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Today’s lecture
CS-428 focus shift in remainder of lectures: from “simple” to “complex” embedded
» Introduction of concepts

Virtualization (ISA/ABI/API, VM, VMM/Hypervisor)

Taxonomies of virtualization approaches

» Motivation in the context of embedded systems
H/W + S/W co-design
Use-cases (mostly from mobile)

» Virtualization techniques (& overheads)
Dynamic Binary Translation
(De-)Privileged execution, Traps (instr. & trace faults)
Memory management, Primary vs. Shadow structures

Architecture viewpoint x86, ARM (+ RISC-V)

OS viewpoint: Focusing on Linux, in embedded systems

2 Virtualization for Embedded Systems FORTH-ICS

o of Computar Science



Virtualization Definitions

» Virtualization

A layer mapping its visible interface and resources onto the underlying
layer or system on which it is implemented

Purposes: abstraction, replication, isolation

» Virtual Machine (VM)

An efficient, isolated duplicate of a real machine

Programs should not be able to distinguish between execution on real or
virtual H/W (except for: fewer/variable resources, and device timing)

VMs should execute without interfering with each other
Efficiency requires that most instructions execute directly on real H/W

» Hypervisor / Virtual Machine Monitor (VMM)

Partitions a physical machine into multiple “virtual machines”
Host : machine and / or software on which the VMM is implemented
Guest : the OS which executes under the control of the VMM

3 Virtualization for Embedded Systems FORTH-ICS

Institute of Computar Science



Uses of virtual machines

» Multiple (identical) OS’es on same platform
The original raison d'étre
These days mostly driven by server consolidation
» Interesting variants of this:
Different OSes (e.g. Linux + Windows)
Old version of same OS
OS debugging (most likely uses Type-lIl VMM)

Checkpoint-restart
minimize lost work in case of crash
useful for debugging, incl. going backwards in time
re-run from last checkpoint to crash, collect traces, invert trace from crash

» Live system migration
Load balancing, Environment take-home

» Ship application with complete OS
Reduce dependency on environment

» What about embedded systems?
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Block diagram of a basic mobile phone
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Virtualization to enable H/W-S/W co-design

» How to co-design/co-develop H/W + S/W for a system ?
Limited availability

Bugs in the production environment cannot be reproduced in the
laboratory

Difficult to debug on-site
Narrow time windows
Sometimes in a dangerous environment ...

» Debugging challenges
Is it a problem in the driver or in the device?
Is the firmware faulty? Is it wrongly loaded/configured?
Is the hardware damaged?
How can we reproduce the bug?
Do we have easy access to the environment?
Is it remotely located?
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Writing (and testing) device drivers ... without hardware

Shift Left

» Hardware + Software = Complete product
* Feature-complete software by A-O silicon

« Software needs to happen earlier

HW Schedule

HW Schedule

[ source: PJ Waskiewicz & Shannon Nelson - Linux Plumbers Conference, 2011 |
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OS vs Hypervisor (VMM)

» Hypervisor / Virtual Machine Monitor (VMM)
Software that supports virtual machines on a physical machine
Determines how to map VM resources to physical ones
Physical resources may be time-shared, partitioned, or emulated

» The OS has complete control of the (physical) system

Impossible for >1 operating systems to be executing on the same
platform

OS provides execution environment for processes
» Hypervisor (VMM) “virtualizes” the hardware interface

GuestOS’s do not have complete control of the system
VMM provides execution environment for OS

“virtual hardware”
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What needs to be emulated for a VM? [ Hardware ]

» CPU and memory hierarchy
ISA, Register state, Memory state
Privilege levels, Exceptions/Traps, Interrupts
» Memory Management Unit (MMU)
Page tables, segments = virtual memory support
Controlled via special registers, and via page tables
» Platform
Interrupt controller, timers, peripheral buses

» Firmware (BIOS) Hardware is not (commonly) designed
» Peripheral devices be multiplexed 2 Loss of isolation

Disk, network interface, serial line
Programmed 1/O, Direct Memory Access (DMA)
Events delivered to software via polling or interrupts
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What needs to be emulated for a VM? [ OS, App ]
» OS

OS issues instructions to control hardware devices

... interacts with hardware devices using “sensitive” instructions
Allocate and manage hardware resources on behalf of programs
... OS runs at higher privilege level than applications

Expose system call interface to applications

... implemented using low-level H/W interfaces

» Application
Relies on the system call interface, runs in unprivileged mode
Special instruction(s) to call into OS code

OS provides a program with the illusion of its own memory

Virtual address spaces (implemented via MMU) - isolation
=1 from OS and other App’s

Most instructions run directly on the CPU
Sensitive instructions cause the CPU to throw an exception to the OS
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Computing systems are built on levels of abstraction

» Different perspectives on
what a “machine” is

Application

OS =2 ISA: Instruction Set Programs
Architecture oraries

h/w —s/w interface Sperating System software
Compiler = ABI: Application Drivers | 4=o | Scheduler API
Binary Interface N ——

User ISA + OS calls | ISA

Calling conventions System Egﬂg“""ea Traﬂ;gl?ﬂ .
Application % API Controllers Controllers
Application Programming 1/0 Devices o
Interface N . Memory

User ISA + Library calls By Glenford Myers (1982)
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Virtualization alternatives & their performance
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Embedded Linux System : Outline
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Embedded Linux system development

+ Build Host to create cross-chain:
binutils, kernel headers, C/C++ libraries, gcc, gdb

Embedded System Target
Development Host | j1ag serial
’ Application
Cross-compilation toolchain m Application
Debugger Library
Misc. tools Library Library
C Library

Board support package (BSP) development

_ _ Linux OS kernel + drivers
System integration

Development of applications Bootloader

Embedded Linux := the usage of the Linux kernel and various
open-source components in embedded systems
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Hypervisor “mysteries”

» Virtual Machine Taxonomy
Process virtual machines

: , Guest
Multiprogrammed systems Debian
Emulators and dynamic binary translation | r
High-level-language virtual machines L 1 Host

System virtual machines
“Classic” virtual machines
Hosted virtual machines
Whole-system virtual machines

» Key virtualization techniques

VirtualBox Console GUI Command line interface Web Services API

VirtualBox API layer

language neutral programming interface

.

HHH A

Virtual Machines

Teleportation VRDP Server )
Virtual

Portability
Layer User Mode Devices

cross platform ] : : ‘ binary compatible
S——— VirtualBox Hypervisor interface,

layer Windows, Linux, OS X, Solaris, FreeBSD 31 Party plug-in

Kernel Mode
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Virtualization Timeline (C. Dall — 2013)

(oM Marrame VMo 1 VMware  x86 Hardware  Virtual /O and
: ( | : Workstation Support Power  Device Assignments
!
: : l / /

|
' i
I | !
I 705 I '99 03 '05 '12
e e

Paravirtualization CPU and Memory Virtual
Xen Optimizations Interrupts

Virtual machines were popular in 60s-70s : IBM OS/370
CP/CMS, 1967 - zSeries, 1972 - PR/SM (LPAR), 1985
e Share resources of mainframe computers to run multiple single-user OSs
® Interest is lost by 80s-90s: development of multi-user OS, rapid drop in H/W cost
e Hardware support for virtualization is “lost” ... until the late 90s (VMware)
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Evolution of System Virtualization

System Virtualization

Classic Virtualization
(Popek & Goldberg)

Trap-and-emulate l

Enhancement
VMM / Guest OS Interface Hardware / VMM Interface Modern Approach

:l Binary Translation -

A 4

Para-virtualization | |Hardware Support for Virtualization | Software Virtualization
(Xen) | (Intel VT, AMD SVM, Arm) ! (VMware)
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Processor privilege levels (x86) : Ring Transitions

Least-trusted level

Call gates : outer = inner ring transition

[ Privilege levels in Linux ]

Ring0: OS

Ringl: unused

Ring2: unused

Most-trusted level

Ring3: application programs
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Processor privilege levels (x86) : Sharing vs Isolation

4

Procedure-calls typically require that two separate routines
share data-values (e.g., parameter-values get passed from the
caller to the callee)

To support reentrancy and recursion, the processor’s stack is
frequently used as a shared-access storage-area

Among routines with different levels of privilege, this would create a
“security hole” |
To guard against unintentional sharing of privileged information,
different stacks are provided for each “ring”

Transition from one ring to another must necessarily be
accompanied by a “stack-switch” operation
The CPU provides for automatic switching of stacks and copying of
parameter-values

Special instructions (“far calls”) and “call gates” (control data
structures, in protected memory)
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“Classic” VM (Popek & Goldberg, 1974) (1/4)

» Essentials of a Virtual Machine Monitor (VMM)

An efficient, isolated duplicate of the real machine.

Equivalence VMM
Software on the VMM executes identically to -
its execution on hardware, barring timing effects. ]
i.e. Running on VMM == Running directly on HW &

Performance

Non —Privileged instructions can be executed directly by the real
processor, with no software intervention by the VMM.

i.e. Performance on VMM == Performance on HW

Resource control

The VMM must have complete control of the virtualized resources.
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“Classic” VM (Popek & Goldberg, 1974) (2/4)

» Instruction types
Privileged instructions: generate trap when executed in any but
the most-privileged level
Execute in privileged mode, trap in user mode
E.g. x86 LIDT : load interrupt descriptor table address
Privileged state: determines resource allocation
Privilege mode, addressing context, exception vectors, ...
Sensitive instructions: instructions whose behavior depends on
the current privilege level, or modify H/W state
Control sensitive: change privileged state
Behavior sensitive: exposes privileged state

E.g. x86 POPF : pop stack to EFLAGS (in user-mode, the ‘interrupt
enable’ bit is not over-written)
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“Classic” VM (Popek & Goldberg, 1974) (3/4)

Theorem 1: A VMM may be constructed if the set of SI’s is a subset of the set of PI’s

ISA is Virtualizable ISA is NOT Virtualizable
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“Classic” VM (Popek & Goldberg, 1974) (4/4)

» To build a VMM, it is sufficient for all instructions that
affect the correct functioning of the VMM (SI’s) always trap
and pass control to the VM M.

This guarantees the “resource control property”

Non-privileged instructions are executed without VMM
intervention

Equivalence property: We are not changing the original code, so
the output will be the same.

23 The Architecture of Virtual Machines FORTH-ICS

» of Computar Science



Mostly-virtualizable Architectures ®

» X86
Sensitive push/pop instructions are not privileged
Segment and interrupt descriptor tables in virtual memory

» Itanium
Interrupt vectors table in virtual memory

» MIPS
User-accessible kernel registers kO, k1 (save/restore state)

» ARM

PCis a general-purpose register
Exception returns to PC (no trap)
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Virtualization overheads

» VMM maintains virtualized privileged machine state
Processor status, addressing context, device state, ...
» VMM emulates privileged instructions

Translation between virtual and real privileged state
E.g. guest-to-real page tables

» Traps are expensive
Several 100s cycles (for x86)
» Certain important OS operations involve several traps

Interrupt enable/disable for mutual exclusion
Page table setup/updates for fork()
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How to achieve safe —and- fast virtualization?

» Emulation
Interpret each instruction

» Paravirtualize

Modify the guest OS to avoid non-virtualizable instructions
» Binary translation (instead of trap-and-emulate)

Static vs Dynamic

» Change processor architecture

Intel VT , AMD Pacifica 2 extend x86 to make "Classic
Virtualization" possible [ VM/370 origins ! ]

Add a new CPU mode to distinguish VMM from guest/app
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Binary Translation

Direct Execution

(user mode guest code)

Faults, syscalls
interrupts

IRET, sysret
+ translator cache

Binary Translation + trace cache

(kernel mode guest code)

User applications are not translated, but run directly.
Binary Translation only happens when the guest OS kernel gets called.
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Hypervisor (VMM) types

» Type I: run directly on hardware (minimal OS) Vitual Virtual
» Bare-metal (minimal OS)
» e.g. XEN (Citrix XenServer), Microsoft Hyper-V,
IBM LPAR, VMware ESXi (vmkernel)
» Monolithic (kernel + device drivers+ 1/O stack)
»  Microkernel —based: /0O stack and HW-specific .
device drivers in “parent” partition Physical Server

Guest 05 Guest 05

» Type Il: run on host OS

» Hosted

» One user-space process, or one user-space Hypervisor Type 2
process per VM

» e.g. VMware Workstation, VirtualBox, KVM Operating system

(Linux), QEMU

Physical Server
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VMM architectures

Core operating system

Core operating system

Hardware abstraction layer

Knows about

Hardware abstraction layer

Knows about

Virtual machine monitor I

Y
‘ Physical hardware I Physical hardware
Only OS knows about H/W  Unmodified view of H/W

Core operating system

Hardware abstraction layer

Knows about

Virtual machine monitor

|

Physical hardware

Modified view of H/W
Paravirtualized VMM

VMM provides a HW/SWV interface to guest OSs :

Full virtualization: trapping & emulating sensitive instructions
Para-virtualization: OS-assisted (“hyper-calls”)

HW-accelerated virtualization (unmodified Guest OS)
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Key Techniques (1/3): De-privileging

» VMM emulates the effect on
- system/hardware resources of
S privileged instructions whose
L execution traps into the VMM

GuestOS

privileged aka trap-and-emulate

.- instruction

» Typically achieved by running
| GuestOS at a lower hardware
v priority level than the VMM

-y resource § “Normal” instructions run directly
on processor

smulate change “Privileged” instructions trap into
VMM (for safe emulation)

» Problematic on architectures
where privileged instructions do
not trap when executed at
deprivileged priority!

30 The Architecture of Virtual Machines FORTH-ICS

o of Computar Science

trap

vmm

change

Yresource




Key Techniques (2/3): Primary vs Shadow Structures

» VMM maintains “shadow” copies of critical structures
whose “primary” versions are manipulated by GuestOS

e.g., page tables

» Primary copies needed to insure correct environment
visible to GuestOS
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Memory Management by the VMM

VMM
machine

Ja (ON

““shadow”’ page tables

32 The Architecture of Virtual Machines

process > entity

virtual address space

GuestOS

» Isolation/protection of Guest OS
— | | address spaces

» Efficient MM address translation
page tables
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Key Techniques (3/3): Memory Tracing (Trace faults)

Shadow page table Shadow page table

Applications Applications
— R

User mode

Kernel mode @ﬁ%)
Primary
Page table

Physical Machine

» Control access to memory so that the shadow and primary
structures remain coherent

Write-protect primary structure so that update operations cause
page faults = caught, interpreted, emulated by the VMM

VMM typically use hardware page protection mechanisms to
trap accesses to in-memory primary structures
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System VMMs

Process \\IMs

guest
application

guest
application

guest
application

guest operating system

Same

virtual-machine monitor (VMM)

Multiprogrammed
systems

host hardware

Type 1

Type 1: runs directly on hardware

- primary goal: performance

- Examples: 0OS/370, VMware ESXi
Type 2: runs on host OS

- primary goal: ease of installation

Same-ISA dynamickh -evel-languageI
bi Izers VMs

System VMs

Different
ISA

Dynamic Whole-system

|
: Classic system

translators : VMs VMs
|
|
|

Hosted Codesigned
VMs VMs

guest

application

guest
application

guest
application

guest operating system

virtual-machine monitor (VMM)

host operating system

host hardware

- Example: User-Mode Linux, VMware Workstation
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Hosted VMMs

» Hybrid between Type 1 and Type 2
“Core VMM” runs directly on hardware

Improved performance as compared to “pure Type 2”
Leverage s/w engineering investment in host OS for |/O device support
/O services provided by host OS

Overhead for I/O operations, reduced performance isolation

App
App || App /0
VMM Guest0S
Example: VMware Workstation
HostOS VMM

Standard x86 PC hardware
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Process vs System VM

o
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Process:
Provides API interface
+ Easier to install

+ Leverages 0OS
services - e.g.
device drivers

- Execution overhead

System:

Provides ABI interface
+ Efficient execution

+ Can add OS-
independent services -
e.g. migration,
checkpointing, sandbox
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Process VM concept

» A guest program developed
for a machine (ISA and OS)
other than the user’s host
system can be used in the

host
process

N T

guest
process

runtime

same way as all other [ e ) st »
programs in the host system  i¥ ) process .
» Runtime system nime /
ystem */# . \

Encapsulates an individual ] i .

guest process giving it the e ;“““ 9s \ /

same appearance as a native : ;‘ N

host process file sharing 1 ] Y )

A” hOSt processes appear tO AN network communication

conform to the guest’s i

worldview
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Process VM architecture

Host Operating System
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Acceleration techniques

» Binary translation

locate sensitive instructions in guest binary and replace on-the-fly with
emulation code or hypercall

VMware, QEMU
» Para-virtualization
Port the GuestOS to modified ISA
Xen, L4, Denali, Hyper-V
Reduce number of traps
Remove un-virtualizable instructions
» Hardware support for virtual machines
Make all sensitive instructions privileged (!)
Intel VT-x, AMD SVM
Xen, VMware, kvm
Nested page tables
Direct device assignment, IOMMU, Virtual interrupts
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Virtualization use-cases (mobile, media, automotive)

Processor consolidation & dynamic allocation (eg. mobile)
Software architecture abstraction (esp. for product series)
Certification re-use

License separation

User-configured OS, Personal vs Enterprise environment
Separation of systems code from applications

IP protection and secure payments (eg. set-top box)
Digital Rights Management ... on open device

Processor consolidation: control + infotainment

Componentization
for IP blocks
For security

vV VvV VvV VvV VvV VvV VvV V9V Vv v©9
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Enterprise vs Embedded Systems VMs

Homogenous vs heterogenous guests

- Enterprise: many similar guests - Embedded: 1 HLOS + 1 RTOS
" hypervisor size irrelevant " hypervisor resource-constrained
VVMs scheduled round-robin " interrupt latencies matter
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Isolation vs Cooperation

Enterprise “ Embedded \
- Independent services - Integrated system
- Emphasis on isolation - Cooperation with protection

- Inter-VM communication is - Inter-VM communication is critically
secondary important
performance secondary performance crucial
- VMs connected to Internet (and - VMs are subsystems accessing
thus to each other) \ shared (but restricted) resources

[
l
l
l
l
l
l

- e - - - e ...

/
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Isolation vs Cooperation : Scheduling

Enterprise Embedded
- Round-robin scheduling of VMs - Global view of scheduling
<> Guest OS schedules its apps - Schedule threads, not VMs

- Similar for energy management:
energy is a global resource
optimal per-\VM energy policies are not globally optimal
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Devices in enterprise virtual machines

- Hypervisor owns all devices

- Drivers in hypervisor - Drivers in privileged guest OS
" need to port all drivers " can leverage guest's driver support
huge TCB " need to trust driver OS

still huge TCB!

Virt Virt
Driver Drive
Driver  Driver
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SN 2

Devices in embedded virtual machines

Some devices owned by particular VM

Some devices shared

Some devices too sensitive to trust any guest
Driver OS too resource hungry

Use isolated drivers

protected from other drivers
protected from guest OSes -

Native Virt Virt
Driver

Driver = Driver
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Inter-VM Communication

Modern embedded systems are multi-user devices!
- Eg a phone has three c/asses of “users™
" the network operator(s)
assets: cellular network
content providers
" media content
the owner of the physical device
" assets: private data, access keys

Media
Player

Ul
etc

Media
Provider
Stake [EUCH
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Need to protect integrity and confidentiality

. . against internal exploits

| nte r'VM CO MMmun |Cat IoN Need control over information flow

— - strict control over who has access to what
N

strict control over communication channels

—

$~D,|ﬁerent “users are mutually d|strust|ng -2
- Need strong protection / information-flow control between them

-~ Isolation boundaries # VM boundaries
+  some are much smaller than VMs
- individual buffers, programs
+  some contain VMs
+  some overlap VMs

- Need to define information flow between
isolation domains

Isolation

1 Nt

Microkernel
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RISC-V: interrupts (on SiFive Unleashed platform)

FU540-C000 Boundary

M mode Software Interrupt—=|
. M mode Timer Interrupt—=|
%2;?2;5 —53—~ M mode External Interrupt—s| E51
PLIC .
M mode Software Interrupt—s=
CLINT M mode Timer Interrupt——u|
- M and S mode External Interrupt-» U 54

Hart1

M mode Software Interrupt——|

M mode Timer Interrupt—

M and § mode External Interrupt-= U 54

Hart4

PLIC: platform-level interrupt controller
- routes all signals through the El (external interrupt) pin

CLINT: core-local interrupter = implements Software, Timer, and External interrupts.
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