
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

Virtualization in Embedded Systems
Lecture for the Embedded Systems Course

CSD, University of Crete (April 7 & 11, 2025)

Today’s lecture

 Introduction of concepts

 Virtualization (ISA/ABI/API, VM, VMM/Hypervisor)

 Taxonomies of virtualization approaches

 Motivation in the context of embedded systems

 H/W + S/W co-design

 Use-cases (mostly from mobile)

 Virtualization techniques (& overheads)

 Dynamic Binary Translation

 (De-)Privileged execution, Traps (instr. & trace faults)

 Memory management, Primary vs. Shadow structures

2 Virtualization for Embedded Systems

Architecture viewpoint x86, ARM (+ RISC-V)

OS viewpoint: Focusing on Linux, in purpose-built embedded systems

CS-428 focus shift in remainder of lectures: from “simple” to “complex” embedded

Virtualization to enable H/W-S/W co-design

 How to co-design/co-develop H/W + S/W for a system ?
 Limited availability

 Bugs in the production environment cannot be reproduced in the
laboratory

 Difficult to debug on-site

 Narrow time windows

 Sometimes in a dangerous environment …

 Debugging challenges
 Is it a problem in the driver or in the device?

 Is the firmware faulty? Is it wrongly loaded/configured?

 Is the hardware damaged?

 How can we reproduce the bug?

 Do we have easy access to the environment?

 Is it remotely located?

3 Virtualization for Embedded Systems

Block diagram of a basic mobile phone

4 Virtualization for Embedded Systems

Writing (and testing) device drivers … without hardware

5 Virtualization for Embedded Systems

[source: PJ Waskiewicz & Shannon Nelson - Linux Plumbers Conference, 2011]

Embedded Linux System : Outline

6 Virtualization for Embedded Systems

Linux kernel

Process & Memory mgmt, HW support, …

Libc

uClibc / eglibc / musl / glibc

BusyBox

Custom Application(s)

Embedded Linux system development

7 Virtualization for Embedded Systems

Embedded Linux := the usage of the Linux kernel and various

open-source components in embedded systems

• Board support package (BSP) development

• System integration

• Development of applications

Development Host

• Cross-compilation toolchain

• Debugger

• Misc. tools

Embedded System Target

Bootloader

Linux OS kernel + drivers

C Library

LibraryLibrary

Library

Application

Application

JTAG, Serial

Ethernet

+ Build Host to create cross-chain:

binutils, kernel headers, C/C++ libraries, gcc, gdb

Board Support Package (BSP)

 Collection of components specific to a hardware platform

 Bootloader (e.g., U-Boot)

 OS kernel with hardware-specific drivers

 Device tree files

 Hardware abstraction layers

 Flash memory layout definitions

 Provided by board vendor or created by development team

8 Virtualization for Embedded Systems

Device Tree

 Data structure that describes HW components in a system

 separates hardware-specific configuration from the kernel code

 Before device trees, HW details were hardcoded in the kernel

 … requiring different kernel builds for different boards using the same SoC

 With device trees, a single kernel binary can support multiple
hardware configurations through externalized HW descriptions.

 Hierarchically organized

 Nodes, each with Properties (key-value pairs)

 Paths identify Nodes in the hierarchy

9 Virtualization for Embedded Systems

dtc -I dts -O dtb -o output.dtb input.dts

cpp -nostdinc -I include -undef -x assembler-with-cpp input.dts | dtc -I dts -O dtb -o output.dtb

Device Tree Example

cpus { #address-cells = <1>; #size-cells = <0>;

cpu@0 { compatible = "arm,cortex-a9"; reg = <0>; };

cpu@1 { compatible = "arm,cortex-a9"; reg = <1>; }; };

memory@80000000 { device_type = "memory";

reg = <0x80000000 0x20000000>; /* 512 MB */ };

uart@10009000 { compatible = "vendor,uart";

reg = <0x10009000 0x1000>; interrupts = <36>;

status = "okay"; };

i2c@10018000 { compatible = "vendor,i2c";

reg = <0x10018000 0x1000>; interrupts = <40>; clock-frequency = <100000>;
status = "okay";

eeprom@50 { compatible = "atmel,24c256"; reg = <0x50>; }; };

10 Virtualization for Embedded Systems

Example Boot Sequence (Arm)

 1. Bootloader (eg. U-Boot) loads the kernel image and DTB
into memory

 2. Bootloader passes DTB address to the kernel

 via register (r2 on Arm)

 3. Kernel validates DTB & creates internal representation.

 4. Kernel uses the device tree to:

 Configure memory regions

 Identify and initialize platform devices

 Set up interrupt mappings

 Detect available buses and connected devices

11 Virtualization for Embedded Systems

Uses of QEMU (Quick EMUlator)

 Emulate various target architectures

 ARM, MIPS, PowerPC, RISC-V, x86, …

 Test embedded Linux systems without physical hardware

 Accelerate development and debugging cycles

 Serve as both a target device emulator and build host

12 Virtualization for Embedded Systems

Virtualization Definitions

 Virtualization
 A layer mapping its visible interface and resources onto the underlying

layer or system on which it is implemented

 Purposes: abstraction, replication, isolation

 Virtual Machine (VM)
 An efficient, isolated duplicate of a real machine

 Programs should not be able to distinguish between execution on real or
virtual H/W (except for: fewer/variable resources, and device timing)

 VMs should execute without interfering with each other

 Efficiency requires that most instructions execute directly on real H/W

 Hypervisor / Virtual Machine Monitor (VMM)
 Partitions a physical machine into multiple “virtual machines”

 Host : machine and / or software on which the VMM is implemented

 Guest : the OS which executes under the control of the VMM

13 Virtualization for Embedded Systems

Virtualization alternatives & their performance

14 The Architecture of Virtual Machines

OS vs Hypervisor (VMM)

 Hypervisor / Virtual Machine Monitor (VMM)

 Software that supports virtual machines on a physical machine

 Determines how to map VM resources to physical ones

 Physical resources may be time-shared, partitioned, or emulated

 The OS has complete control of the (physical) system

 Impossible for >1 operating systems to be executing on the same
platform

 OS provides execution environment for processes

 Hypervisor (VMM) “virtualizes” the hardware interface

 GuestOS’s do not have complete control of the system

 VMM provides execution environment for OS

 “virtual hardware”

15 Virtualization for Embedded Systems

What needs to be emulated for a VM? [Hardware]

 CPU and memory hierarchy
 ISA, Register state, Memory state

 Privilege levels, Exceptions/Traps, Interrupts

 Memory Management Unit (MMU)
 Page tables, segments  virtual memory support

 Controlled via special registers, and via page tables

 Platform
 Interrupt controller, timers, peripheral buses

 Firmware (BIOS)

 Peripheral devices
 Disk, network interface, serial line

 Programmed I/O, Direct Memory Access (DMA)

 Events delivered to software via polling or interrupts

16 Virtualization for Embedded Systems

Hardware is not (commonly) designed

be multiplexed  Loss of isolation

What needs to be emulated for a VM? [OS, App]

 OS
 OS issues instructions to control hardware devices
 … interacts with hardware devices using “sensitive” instructions
 Allocate and manage hardware resources on behalf of programs
 … OS runs at higher privilege level than applications
 Expose system call interface to applications
 … implemented using low-level H/W interfaces

 Application
 Relies on the system call interface, runs in unprivileged mode
 Special instruction(s) to call into OS code
 OS provides a program with the illusion of its own memory

 Virtual address spaces (implemented via MMU)  isolation
 from OS and other App’s

 Most instructions run directly on the CPU
 Sensitive instructions cause the CPU to throw an exception to the OS

17 Virtualization for Embedded Systems

Computing systems are built on levels of abstraction

Virtualization for Embedded Systems18

 Different perspectives on
what a “machine” is

 OS  ISA: Instruction Set
Architecture

 h/w – s/w interface

 Compiler  ABI: Application
Binary Interface

 User ISA + OS calls

 Calling conventions

 Application  API:
Application Programming
Interface

 User ISA + Library calls

ISA

ABI
API

“Classic” VM (Popek & Goldberg, 1974) (1/4)

 Essentials of a Virtual Machine Monitor (VMM)

 An efficient, isolated duplicate of the real machine.

 Equivalence

 Software on the VMM executes identically to

its execution on hardware, barring timing effects.

i.e. Running on VMM == Running directly on HW

 Performance

 Non –Privileged instructions can be executed directly by the real
processor, with no software intervention by the VMM.

i.e. Performance on VMM == Performance on HW

 Resource control

 The VMM must have complete control of the virtualized resources.

19 The Architecture of Virtual Machines

Hardware

VM

VMM

“Classic” VM (Popek & Goldberg, 1974) (2/4)

 Instruction types
 Privileged instructions: generate trap when executed in any but

the most-privileged level
 Execute in privileged mode, trap in user mode

 E.g. x86 LIDT : load interrupt descriptor table address

 Privileged state: determines resource allocation
 Privilege mode, addressing context, exception vectors, …

 Sensitive instructions: instructions whose behavior depends on
the current privilege level, or modify H/W state
 Control sensitive: change privileged state

 Behavior sensitive: exposes privileged state

 E.g. x86 POPF : pop stack to EFLAGS (in user-mode, the ‘interrupt
enable’ bit is not over-written)

20 The Architecture of Virtual Machines

“Classic” VM (Popek & Goldberg, 1974) (3/4)

21 The Architecture of Virtual Machines

USER

PI

SI

ISA is Virtualizable

Theorem 1: A VMM may be constructed if the set of SI’s is a subset of the set of PI’s

USER

PI

SI

ISA is NOT Virtualizable

“Classic” VM (Popek & Goldberg, 1974) (4/4)

 To build a VMM, it is sufficient for all instructions that
affect the correct functioning of the VMM (SI’s) always trap
and pass control to the VMM.

 This guarantees the “resource control property”

 Non-privileged instructions are executed without VMM
intervention

 Equivalence property: We are not changing the original code, so
the output will be the same.

22 The Architecture of Virtual Machines

Mostly-virtualizable Architectures 

 x86

 Sensitive push/pop instructions are not privileged

 Segment and interrupt descriptor tables in virtual memory

 Itanium

 Interrupt vectors table in virtual memory

 MIPS

 User-accessible kernel registers k0, k1 (save/restore state)

 ARM

 PC is a general-purpose register

 Exception returns to PC (no trap)

23 The Architecture of Virtual Machines

Virtualization overheads

 VMM maintains virtualized privileged machine state

 Processor status, addressing context, device state, …

 VMM emulates privileged instructions

 Translation between virtual and real privileged state

 E.g. guest-to-real page tables

 Traps are expensive

 Several 100s cycles (for x86)

 Certain important OS operations involve several traps

 Interrupt enable/disable for mutual exclusion

 Page table setup/updates for fork()

24 The Architecture of Virtual Machines

How to achieve safe –and- fast virtualization?

 Emulation

 Interpret each instruction

 Paravirtualization

 Modify the guest OS to avoid non-virtualizable instructions

 Binary translation (instead of trap-and-emulate)

 Static vs Dynamic

 Change processor architecture

 Intel VT , AMD Pacifica  extend x86 to make "Classic
Virtualization" possible [VM/370 origins !]

 Add a new CPU mode to distinguish VMM from guest/app

25 The Architecture of Virtual Machines

Evolution of System Virtualization

26 The Architecture of Virtual Machines

Classic Virtualization
(Popek & Goldberg)

System Virtualization

Trap-and-emulate

Hardware / VMM Interface

Enhancement

Software Virtualization
(VMware)

Binary Translation

Modern Approach

Para-virtualization
(Xen)

…

Hardware Support for Virtualization
(Intel VT, AMD SVM, Arm)

…

VMM / Guest OS Interface

Binary Translation

27 The Architecture of Virtual Machines

 User applications are not translated, but run directly.

 Binary Translation only happens when the guest OS kernel gets called.

+ translator cache

+ trace cache

Hypervisor (VMM) types
 Type I: run directly on hardware (minimal OS)

 Bare-metal (minimal OS)
 e.g. XEN (Citrix XenServer), Microsoft Hyper-V,

IBM LPAR, VMware ESXi (vmkernel)
 Monolithic (kernel + device drivers+ I/O stack)
 Microkernel –based: I/O stack and HW-specific

device drivers in “parent” partition

 Type II: run on host OS
 Hosted
 one user-space process, or one user-space

process per VM
 e.g. VMware Workstation, VirtualBox, KVM

(Linux), QEMU

28 The Architecture of Virtual Machines

VMM architectures

29 The Architecture of Virtual Machines

Modified view of H/W

Paravirtualized VMM

Unmodified view of H/WOnly OS knows about H/W

VMM provides a HW/SW interface to guest OSs :

• Full virtualization: trapping & emulating sensitive instructions

• Para-virtualization: OS-assisted (“hyper-calls”)

• HW-accelerated virtualization (unmodified Guest OS)

Key Techniques (1/3): De-privileging

30 The Architecture of Virtual Machines

 VMM emulates the effect on
system/hardware resources of
privileged instructions whose
execution traps into the VMM
 aka trap-and-emulate

 Typically achieved by running
GuestOS at a lower hardware
priority level than the VMM
 “Normal” instructions run directly

on processor
 “Privileged” instructions trap into

VMM (for safe emulation)

 Problematic on architectures
where privileged instructions do
not trap when executed at
deprivileged priority!

resource

vmm

privileged

instruction

trap

GuestOS

resource

emulate change

change

Key Techniques (2/3): Primary vs Shadow Structures

31 The Architecture of Virtual Machines

 VMM maintains “shadow” copies of critical structures
whose “primary” versions are manipulated by GuestOS
 e.g., page tables

 Primary copies needed to insure correct environment
visible to GuestOS

Memory Management by the VMM

32 The Architecture of Virtual Machines

 Isolation/protection of Guest OS
address spaces

 Efficient MM address translation

VMM

machine

VMM GuestOS

“shadow” page tables page tables

process

virtual

OS

physical

entity

address space

Key Techniques (3/3): Memory Tracing (Trace faults)

33 The Architecture of Virtual Machines

 Control access to memory so that the shadow and primary
structures remain coherent
 Write-protect primary structure so that update operations cause

page faults  caught, interpreted, emulated by the VMM
 VMM typically use hardware page protection mechanisms to

trap accesses to in-memory primary structures

VMM

OS OS

ApplicationsApplications

User mode

Kernel mode
Primary

Page table

Shadow page tableShadow page table

Physical MachineTRAP

PFH

Updated

Updated

Sources

 James E. Smith, Ravi Nair, The Architecture of Virtual Machines, IEEE
Computer, vol.38, no.5, May 2005

 Mendel Rosenblum, Tal Garfinkel, Virtual Machine Monitors:
Current Technology and Future Trends, IEEE Computer, May
2005.

 A. Whitaker, R.S. Cox, M. Shaw, S.D. Gribble, Rethinking the
Design of Virtual Machine Monitors, IEEE Computer, vol.38,
no.5, May 2005.

 Kirk L. Kroeker, The Evolution of Virtualization, CACM, vol.52, no. 3,
March 2009

 G.J. Popek, and R.P. Goldberg, Formal Requirements for
Virtualizable Third Generation Architectures, CACM, vol. 17 no.
7, 1974.

 Jim Smith and Ravi Nair, Virtual Machines: Versatile Platforms for
Systems and Processes, ISBN-10: 1558609105, Elsevier, 2005

34 The Architecture of Virtual Machines

