediated Direct
Emulation Forwarding Pass-Through Pass-Through

\ \ [

35 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

QEMU machine emulator

» Creator: Fabrice Bellard (circa. 2006)

» Machine emulator using a dynamic binary translator
Run-time conversion of target CPU instructions to host ISA
Translation cache

» Emulated Machine := { CPU emulator, Emulated Devices,
Generic Devices } + “machine description”

Link between emulated devices & underlying host devices

Alternative storage back-ends — e.g. POSIX/AIO (= thread pool)

Caching modes for devices:
cache=none - O_DIRECT
cache=writeback = buffered 1/0
Cache=writethrough = buffered 1/0, O_SYNC

36 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Emulated Platform

CPU

System bus(es) and Instruction Set
|/O devices '“

Misc. resources

MMU

Interrupt Controller(s)
(APIC)

Memory

37 I/0 in Linux Hypervisors and Virtual Machines FORTH-ICS

Institute of Computar Science

Virtualization components

» Machine emulation
CPU, Memory, |/O
Hardware-assisted

» Hypervisor
Hyper-call interface
Page Mapper
/O
Interrupts
Scheduler

» Transport
Messaging, and bulk-mode

> 38 I/O in Linux Hypervisors and Virtual Machines 'FORTH-ICS

~Institute of Computar Scisnce

Virtual disks

» Exported by host
» Physical device/partition
» ... or logical device

» ... or file (image) (e.g. : .gcow?2, .vmdk, “raw” .img)
file format that describes containers for virtual hard disk drives

features: compression, encryption, copy-on-write snapshots

39 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Device model (with full-system virtualization)

» VMM intercepts I/O operations from GuestOS and passes
them to device model at the host
» Device model emulates |/O operation interfaces:
PIO, MMIO, DMA, ...
» Two different implementations:

Part of the VMM
User-space standalone service

40 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

Virtualized /0 flow

Guest Kernel

MMIO/PIO

i
: DMA

Interrupt
Injection

Completion

Interrupt

I/O in Linux Hypervisors and Virtual Machines

'"iFORTH ICS

mwcmu\-m

Device emulation: full virtualization vs para-virtualization

GuestOS

Traps
VMM

(full virtualization) | Device Emulation

Hardware

GuestOS PV drivers

Traps
VMM

(full virtualization) | Device Emulation

Hardware

42 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

» of Computar Science

kvm guest initialization (command-line)

» gemu-system-x86 64 -L /usr/local/kvm/share/gemu
-hda /mnt/scalusMar2013/01/scalusvm.img
-drive

file=/mnt/scalusMar2013/01/datavol.img,if=virtio, index=0
,cache=writethrough

-net nic -net user,hostfwd=tcp::12301-:22
-nographic
-m 4096 -smp 2

43 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

Institute of Computar Science

Device I/O in kvm

» Configuration via MMIO/PIO

» eventfd for events between host/guest
irgfd : host - guest
ioeventfd : guest - host

» virtio: abstraction for virtualized devices
Device types: PCI, MMIO
Configuration
Queues

44 I/O in Linux Hypervisors and Virtual Machines

liQRTH-IFS

» of Computar Science

|IO-MMU Emulation

» Shortcomings of device assignment for unmodified guests:

Requires pinning all of the guest’s pages, thereby
disallowing memory over-commitment

Exposes the guest’s memory to buggy device drivers

» A single physical I0O-MMU can emulate multiple |O-MMU’s
(for multiple guests)
» Why?
Allow memory over-commitment (pin/unpin during map/unmap
of 1/0 buffers)
Intra-guest protection, redirection of DMA transactions
... without compromising inter-guest protection

45 I/O in Linux Hypervisors and Virtual Machines FORTH-ICS

Institute of Computar Science

/O path via virtio

Host -> Guest : interrupt injection

Guest -> Host : hyper-call (instruction emulation) - - - - -
A

Guest user-space

L
[~/

QEMU
system

emulator

&

virtual-queue
(back-end)

// Guest kernel-space

O emulated
T |\ \\device
|

e N virtual-queue

> (front-end)

Native
driver

KVM module

Host (Linux kernel + KVM modaule)

46

I/O in Linux Hypervisors and Virtual Machines

Host
user-space

Host
kernel-space

FDRTHJCS

Institute of Computar Science

