
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

QEMU: Architecture and Internals
Lecture for the Embedded Systems Course

CSD, University of Crete (Apr. 28 & 30, 2025)

System VMs (The OS implements VMs)

 VM := ISA + “Environment” (esp. I/O)

 VM specifications:
 State available at process creation

 ISA

 Systems calls available (for I/O)

 ABI: specification of the binary format used to encode programs

 At process creation, the OS reads the binary program, and
creates an “environment” for it
 … then begins to execute the code

 … handling traps for I/O and emulation “sensitive instructions”

 Hypervisor (VMM): implements sharing of real H/W
resources by multiple OS VMs

2 QEMU Architecture and Internals

Emulation

 Interpreter fetches and decodes one instruction at a time

3 QEMU Architecture and Internals

Static Binary Translation

 Translate entire binary program create new native ISA executable

 Compiler optimizations on translated code
 Register allocation, instruction scheduling, remove unreachable code, inline assembly …

 Complications: branch/jump targets PC mapping table

4 QEMU Architecture and Internals

basic block := a sequence of consecutive statements in which flow of control enters

at the beginning and leaves at the end without any halt or possibility of branching.

Dynamic Binary Translation

 Translate code sequences at run-time, and cache results

 Optimization based on dynamic info. (e.g. branch targets)

 Tradeoff between optimizer run-time and time saved by
optimizations in translated code

 Run-time translation and patching (chaining of blocks)

 Use simplified Host instructions to describe Target instructions

 Execution unit := basic code block

 Space locality in translation cache

 Chaining temporal locality

5 QEMU Architecture and Internals

Quick EMUlator (QEMU)

 Machine emulator + “Virtualizer” (device models)
 Modes:

 User-mode emulation: allows a (Linux) process built for one CPU to be
executed on another
 QEMU as a “Process VM” for cross-compilation/cross-debugging

 System-mode emulation: allows emulation of a full system, including
processor and assorted peripherals
 QEMU as a “System VM” (virtual host for system VMs)

 Popular uses:
 Cross-compilation development environments
 Virtualization, esp. device emulation, for xen and kvm hypervisors
 Android Emulator (part of original SDK)

 https://www.linaro.org/blog/running-64bit-android-l-qemu/
 UI using emulated graphics (OpenGL), queue_pipe device for interaction with

Host, misc. device models (keypad, screen, GSM, GPS, sensors)

QEMU Architecture and Int ernals6

https://www.linaro.org/blog/running-64bit-android-l-qemu/

QEMU: Emulator + Hypervisor functionality

7 QEMU Architecture and Internals

QEMU + KVM: HW-assisted hypervisor

Dynamic Binary Translation [1/3]

 Dynamic Translation

 First Interpret
 … perform code discovery as a by-

product

 Translate Code
 Incrementally, as it is discovered

 Place translated blocks into Code Cache

 Save source to target PC mapping in an
Address Lookup Table

 Emulation process
 Execute translated block to end

 Lookup next source PC in table
 If translated, jump to target PC

 Else interpret and translate

QEMU Architecture and Internals8

Dynamic Binary Translation [2/3]

 Works like a JIT compiler, but doesn't include an interpreter

 All guest code undergoes binary translation

 Guest code is split into "translation blocks“

 A translation block is similar to a basic block: the block is always
executed as a whole (i.e. no jumps in the middle of a block).

 Translation blocks are translated into a single sequence of
host instructions and cached into a translation cache.

 Cached blocks are indexed using their guest virtual address (i.e.
PC address value) for fast retrieval

 Translation cache size can vary (32 MB by default)

 Once the cache runs out of space, the whole cache is purged

QEMU Architecture and Internals9

Dynamic Binary Translation [3/3]

Source Instruction

Stream (binary)

Object file

(binary)

Micro-operations

(C code)

Target Instruction

Stream (binary)

dyngen

• Functional simulation

• Simulate what a processor does, not how it does it

• Dynamic binary translation

• Interpreters execute instructions one at a time

• Significant slowdown from constant overhead

• Instead, QEMU converts code as needed:

• translate basic blocks generate native host code

• store translated blocks in translation cache

• Tiny Code Generator (TCG)

• Micro-operations

• RISC-style, CPU-independent

• Basic functions + Temporary variables (+ helpers)

• (Fixed) Register mapping to reduce load/store instr’s

• Translation blocks

• A TCG "basic block" corresponds to a list of

instructions terminated by a branch instruction

• Block chaining

QEMU Architecture and Internals10

Front End

Back End

QEMU CPU Emulation Flow (Just-In-Time)

11 QEMU Architecture and Internals

Lookup in Translation Block cache

(indexed by Target PC)

Translation of (one) block

Chain to existing block
Execution of translated block

+ check for “exceptions”

Block found

in Cache ?

NO

YES

Dynamic translation + Cache

 cpu_exec() called in each step of
main loop

 Program executes until an
unchained block is encountered
 Returns to cpu exec() through

epilogue

QEMU Architecture and Internals12

Main loop:

• Handling of interrupts

• Code translation

• Run guest code

Host

Emulation

Block Chaining (1/5)

 The execution of every translation block is surrounded by
the execution of special code blocks

 Prologue: initializes the processor for generated host code
execution and jumps to the code block

 Epilogue: restores normal state and returns to the main loop.

 Returning to the main loop after each block adds significant
overhead … which adds up quickly

 When a block returns to the main loop and the next block is
known and already translated, QEMU can patch the original
block to jump directly into the next block (instead of jumping to
the epilogue)

QEMU Architecture and Internals13

Block chaining (2/5)

 Jump directly between basic blocks:

 Make space for a jump, follow by a return to the epilogue.

 Every time a block returns, try to chain it (i.e. jump directly
between blocks)

QEMU Architecture and Internals14

Block Chaining (3/5)

 Consecutive blocks can form chains and loops.

 This allows QEMU to emulate tight loops without running any
extra code in between.

 In the case of a loop, this also means that the control will not
return to QEMU unless an untranslated or otherwise un-chainable
block is executed.

 Asynchronous interrupts:

 QEMU does not check at every basic block if a hardware interrupt
is pending. Instead, device models must asynchronously call a
specific function to give notice that an interrupt is pending.

 This function resets the chaining of the currently executing basic
block return of control to the main loop of the CPU emulator

QEMU Architecture and Internals15

Block chaining (4/5)

[1]

[2]

[3]

[4]

[5]

QEMU Architecture and Internals16

Block chaining (5/5)

 Interrupt by unchaining (from another thread)
 Also for exceptions – e.g. I/O.

QEMU Architecture and Internals17

Architecture of QEMU-based Emulation

18 QEMU Architecture and Internals

QEMU “board” initialization: (1) Instantiates CPU(s); (2) Allocates memories;

(3) Populates memories with content.; (4) Instantiates device models & connects them;

(5) Sets up default system state.

Register mapping (1/2)

 Easier if

Number of target registers > number of source registers.
(e.g. translating x86 binary to RISC)

 Done on a per-block, or per-trace, or per-loop, basis

(if the number of target registers is not enough)

 Infrequently used registers (Source) may not be mapped

QEMU Architecture and Internals19

Register mapping (2/2)

 How to handle the Program Counter ?

 TPC (Target PC) is different from SPC (Source PC)

 For indirect branches, the registers hold source PCs
must provide a way to map SPCs to TPCs !
 The translation system needs to track SPC at all times

QEMU Architecture and Internals20

Other major QEMU components

 Memory address translation
 Software-controlled MMU (model) to translate target virtual

addresses to host virtual addresses
 Two-level guest physical page descriptor table

 Mapping between Guest virtual address and host virtual
addresses
 Address translation cache (tlb_table) for direct translation from target

virtual address to host virtual address

 Mapping between Guest virtual address and registered I/O
functions for that device
 Cache used for memory mapped I/O accesses (iotlb)

 Device emulation
 i440FX host PCI bridge, Cirrus CLGD 5446 PCI VGA card ,

PS/2 mouse & keyboard, PCI IDE interfaces (HDD,
CDROM), PCI & ISA network adapters, Serial ports, PCI
UHCI USB controller & virtual USB hub, …

QEMU Architecture and Internals21

SoftMMU

 Virtual-to-physical address translation is done at every
memory access

 Address translation cache to speed up the translation.

 In order to avoid flushing the cache of translated code each time
the MMU mappings change, QEMU uses a physically indexed
translation cache.

 Each basic block is indexed with its (Target) physical address.

 When MMU mappings change, only the chaining of the basic blocks is
reset (i.e. a basic block can no longer jump directly to another).

 MMU flush unlinks translation blocks.

22 QEMU Architecture and Internals

QEMU: Overview of Linux System Emulation

Storage Network Peripheral(s)

Linux (host)

Display

Disk

I/O Ports

CPU DMA

File I/O

RAM

initrd

kernel

Main Loop:

Inject exceptions

Run guest (*)

Process exit

Process I/ODevices

QEMU

(*) : binary translation

QEMU Architecture and Internals23

QEMU itself is single-threaded.

Overall speed of emulation

depends on the number &

complexity of device models.

Device emulation:

Devices registered at “board” init.

Callback upon IO range access

Device model tracks internal state

QEMU user-mode emulation example

 arm-linux-gnueabihf-gcc -o hello-armv7 hello-armv7.c

 file ./ hello-armv7

 ./hello-armv7: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 3.2.0,
BuildID[sha1]=5d06bc699218e9d976be9b3ebb007ac6d99185df,
not stripped

 qemu/arm-linux-user/qemu-arm -L gcc-linaro-7.2.1-
2017.11-x86_64_arm-linux-gnueabihf/arm-linux-
gnueabihf/libc ./hello-armv7

24 QEMU Architecture and Internals

QEMU system emulation example (u-boot)
make vexpress_ca9x4_defconfig CROSS_COMPILE=arm-linux-gnueabihf-

make all CROSS_COMPILE=arm-linux-gnueabihf-

qemu-system-arm -machine vexpress-a9 -nographic -no-reboot -kernel u-boot-2018.03/u-boot

………………… ………………………. ………………………. ………………………. ………………………. ………………………. …….

U-Boot 2018.03 (Apr 30 2018 - 15:46:51 +0300)

DRAM: 128 MiB

WARNING: Caches not enabled

Flash: 256 MiB

MMC: MMC: 0

*** Warning - bad CRC, using default environment

In: serial

Out: serial

Err: serial

Net: smc911x-0

Hit any key to stop autoboot: 0

 reset

resetting …

25 QEMU Architecture and Internals

Creation of root filesystem image (BusyBox)

 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make
defconfig

 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make
menuconfig

 --> build BusyBox as a static binary (no shared libs)
 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make -j4
 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make install

 Creation of root filesystem image:
 dd if=/dev/zero of=bbrootfs.img bs=4k count=1024
 mkfs.ext4 -b 4096 bbrootfs.img
 mount -o loop bbrootfs.img ./bbrootfs
 rsync -a busybox/_install/ ./bbrootfs
 chown -R root:root ./bbrootfs/
 umount ./bbrootfs

26 QEMU Architecture and Internals

QEMU system emulation example (ARM Versatile)

 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make
vexpress_defconfig

 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make menuconfig

 --> set: ARM EABI, enable: ramdisk default size=16MB, enable ext4, …

 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make -j4
file linux/arch/arm/boot/zImage

linux/arch/arm/boot/zImage: Linux kernel ARM boot executable zImage (little-endian)

 qemu-system-arm -M vexpress-a9 -cpu cortex-a9 -smp 4 -m 256 \

 -dtb ./linux/arch/arm/boot/dts/vexpress-v2p-ca9.dtb \

 -kernel ./linux/arch/arm/boot/zImage \

 -append "root=/dev/mmcblk0 rootfstype=ext4 rw rootwait earlyprintk
loglevel=8 console=ttyAMA0" \

 -drive if=sd,driver=raw,cache=writeback,file=./bbrootfs.img \

 --nographic

27 QEMU Architecture and Internals

Sources

 Fabrice Bellard, QEMU: A Fast and Portable Dynamic
Translator, USENIX Freenix 2005,
http://www.usenix.org/event/usenix05/tech/freenix/full_
papers/bellard/bellard.pdf

 Chad D. Kersey, QEMU internals,
http://lugatgt.org/content/qemu_internals/downloads/sli
des.pdf

 M. Tim Jones, System emulation with QEMU,
http://www.ibm.com/developerworks/linux/library/l-
qemu/

QEMU Architecture and Internals28

QEMU Control Flow

QEMU Architecture and Internals29

QEMU Storage Stack

30 QEMU Architecture and Internals

[source: Stefan Hajnoczi, - IBM Linux Technology Center, 2011]

