Virtualization in Embedded Systems
Lecture for the Embedded Systems Course
CSD, University of Crete (April 7 & 11, 2025)

» Manolis Marazakis (maraz@ics.forth.gr)

FoRTHcS |nstitute of Computer Science (ICS)
Foundation for Research and Technology — Hellas (FORTH)

Today’s lecture
CS-428 focus shift in remainder of lectures: from “simple” to “complex” embedded
» Introduction of concepts

Virtualization (ISA/ABI/API, VM, VMM/Hypervisor)

Taxonomies of virtualization approaches

» Motivation in the context of embedded systems
H/W + S/W co-design
Use-cases (mostly from mobile)

» Virtualization techniques (& overheads)
Dynamic Binary Translation
(De-)Privileged execution, Traps (instr. & trace faults)
Memory management, Primary vs. Shadow structures

Architecture viewpoint x86, ARM (+ RISC-V)

OS viewpoint: Focusing on Linux, in purpose-built embedded systems

2 Virtualization for Embedded Systems FORTH-ICS

o of Computar Science

Virtualization to enable H/W-S/W co-design

» How to co-design/co-develop H/W + S/W for a system ?
Limited availability

Bugs in the production environment cannot be reproduced in the
laboratory

Difficult to debug on-site
Narrow time windows
Sometimes in a dangerous environment ...

» Debugging challenges
Is it a problem in the driver or in the device?
Is the firmware faulty? Is it wrongly loaded/configured?
Is the hardware damaged?
How can we reproduce the bug?
Do we have easy access to the environment?
Is it remotely located?

3 Virtualization for Embedded Systems FORTH-ICS

» of Computar Science

Block diagram of a basic mobile phone

Video
Amp Composite

Sim = PAL/SECAMINTSC
Card Seaony Encoder Video Out
| EE—
.
” ‘
S SN . Touch S<reen |
.
Digital Lo
Frey Controtler | Resgeny
Stereo 5 = CCDICMOS
Headphone h Camera
. | White LED Backtight |
Antenna i’r I Antenna™_ |/
FM Radio , Analog .
Baseband I RF RE
._' & Transceiver Switch
|
Stereo ((‘E —Q
Speakers
(((Vibratog, Mono Headset Keypad
u&h M.Iuopbov
— .
Power Management LEGEND
4 @ Procaessor
I Interface
B Ampiifier
)| -l
ACJDC : ADRCIDAC
Adaenet Battery Management ' 2 Other

P

[> 4 Virtualization for Embedded Systems

Writing (and testing) device drivers ... without hardware

Shift Left

» Hardware + Software = Complete product
* Feature-complete software by A-O silicon

« Software needs to happen earlier

HW Schedule

HW Schedule

[source: PJ Waskiewicz & Shannon Nelson - Linux Plumbers Conference, 2011 |

5 Virtualization for Embedded Systems ' FORTH-ICS

.7« institute of Computar Science

Embedded Linux System : Outline

lllllll

v

TTLTTT
©
=
<

Custom Application(s)

© -

A re B\
BusyBox - LR : {uss 52
' = Hub E "N€

Wi

Libe -
Serial f RS232
uClibc / eglibc / musl / glibc

I 2 s
® o o

Expansion Headers

&P

o o o
./ Debug { Dev JTAG

Linux kernel

Process & Memory mgmt, HW support, ... SoC Lo _}»
3 Application LALLLL -
P’.ocessor A008R010 RAANRRE
- - - - ®
JroeeE T we e ()
= G T E: N
LLLLLLL M()lorJr." :::::::
| A Blue- E (((T)))
Display Keyboard 3 = tooth =
Z TR & (“)
4 ors E «l))
3 JTTITNT 3 ((.)
4 nrC ;-—((i))
6 Virtualization for Embedded Systems ‘FORTH-ICS

. Institute of Computar Science

Embedded Linux system development

+ Build Host to create cross-chain:
binutils, kernel headers, C/C++ libraries, gcc, gdb

Embedded System Target
Development Host | j1ag serial
’ Application
Cross-compilation toolchain m Application
Debugger Library
Misc. tools Library Library
C Library

Board support package (BSP) development

_ _ Linux OS kernel + drivers
System integration

Development of applications Bootloader

Embedded Linux := the usage of the Linux kernel and various
open-source components in embedded systems

7 Virtualization for Embedded Systems FORTH-ICS

» of Computar Science

Board Support Package (BSP)

» Collection of components specific to a hardware platform
Bootloader (e.g., U-Boot)
OS kernel with hardware-specific drivers
Device tree files
Hardware abstraction layers
Flash memory layout definitions

» Provided by board vendor or created by development team

8 Virtualization for Embedded Systems FORTH-ICS

» of Computar Science

Device Tree

» Data structure that describes HW components in a system
separates hardware-specific configuration from the kernel code
Before device trees, HW details were hardcoded in the kernel

... requiring different kernel builds for different boards using the same SoC
With device trees, a single kernel binary can support multiple
hardware configurations through externalized HW descriptions.

» Hierarchically organized

Nodes, each with Properties (key-value pairs)
Paths identify Nodes in the hierarchy

dtc -1 dts -O dtb -0 output.dtb input.dts
cpp -nostdinc -l include -undef -x assembler-with-cpp input.dts | dtc -1 dts -O dtb -o output.dtb

9 Virtualization for Embedded Systems FORTH-ICS

» of Computar Science

Device Tree Example

cpus { #address-cells = <1>; #size-cells = <0>;
cpu@0 { compatible = "arm,cortex-a9"; reg =<0>; };
cpu@1 { compatible = "arm,cortex-a9"; reg=<1>; }; };

memory@80000000 { device_type = "memory";
reg = <0x80000000 0x20000000>; /* 512 MB */ };

uart@10009000 { compatible = "vendor,uart";
reg = <0x10009000 0x1000>; interrupts = <36>;
status = "okay"; };

i2c@10018000 { compatible = "vendor,i2c";

reg = <0x10018000 0x1000>; interrupts = <40>; clock-frequency = <100000>;
status = "okay";

eeprom@50 { compatible = "atmel,24c256"; reg =<0x50>; }; };

10 Virtualization for Embedded Systems FORTH-ICS

o of Computar Science

Example Boot Sequence (Arm)

» 1. Bootloader (eg. U-Boot) loads the kernel image and DTB
into memory

» 2. Bootloader passes DTB address to the kernel
via register (r2 on Arm)

» 3. Kernel validates DTB & creates internal representation.
» 4. Kernel uses the device tree to:

Configure memory regions

Identify and initialize platform devices

Set up interrupt mappings

Detect available buses and connected devices

11 Virtualization for Embedded Systems FORTH-ICS

» of Computar Science

Uses of QEMU (Quick EMUlator)

» Emulate various target architectures
ARM, MIPS, PowerPC, RISC-V, x86, ...

» Test embedded Linux systems without physical hardware
» Accelerate development and debugging cycles
» Serve as both a target device emulator and build host

12 Virtualization for Embedded Systems FORTH-ICS

o of Computar Sciens

Virtualization Definitions

» Virtualization

A layer mapping its visible interface and resources onto the underlying
layer or system on which it is implemented

Purposes: abstraction, replication, isolation

» Virtual Machine (VM)

An efficient, isolated duplicate of a real machine

Programs should not be able to distinguish between execution on real or
virtual H/W (except for: fewer/variable resources, and device timing)

VMs should execute without interfering with each other
Efficiency requires that most instructions execute directly on real H/W

» Hypervisor / Virtual Machine Monitor (VMM)

Partitions a physical machine into multiple “virtual machines”
Host : machine and / or software on which the VMM is implemented
Guest : the OS which executes under the control of the VMM

13 Virtualization for Embedded Systems FORTH-ICS

Institute of Computar Science

Virtualization alternatives & their performance

'+ Minimal functionality > g
lesiismhond i, SR P » Accurate functionality
. Full iming and o « Minimal timing

L7 H{warch details ’

. 7’ | Full functional, memory and

Architectural ’ “ i system details; simple timing
Simulators

{eg, SimpleScalar, '
SMTsim Interpreted

Emulators Fast

(eg, Bochs, Emulators A '
SIMICS) (eg, QEMU, |rt|.fa
SimNow™) Machines
(eg, VMware,
Virtual PC)

-+ No system details,
' N0 memory paths

_+ Native virtualization,
- direct execution

Accuracy

108 -10° 10-100 2-10 1.2-1.5 Native
Speed (slowdown)

14 The Architecture of Virtual Machines FORTH-ICS

Institute of Computar Science

OS vs Hypervisor (VMM)

» Hypervisor / Virtual Machine Monitor (VMM)
Software that supports virtual machines on a physical machine
Determines how to map VM resources to physical ones
Physical resources may be time-shared, partitioned, or emulated

» The OS has complete control of the (physical) system

Impossible for >1 operating systems to be executing on the same
platform

OS provides execution environment for processes
» Hypervisor (VMM) “virtualizes” the hardware interface

GuestOS’s do not have complete control of the system
VMM provides execution environment for OS

“virtual hardware”

15 Virtualization for Embedded Systems FORTH-ICS

Institute of Computar Science

What needs to be emulated for a VM? [Hardware]

» CPU and memory hierarchy
ISA, Register state, Memory state
Privilege levels, Exceptions/Traps, Interrupts
» Memory Management Unit (MMU)
Page tables, segments = virtual memory support
Controlled via special registers, and via page tables
» Platform
Interrupt controller, timers, peripheral buses

» Firmware (BIOS) Hardware is not (commonly) designed
» Peripheral devices be multiplexed 2 Loss of isolation

Disk, network interface, serial line
Programmed 1/O, Direct Memory Access (DMA)
Events delivered to software via polling or interrupts

16 Virtualization for Embedded Systems FORTH-ICS

» of Computar Science

What needs to be emulated for a VM? [OS, App]
» OS

OS issues instructions to control hardware devices

... interacts with hardware devices using “sensitive” instructions
Allocate and manage hardware resources on behalf of programs
... OS runs at higher privilege level than applications

Expose system call interface to applications

... implemented using low-level H/W interfaces

» Application
Relies on the system call interface, runs in unprivileged mode
Special instruction(s) to call into OS code

OS provides a program with the illusion of its own memory

Virtual address spaces (implemented via MMU) - isolation
=1 from OS and other App’s

Most instructions run directly on the CPU
Sensitive instructions cause the CPU to throw an exception to the OS

17 Virtualization for Embedded Systems ‘FORTH-ICS

. Institute of Computar Science

Computing systems are built on levels of abstraction

» Different perspectives on
what a “machine” is

OS =2 ISA: Instruction Set
Architecture

h/w — s/w interface ABI
Compiler = ABI: Application
Binary Interface

User ISA + OS calls

Calling conventions
Application = API:

Application Programming
Interface

User ISA + Library calls

Application
Programs

Libraries

Operating System

e Scheduler

Drivers
Manager

Execution Hardware

M
System Interconnect Tranglgt?g
(bus)
Controllers Controllers
I/O I;):;ices Main
Networking o Ul
By Glenford Myers (1982)

18 Virtualization for Embedded Systems

Software

API

ISA

Hardware

liQRTH-IFS

» of Computar Science

“Classic” VM (Popek & Goldberg, 1974) (1/4)

» Essentials of a Virtual Machine Monitor (VMM)

An efficient, isolated duplicate of the real machine.

Equivalence VMM
Software on the VMM executes identically to -
its execution on hardware, barring timing effects.]
i.e. Running on VMM == Running directly on HW &

Performance

Non —Privileged instructions can be executed directly by the real
processor, with no software intervention by the VMM.

i.e. Performance on VMM == Performance on HW

Resource control

The VMM must have complete control of the virtualized resources.

> 19 The Architecture of Virtual Machines ' FORTH-ICS

of Computar Science

“Classic” VM (Popek & Goldberg, 1974) (2/4)

» Instruction types
Privileged instructions: generate trap when executed in any but
the most-privileged level
Execute in privileged mode, trap in user mode
E.g. x86 LIDT : load interrupt descriptor table address
Privileged state: determines resource allocation
Privilege mode, addressing context, exception vectors, ...
Sensitive instructions: instructions whose behavior depends on
the current privilege level, or modify H/W state
Control sensitive: change privileged state
Behavior sensitive: exposes privileged state

E.g. x86 POPF : pop stack to EFLAGS (in user-mode, the ‘interrupt
enable’ bit is not over-written)

20 The Architecture of Virtual Machines FORTH-ICS

» of Computar Science

“Classic” VM (Popek & Goldberg, 1974) (3/4)

Theorem 1: A VMM may be constructed if the set of SI’s is a subset of the set of PI’s

ISA is Virtualizable ISA is NOT Virtualizable

D 21 The Architecture of Virtual Machines

“Classic” VM (Popek & Goldberg, 1974) (4/4)

» To build a VMM, it is sufficient for all instructions that
affect the correct functioning of the VMM (SI’s) always trap
and pass control to the VM M.

This guarantees the “resource control property”

Non-privileged instructions are executed without VMM
intervention

Equivalence property: We are not changing the original code, so
the output will be the same.

22 The Architecture of Virtual Machines FORTH-ICS

» of Computar Science

Mostly-virtualizable Architectures ®

» X86
Sensitive push/pop instructions are not privileged
Segment and interrupt descriptor tables in virtual memory

» Itanium
Interrupt vectors table in virtual memory

» MIPS
User-accessible kernel registers kO, k1 (save/restore state)

» ARM

PCis a general-purpose register
Exception returns to PC (no trap)

> 23 The Architecture of Virtual Machines ‘FORTH-ICS

. Institute of Computar Science

Virtualization overheads

» VMM maintains virtualized privileged machine state
Processor status, addressing context, device state, ...
» VMM emulates privileged instructions

Translation between virtual and real privileged state
E.g. guest-to-real page tables

» Traps are expensive
Several 100s cycles (for x86)
» Certain important OS operations involve several traps

Interrupt enable/disable for mutual exclusion
Page table setup/updates for fork()

24 The Architecture of Virtual Machines FORTH-ICS

» of Computar Science

How to achieve safe —and- fast virtualization?

» Emulation

Interpret each instruction
» Paravirtualization

Modify the guest OS to avoid non-virtualizable instructions
» Binary translation (instead of trap-and-emulate)

Static vs Dynamic

» Change processor architecture

Intel VT , AMD Pacifica 2 extend x86 to make "Classic
Virtualization" possible [VM/370 origins !]

Add a new CPU mode to distinguish VMM from guest/app

25 The Architecture of Virtual Machines FORTH-ICS

Institute of Computar Science

Evolution of System Virtualization

System Virtualization

Classic Virtualization
(Popek & Goldberg)

Trap-and-emulate l

Enhancement
VMM / Guest OS Interface Hardware / VMM Interface Modern Approach

:l Binary Translation -

A 4

Para-virtualization | |Hardware Support for Virtualization | Software Virtualization
(Xen) | (Intel VT, AMD SVM, Arm) ! (VMware)

26 The Architecture of Virtual Machines FORTH-ICS

Institute of Computar Science

Binary Translation

Direct Execution

(user mode guest code)

Faults, syscalls
interrupts

IRET, sysret
+ translator cache

Binary Translation + trace cache

(kernel mode guest code)

User applications are not translated, but run directly.
Binary Translation only happens when the guest OS kernel gets called.

D 27 The Architecture of Virtual Machines ;?éf;iFORTH-ICS

. +Inatitute of Computar Science

Hypervisor (VMM) types

» Type I: run directly on hardware (minimal OS) Vitual Virtual
» Bare-metal (minimal OS)
» e.g. XEN (Citrix XenServer), Microsoft Hyper-V,
IBM LPAR, VMware ESXi (vmkernel)
» Monolithic (kernel + device drivers+ 1/O stack)
» Microkernel —based: /0O stack and HW-specific .
device drivers in “parent” partition Physical Server

Guest 05 Guest 05

» Type Il: run on host OS

» Hosted

» One user-space process, or one user-space Hypervisor Type 2
process per VM

» e.g. VMware Workstation, VirtualBox, KVM Operating system

(Linux), QEMU

Physical Server

D 28 The Architecture of Virtual Machines ;FORTH ICS

Institute of Computar Science

VMM architectures

Core operating system

Core operating system

Hardware abstraction layer

Knows about

Hardware abstraction layer

Knows about

Virtual machine monitor I

Y
‘ Physical hardware I Physical hardware
Only OS knows about H/W Unmodified view of H/W

Core operating system

Hardware abstraction layer

Knows about

Virtual machine monitor

|

Physical hardware

Modified view of H/W
Paravirtualized VMM

VMM provides a HW/SWV interface to guest OSs :

Full virtualization: trapping & emulating sensitive instructions
Para-virtualization: OS-assisted (“hyper-calls”)

HW-accelerated virtualization (unmodified Guest OS)

29 The Architecture of Virtual Machines

FDRTH-IFS

Institute of Computar Science

Key Techniques (1/3): De-privileging

» VMM emulates the effect on
- system/hardware resources of
S privileged instructions whose
L execution traps into the VMM

GuestOS

privileged aka trap-and-emulate

.- instruction

» Typically achieved by running
| GuestOS at a lower hardware
v priority level than the VMM

-y resource § “Normal” instructions run directly
on processor

smulate change “Privileged” instructions trap into
VMM (for safe emulation)

» Problematic on architectures
where privileged instructions do
not trap when executed at
deprivileged priority!

30 The Architecture of Virtual Machines FORTH-ICS

o of Computar Science

trap

vmm

change

Yresource

Key Techniques (2/3): Primary vs Shadow Structures

» VMM maintains “shadow” copies of critical structures
whose “primary” versions are manipulated by GuestOS

e.g., page tables

» Primary copies needed to insure correct environment
visible to GuestOS

31 The Architecture of Virtual Machines FORTH-ICS

o of Computar Science

Memory Management by the VMM

VMM
machine

Ja (ON

““shadow”’ page tables

32 The Architecture of Virtual Machines

process > entity

virtual address space

GuestOS

» Isolation/protection of Guest OS
— | | address spaces

» Efficient MM address translation
page tables

‘FORTH-ICS

. Institute of Computar Science

Key Techniques (3/3): Memory Tracing (Trace faults)

Shadow page table Shadow page table

Applications Applications
— R

User mode

Kernel mode @ﬁ%)
Primary
Page table

Physical Machine

» Control access to memory so that the shadow and primary
structures remain coherent

Write-protect primary structure so that update operations cause
page faults = caught, interpreted, emulated by the VMM

VMM typically use hardware page protection mechanisms to
trap accesses to in-memory primary structures

» 33 The Architecture of Virtual Machines ' FORTH-ICS

Vi . “ +Institute of Computar Science

Sources

>

James E. Smith, Ravi Nair, The Architecture of Virtual Machines, |IEEE
Computer, vol.38, no.5, May 2005

Mendel Rosenblum, Tal Garfinkel, Virtual Machine Monitors:
Current Technology and Future Trends, IEEE Computer, May
2005.

A. Whitaker, R.S. Cox, M. Shaw, S.D. Gribble, Rethinking the
Design of Virtual Machine Monitors, IEEE Computer, vol.38,
no.5, May 2005.

Kirk L. Kroeker, The Evolution of Virtualization, CACM, vol.52, no. 3,
March 2009

G.J. Popek, and R.P. Goldberg, Formal Requirements for
Virtualizable Third Generation Architectures, CACM, vol. 17 no.
7,1974.

Jim Smith and Ravi Nair, Virtual Machines: Versatile Platforms for
Systems and Processes, ISBN-10: 1558609105, Elsevier, 2005

34 The Architecture of Virtual Machines FORTH-ICS

