
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

Virtualization in Embedded Systems
Lecture for the Embedded Systems Course

CSD, University of Crete (April 7 & 11, 2025)

Today’s lecture

 Introduction of concepts

 Virtualization (ISA/ABI/API, VM, VMM/Hypervisor)

 Taxonomies of virtualization approaches

 Motivation in the context of embedded systems

 H/W + S/W co-design

 Use-cases (mostly from mobile)

 Virtualization techniques (& overheads)

 Dynamic Binary Translation

 (De-)Privileged execution, Traps (instr. & trace faults)

 Memory management, Primary vs. Shadow structures

2 Virtualization for Embedded Systems

Architecture viewpoint x86, ARM (+ RISC-V)

OS viewpoint: Focusing on Linux, in purpose-built embedded systems

CS-428 focus shift in remainder of lectures: from “simple” to “complex” embedded

Virtualization to enable H/W-S/W co-design

 How to co-design/co-develop H/W + S/W for a system ?
 Limited availability

 Bugs in the production environment cannot be reproduced in the
laboratory

 Difficult to debug on-site

 Narrow time windows

 Sometimes in a dangerous environment …

 Debugging challenges
 Is it a problem in the driver or in the device?

 Is the firmware faulty? Is it wrongly loaded/configured?

 Is the hardware damaged?

 How can we reproduce the bug?

 Do we have easy access to the environment?

 Is it remotely located?

3 Virtualization for Embedded Systems

Block diagram of a basic mobile phone

4 Virtualization for Embedded Systems

Writing (and testing) device drivers … without hardware

5 Virtualization for Embedded Systems

[source: PJ Waskiewicz & Shannon Nelson - Linux Plumbers Conference, 2011]

Embedded Linux System : Outline

6 Virtualization for Embedded Systems

Linux kernel

Process & Memory mgmt, HW support, …

Libc

uClibc / eglibc / musl / glibc

BusyBox

Custom Application(s)

Embedded Linux system development

7 Virtualization for Embedded Systems

Embedded Linux := the usage of the Linux kernel and various

open-source components in embedded systems

• Board support package (BSP) development

• System integration

• Development of applications

Development Host

• Cross-compilation toolchain

• Debugger

• Misc. tools

Embedded System Target

Bootloader

Linux OS kernel + drivers

C Library

LibraryLibrary

Library

Application

Application

JTAG, Serial

Ethernet

+ Build Host to create cross-chain:

binutils, kernel headers, C/C++ libraries, gcc, gdb

Board Support Package (BSP)

 Collection of components specific to a hardware platform

 Bootloader (e.g., U-Boot)

 OS kernel with hardware-specific drivers

 Device tree files

 Hardware abstraction layers

 Flash memory layout definitions

 Provided by board vendor or created by development team

8 Virtualization for Embedded Systems

Device Tree

 Data structure that describes HW components in a system

 separates hardware-specific configuration from the kernel code

 Before device trees, HW details were hardcoded in the kernel

 … requiring different kernel builds for different boards using the same SoC

 With device trees, a single kernel binary can support multiple
hardware configurations through externalized HW descriptions.

 Hierarchically organized

 Nodes, each with Properties (key-value pairs)

 Paths identify Nodes in the hierarchy

9 Virtualization for Embedded Systems

dtc -I dts -O dtb -o output.dtb input.dts

cpp -nostdinc -I include -undef -x assembler-with-cpp input.dts | dtc -I dts -O dtb -o output.dtb

Device Tree Example

cpus { #address-cells = <1>; #size-cells = <0>;

cpu@0 { compatible = "arm,cortex-a9"; reg = <0>; };

cpu@1 { compatible = "arm,cortex-a9"; reg = <1>; }; };

memory@80000000 { device_type = "memory";

reg = <0x80000000 0x20000000>; /* 512 MB */ };

uart@10009000 { compatible = "vendor,uart";

reg = <0x10009000 0x1000>; interrupts = <36>;

status = "okay"; };

i2c@10018000 { compatible = "vendor,i2c";

reg = <0x10018000 0x1000>; interrupts = <40>; clock-frequency = <100000>;
status = "okay";

eeprom@50 { compatible = "atmel,24c256"; reg = <0x50>; }; };

10 Virtualization for Embedded Systems

Example Boot Sequence (Arm)

 1. Bootloader (eg. U-Boot) loads the kernel image and DTB
into memory

 2. Bootloader passes DTB address to the kernel

 via register (r2 on Arm)

 3. Kernel validates DTB & creates internal representation.

 4. Kernel uses the device tree to:

 Configure memory regions

 Identify and initialize platform devices

 Set up interrupt mappings

 Detect available buses and connected devices

11 Virtualization for Embedded Systems

Uses of QEMU (Quick EMUlator)

 Emulate various target architectures

 ARM, MIPS, PowerPC, RISC-V, x86, …

 Test embedded Linux systems without physical hardware

 Accelerate development and debugging cycles

 Serve as both a target device emulator and build host

12 Virtualization for Embedded Systems

Virtualization Definitions

 Virtualization
 A layer mapping its visible interface and resources onto the underlying

layer or system on which it is implemented

 Purposes: abstraction, replication, isolation

 Virtual Machine (VM)
 An efficient, isolated duplicate of a real machine

 Programs should not be able to distinguish between execution on real or
virtual H/W (except for: fewer/variable resources, and device timing)

 VMs should execute without interfering with each other

 Efficiency requires that most instructions execute directly on real H/W

 Hypervisor / Virtual Machine Monitor (VMM)
 Partitions a physical machine into multiple “virtual machines”

 Host : machine and / or software on which the VMM is implemented

 Guest : the OS which executes under the control of the VMM

13 Virtualization for Embedded Systems

Virtualization alternatives & their performance

14 The Architecture of Virtual Machines

OS vs Hypervisor (VMM)

 Hypervisor / Virtual Machine Monitor (VMM)

 Software that supports virtual machines on a physical machine

 Determines how to map VM resources to physical ones

 Physical resources may be time-shared, partitioned, or emulated

 The OS has complete control of the (physical) system

 Impossible for >1 operating systems to be executing on the same
platform

 OS provides execution environment for processes

 Hypervisor (VMM) “virtualizes” the hardware interface

 GuestOS’s do not have complete control of the system

 VMM provides execution environment for OS

 “virtual hardware”

15 Virtualization for Embedded Systems

What needs to be emulated for a VM? [Hardware]

 CPU and memory hierarchy
 ISA, Register state, Memory state

 Privilege levels, Exceptions/Traps, Interrupts

 Memory Management Unit (MMU)
 Page tables, segments virtual memory support

 Controlled via special registers, and via page tables

 Platform
 Interrupt controller, timers, peripheral buses

 Firmware (BIOS)

 Peripheral devices
 Disk, network interface, serial line

 Programmed I/O, Direct Memory Access (DMA)

 Events delivered to software via polling or interrupts

16 Virtualization for Embedded Systems

Hardware is not (commonly) designed

be multiplexed Loss of isolation

What needs to be emulated for a VM? [OS, App]

 OS
 OS issues instructions to control hardware devices
 … interacts with hardware devices using “sensitive” instructions
 Allocate and manage hardware resources on behalf of programs
 … OS runs at higher privilege level than applications
 Expose system call interface to applications
 … implemented using low-level H/W interfaces

 Application
 Relies on the system call interface, runs in unprivileged mode
 Special instruction(s) to call into OS code
 OS provides a program with the illusion of its own memory

 Virtual address spaces (implemented via MMU) isolation
 from OS and other App’s

 Most instructions run directly on the CPU
 Sensitive instructions cause the CPU to throw an exception to the OS

17 Virtualization for Embedded Systems

Computing systems are built on levels of abstraction

Virtualization for Embedded Systems18

 Different perspectives on
what a “machine” is

 OS ISA: Instruction Set
Architecture

 h/w – s/w interface

 Compiler ABI: Application
Binary Interface

 User ISA + OS calls

 Calling conventions

 Application API:
Application Programming
Interface

 User ISA + Library calls

ISA

ABI
API

“Classic” VM (Popek & Goldberg, 1974) (1/4)

 Essentials of a Virtual Machine Monitor (VMM)

 An efficient, isolated duplicate of the real machine.

 Equivalence

 Software on the VMM executes identically to

its execution on hardware, barring timing effects.

i.e. Running on VMM == Running directly on HW

 Performance

 Non –Privileged instructions can be executed directly by the real
processor, with no software intervention by the VMM.

i.e. Performance on VMM == Performance on HW

 Resource control

 The VMM must have complete control of the virtualized resources.

19 The Architecture of Virtual Machines

Hardware

VM

VMM

“Classic” VM (Popek & Goldberg, 1974) (2/4)

 Instruction types
 Privileged instructions: generate trap when executed in any but

the most-privileged level
 Execute in privileged mode, trap in user mode

 E.g. x86 LIDT : load interrupt descriptor table address

 Privileged state: determines resource allocation
 Privilege mode, addressing context, exception vectors, …

 Sensitive instructions: instructions whose behavior depends on
the current privilege level, or modify H/W state
 Control sensitive: change privileged state

 Behavior sensitive: exposes privileged state

 E.g. x86 POPF : pop stack to EFLAGS (in user-mode, the ‘interrupt
enable’ bit is not over-written)

20 The Architecture of Virtual Machines

“Classic” VM (Popek & Goldberg, 1974) (3/4)

21 The Architecture of Virtual Machines

USER

PI

SI

ISA is Virtualizable

Theorem 1: A VMM may be constructed if the set of SI’s is a subset of the set of PI’s

USER

PI

SI

ISA is NOT Virtualizable

“Classic” VM (Popek & Goldberg, 1974) (4/4)

 To build a VMM, it is sufficient for all instructions that
affect the correct functioning of the VMM (SI’s) always trap
and pass control to the VMM.

 This guarantees the “resource control property”

 Non-privileged instructions are executed without VMM
intervention

 Equivalence property: We are not changing the original code, so
the output will be the same.

22 The Architecture of Virtual Machines

Mostly-virtualizable Architectures

 x86

 Sensitive push/pop instructions are not privileged

 Segment and interrupt descriptor tables in virtual memory

 Itanium

 Interrupt vectors table in virtual memory

 MIPS

 User-accessible kernel registers k0, k1 (save/restore state)

 ARM

 PC is a general-purpose register

 Exception returns to PC (no trap)

23 The Architecture of Virtual Machines

Virtualization overheads

 VMM maintains virtualized privileged machine state

 Processor status, addressing context, device state, …

 VMM emulates privileged instructions

 Translation between virtual and real privileged state

 E.g. guest-to-real page tables

 Traps are expensive

 Several 100s cycles (for x86)

 Certain important OS operations involve several traps

 Interrupt enable/disable for mutual exclusion

 Page table setup/updates for fork()

24 The Architecture of Virtual Machines

How to achieve safe –and- fast virtualization?

 Emulation

 Interpret each instruction

 Paravirtualization

 Modify the guest OS to avoid non-virtualizable instructions

 Binary translation (instead of trap-and-emulate)

 Static vs Dynamic

 Change processor architecture

 Intel VT , AMD Pacifica extend x86 to make "Classic
Virtualization" possible [VM/370 origins !]

 Add a new CPU mode to distinguish VMM from guest/app

25 The Architecture of Virtual Machines

Evolution of System Virtualization

26 The Architecture of Virtual Machines

Classic Virtualization
(Popek & Goldberg)

System Virtualization

Trap-and-emulate

Hardware / VMM Interface

Enhancement

Software Virtualization
(VMware)

Binary Translation

Modern Approach

Para-virtualization
(Xen)

…

Hardware Support for Virtualization
(Intel VT, AMD SVM, Arm)

…

VMM / Guest OS Interface

Binary Translation

27 The Architecture of Virtual Machines

 User applications are not translated, but run directly.

 Binary Translation only happens when the guest OS kernel gets called.

+ translator cache

+ trace cache

Hypervisor (VMM) types
 Type I: run directly on hardware (minimal OS)

 Bare-metal (minimal OS)
 e.g. XEN (Citrix XenServer), Microsoft Hyper-V,

IBM LPAR, VMware ESXi (vmkernel)
 Monolithic (kernel + device drivers+ I/O stack)
 Microkernel –based: I/O stack and HW-specific

device drivers in “parent” partition

 Type II: run on host OS
 Hosted
 one user-space process, or one user-space

process per VM
 e.g. VMware Workstation, VirtualBox, KVM

(Linux), QEMU

28 The Architecture of Virtual Machines

VMM architectures

29 The Architecture of Virtual Machines

Modified view of H/W

Paravirtualized VMM

Unmodified view of H/WOnly OS knows about H/W

VMM provides a HW/SW interface to guest OSs :

• Full virtualization: trapping & emulating sensitive instructions

• Para-virtualization: OS-assisted (“hyper-calls”)

• HW-accelerated virtualization (unmodified Guest OS)

Key Techniques (1/3): De-privileging

30 The Architecture of Virtual Machines

 VMM emulates the effect on
system/hardware resources of
privileged instructions whose
execution traps into the VMM
 aka trap-and-emulate

 Typically achieved by running
GuestOS at a lower hardware
priority level than the VMM
 “Normal” instructions run directly

on processor
 “Privileged” instructions trap into

VMM (for safe emulation)

 Problematic on architectures
where privileged instructions do
not trap when executed at
deprivileged priority!

resource

vmm

privileged

instruction

trap

GuestOS

resource

emulate change

change

Key Techniques (2/3): Primary vs Shadow Structures

31 The Architecture of Virtual Machines

 VMM maintains “shadow” copies of critical structures
whose “primary” versions are manipulated by GuestOS
 e.g., page tables

 Primary copies needed to insure correct environment
visible to GuestOS

Memory Management by the VMM

32 The Architecture of Virtual Machines

 Isolation/protection of Guest OS
address spaces

 Efficient MM address translation

VMM

machine

VMM GuestOS

“shadow” page tables page tables

process

virtual

OS

physical

entity

address space

Key Techniques (3/3): Memory Tracing (Trace faults)

33 The Architecture of Virtual Machines

 Control access to memory so that the shadow and primary
structures remain coherent
 Write-protect primary structure so that update operations cause

page faults caught, interpreted, emulated by the VMM
 VMM typically use hardware page protection mechanisms to

trap accesses to in-memory primary structures

VMM

OS OS

ApplicationsApplications

User mode

Kernel mode
Primary

Page table

Shadow page tableShadow page table

Physical MachineTRAP

PFH

Updated

Updated

Sources

 James E. Smith, Ravi Nair, The Architecture of Virtual Machines, IEEE
Computer, vol.38, no.5, May 2005

 Mendel Rosenblum, Tal Garfinkel, Virtual Machine Monitors:
Current Technology and Future Trends, IEEE Computer, May
2005.

 A. Whitaker, R.S. Cox, M. Shaw, S.D. Gribble, Rethinking the
Design of Virtual Machine Monitors, IEEE Computer, vol.38,
no.5, May 2005.

 Kirk L. Kroeker, The Evolution of Virtualization, CACM, vol.52, no. 3,
March 2009

 G.J. Popek, and R.P. Goldberg, Formal Requirements for
Virtualizable Third Generation Architectures, CACM, vol. 17 no.
7, 1974.

 Jim Smith and Ravi Nair, Virtual Machines: Versatile Platforms for
Systems and Processes, ISBN-10: 1558609105, Elsevier, 2005

34 The Architecture of Virtual Machines

