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Virtualization of the x86 instruction set

 Trap-and-Emulate

 Alternatives:

 Binary translation (e.g. early VMware), with “code substitution”

 CPU para-virtualization (e.g. Xen), with “hyper-calls”

 Hardware-assisted virtualization

 Objective: reduce need for binary translation and emulation

 Host + Guest state, per core

 “World switch”

 Intel VT-x, AMD SVM

 Intel EPT (extended page tables), AMD NPT (nested page tables)

 Add a level of translation for guest physical memory

 R/W/X bits  can generate faults for physical memory accesses

 vCPU-tagged address spaces  avoid TLB flushes
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Virtualized CPU
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Trap-and-Emulate

 VMM and Guest OS :

 System Call (ring 3)

 CPU will trap to interrupt handler vector of VMM (ring 0).

 VMM jump back into guest OS (ring 1).

 Hardware Interrupt

 Hardware makes CPU trap to interrupt handler of VMM.

 VMM jump to corresponding interrupt handler of guest OS.

 Privileged Instruction

 Running privilege instructions in guest OS will trap to VMM  for 
instruction emulation.

 After emulation, VMM jumps back to guest OS.
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Trap&Emulate + Binary Translation
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[ source: Scott Devine (VMware) ] 



Hybrid binary translation approach

6 Hardware-assisted virtualization: x86

[  VMware, US Patent 6,397, 242 ]

 Binary translation for “sensitive” code

 Direct execution (Trap&Emulate) for most of the code



Switching between VMs
 Timer Interrupt in running VM.

 Context switch to VMM.

 VMM saves state of running VM.

 VMM determines next VM to execute.

 VMM sets timer interrupt.

 VMM restores state of next VM.

 VMM sets PC to timer interrupt handler of 
next VM.

 Next VM active.
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 VMM will hold the system 
states of all VMs in memory
 When VMM context-switches 

from one VM to another:
 Write the register values back 

to memory

 Copy the register values of next 
guest OS to CPU registers.



Intel “Vanderpool” VT-x [1/3]

 VMX Root Operation (Root Mode)

 All instruction behaviors in this mode are no different to 
traditional ones.

 All legacy software can run in this mode correctly.

 VMM should run in this mode and control all system resources.

 VMX Non-Root Operation (Non-Root Mode)

 All sensitive instruction behaviors in this mode are redefined.

 The sensitive instructions will trap to Root Mode.

 Guest OS should run in this mode and be fully virtualized 
through typical “trap and emulation model”.
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VM Control Structure (VMCS)

- specifies guest state (configured by VMM)

- manages VMX non-root operation and VMX transitions



Intel VT-x [2/3]
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 VMM de-privileges the guest OS into 
Ring 1, and takes up Ring 0

 Guest OS is unaware that it is not 
running in traditional ring 0 privilege

 Requires compute intensive SW translation 
to mitigate

• VMM has its own privileged level

where it executes

• No need to de-privilege the guest OS

• OSes run directly on the hardware

Pre VT-x
With VT-x



Intel VT-x [3/3]

10 Hardware-assisted virtualization: x86

 VPID: 16-bit virtual-processor-
ID field in VMCS
 Tag for cached linear translations

 No flush of TLBs on VM entry or 
VM exit if VPID active
 Gen.1 VT-x forced TLB flush on 

each VMX transition 
performance lost on all VM-exit 
and most VM-entry transitions.

 TLB entries of different VMs can 
all co-exist in the TLB.

Three abstractions of memory:

 Machine address space

 Physical address spaces

 Virtual address spaces 



Memory virtualization 
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[ source: Scott Devine (VMware) ] Page sharing example

Motivation for nested page tables



VMCS: Virtual Machine Control Structure (4KB page)

 State Area
 Store host OS system state upon VM-Entry.

 Store guest OS system state upon VM-Exit.

 Control Area
 Control instruction behaviors in Non-Root Mode.

 Control VM-Entry and VM-Exit process.

 Exit Information
 Provide the VM-Exit reason and associated hardware information.

 When VM Entry or VM Exit occur, CPU will automatically 
read/write corresponding information into VMCS.
 VMM is responsible for VMCS configuration.
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Intel VMX (Virtual Machine Extensions) 
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Host mode Guest mode

VXMON

VMLAUNCH

VMEXIT

VMRESUME

Expensive transitions:

 VM entry/exit

 Mode switch (world switch)

Some “exits” are heavier than others



System state management
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 Binding virtual machine to virtual CPU
 VCPU (Virtual CPU) consists of two parts:

 VMCS: maintains virtual system states, which is managed by hardware.
 Non-VMCS: maintains other non-essential system information, which is 

managed by software.

 VMM needs to handle the Non-VMCS part.



World Switch

 VMM switch different virtual machines with Intel VT-x :
 VMXON/VMXOFF

 These two instructions are used to turn on/off CPU Root Mode.

 VM Entry
 This is usually caused by the execution of VMLAUNCH/VMRESUME instructions, 

which will switch CPU mode from Root Mode to Non-Root Mode.

 VM Exit
 This may be caused by many reasons, such as hardware interrupts or 

sensitive instruction executions.
 Switch CPU mode from Non-Root Mode to Root Mode.
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Registers and address space swapped in one atomic operation.



Shadow page tables in the VMM

 VMM maintains shadow page tables that map guest-virtual 
pages directly to machine pages.

 Guest modifications to page tables synced to VMM’s shadow page 
tables.

 Guest OS page tables are marked as read-only.

 Modifications of page tables by guest OS trigger trap to VMM.

 Shadow page tables are sync’ed to the guest OS tables.

 Maintaining consistency between guest page tables and 
shadow page tables leads to an overhead VMM traps

 Loss of performance due to TLB flush on every “world-switch”.

 Memory overhead due to shadow copying of guest page tables. 
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EPT: Extended Page Table

 Instead of walking along with only one page table hierarchy, EPT 
implements one additional page table hierarchy:

 One page table is maintained by guest OS, which is used to generate guest 
physical address.

 Another page table is maintained by VMM, which is used to map guest 
physical address to host physical address.

 For each memory access operation, the EPT MMU will directly get 
guest physical address from guest page table, and then get host 
physical address by the VMM mapping table automatically.

 Benefit: Guest page table updates are not trapped  VM exits reduced.

 Also: reduced memory footprint

 Cost: TLB miss is very costly since guest-physical address to machine address 
needs an extra EPT walk (for each stage address translation).
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One memory access from the guest VM may lead up to 20 memory accesses (for 4-level page table).



I/O (NIC) without virtualization

Application

OS

syscall

TCP/IP 

SW stack

PCIe device 

driver (NIC)

privileged 

instructions

NIC Hardware

CPU Privilege 

Level

Ring 3

Ring 0

 Application issues system call

• Trap to OS kernel

 Driver: issues PCIe TLP

• Setup DMA

 NIC: transmits Ethernet frame

• Assert interrupt when done
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SR-IOV

 PCI-SIG Single Root I/O Virtualization and Sharing spec.

 Physical Functions (PF)

 Full configuration & management capability

 Virtual Functions (VF)

 “lightweight” functions: contain data-movement resources, with a 
reduced set of configuration resources

 An SR-IOV-capable device can be configured to appear (to 
the VMM) in the PCI configuration space as multiple 
functions

 The VMM assigns VF(s) to a VM by mapping the 
configuration space of the VF(s) to the configuration space 
presented to the VM.
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SR-IOV : NIC example
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IOMMU concept
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 Indirection between 
addresses used for DMA 
and physical addresses

 Similar MMU, for address 
translation in the device 
context

 Devices can only access 
memory addresses 
“present” in their 
protection domain

 I/O virtualization through 
direct device assignment



IOMMU

 Faster I/O via Pass-Through Devices
 Exclusively used devices can be directly exposed to guest VM, without 

introducing device virtualization code
 However, erroneous/malicious DMA operations are capable of 

corrupting/attacking memory spaces
 Options:

 Remapping of DMA operations by hardware (e.g. Intel VT-d)
 Virtualizable devices (e.g. PCI-Express SR-IOV)

 I/O MMU 
 allow a guest OS running under a VMM to have direct control of a 

device
 fine-grain control of device access to system memory
 transparent to device drivers
 software: swiotlb (bounce buffers), xen grant tables
 hardware: AMD GART, IBM Calgary, AMD Pacifica
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kvm components

 “hypervisor” module (/dev/kvm character device)

 … heavily relies on Linux kernel subsystems

 ioctl() API calls for requests

 1 file descriptor per “resource”:

 System: VM creation, capabilities

 VM: CPU initialization, memory management, interrupts

 Virtual CPU (vCPU): access to execution state

 Platform emulator (qemu)

 Misc. modules & tools:  

 KSM (memory deduplication for VM images)

 Libvirt.org tools (virsh, virt-manager)
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kvm Hypervisor API

 ioctl() system calls to /dev/kvm
 Create new VM

 Provision memory to VM

 Read/write vCPU registers

 Inject interrupt into vCPU

 “Run” a vCPU

 /dev/kvm == ‘communication channel’ bet. kvm and QEMU

 Communication bet. kvm and VM instances:
 kvm assumes x86 architecture with virtualization extensions

 [ Intel VT-x / AMD-V ] VMCS + vmx instructions 
 VMXON, VMXOFF, VMLAUNCH, VMRESUME

 [ root non-root ] VM-Entry

 [non-root  root ] VM-Exit

 VMCS: VMREAD, VMWRITE
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qemu-kvm for user-space:

• Config. VMs and I/O devices

• Execute Guest code via /dev/kvm

• I/O emulation 



Qemu main event loop

fd = open(“/dev/kvm”, O_RDWR);

ioctl(fd, KVM_CREATE_VM, …);

ioctl(fd, KVM_CREATE_VCPU, …);

for(;;) {

ioctl(fd, KVM_RUN, …);

switch(exit_reason) {

case EXIT_REASON_IO_INSTRUCTION: … break;

case EXIT_REASON_TASK_SWITCH: … break;      

case EXIT_REASON_PENDING_INTERRUPT: … break;

…

}

}
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Event handling: 

• timers

• I/O

• monitor commands 

Event handling via select/poll  system 

calls to wait on multiple file descriptors 



VM creation with kvm

int fd_kvm = open("/dev/kvm", O_RDWR);

int fd_vm = ioctl(fd_kvm, KVM_CREATE_VM, 0);

ioctl(fd_vm, KVM_SET_TSS_ADDR, 0xffffffffffffd000);

ioctl(fd_vm, KVM_CREATE_IRQCHIP, 0);
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1 process per Guest

1 thread per vCPU

+ 1 thread for the main event loop

+ ‘offload’ threads



Adding physical memory to a VM with kvm

void *addr = mmap(NULL, 10 * MB, PROT_READ | 
PROT_WRITE,

MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

struct kvm_userspace_memory_region region = {

.slot = 0,

.flags = 0, // Can be Read Only

.guest_phys_addr = 0x100000,

.memory_size = 10 * MB,

.userspace_addr = (__u64)addr

};

ioctl(fd_vm, KVM_SET_MEMORY_REGION, &region);
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vCPU initialization with kvm

int fd_vcpu = ioctl(fd_vm, KVM_CREATE_VCPU, 0);

struct kvm_regs regs;

ioctl(fd_vcpu, KVM_GET_REGS, &regs);

regs.rflags = 0x02;

regs.rip = 0x0100f000;

ioctl(fd_vcpu, KVM_SET_REGS, &regs);
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Running a vCPU in kvm

int kvm_run_size = ioctl(fd_kvm, KVM_GET_VCPU_MMAP_SIZE, 0);

// access to the arguments of ioctl(KVM_RUN)

struct kvm_run *run_state =

mmap(NULL, kvm_run_size, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd_vcpu, 0);

for (;;) {

int res = ioctl(fd_vcpu, KVM_RUN, 0);

switch (run_state->exit_reason) {

// use run_state to gather information about the exit

}

}
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Safely execute Guest code directly on the Host CPU

(relying on virtualization support in the CPU)



Programmed I/O (PIO) in kvm

struct kvm_ioeventfd {

__u64 datamatch;

__u64 addr;        /* legal pio/mmio address */

__u32 len;         /* 1, 2, 4, or 8 bytes    */

__s32 fd;

__u32 flags;

__u8  pad[36];

};

A guest write in the registered address will signal the

provided event instead of triggering an exit.
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Memory-mapped I/O (MMIO) in kvm

Exit reason : KVM_EXIT_MMIO

struct {

__u64 phys_addr;

__u8 data[8];

__u32 len;

__u8 is_write;

} mmio;
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kvm guest execution flow

 I/O  PIO, 
MMIO, 
interrupts
 Trap & 

emulate

 External 
events 
signals
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[ user mode ] [ guest mode ] [ kernel mode ]

Init. guest 

execution (ioctl)

Enter guest-mode

Execute natively

Handle VM-exit

Special  I/O 

instruction?
Handle I/O

Y

Signal

pending?Y

N

N
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QEMU Monitor Protocol

 Protocol allowing control of a QEMU instance
 Text-based, easy to parse data format
 JSON: JavaScript Object Notation (RFC 4627)
 Details at https://wiki.qemu.org/Documentation/QMP

 qemu [...] -qmp tcp:localhost:4444,server,nowait –monitor 
stdio
 telnet localhost 4444
 Returns QMP greeting banner
 qmp_capabilities command: { "execute": "qmp_capabilities" }
 QMP enters command mode

 list of supported commands: { "execute": "query-commands" }

 See also: qmp-shell (Under the scripts/qmp/ directory of the QEMU 
source tree)

 qmp-shell ./qmp-sock
 (QEMU) device_add driver=e1000 id=net1
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Cost of VM exits

 netperf client run on 1 GbE, with para-virtualized NIC

 Total run: ~7.1x1010 cycles vs ~5.2x1010 cycles for bare-metal

 35% slow-down  due to the guest and hypervisor sharing the 
same core
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[ source: Landau, et al, WIOV 2011 ]

Exit Type Number of 

Exits

Cycle Cost/Exit

External interrupt 8961 363,000

I/O instruction 10042 85,000

APIC access 691249 18,000

EPT violation 645 12,000



Acceleration of VMs (SplitX)

 Cost of an VM exit  3 components
 Direct (CPU “World switch”)

 Synchronous (due to exit processing in hypervisor)

 Indirect (slowdown from having 2 contexts on same core 
cache pollution)
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Acceleration of VMs (ELI)
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Instead of running the guest with its 

own IDT, run the guest with “shadow IDT” 

… prepared by the host



Intel VT-d
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Memory Access with System 

Physical Address

Memory-resident Partitioning And 

Translation Structures

Device 

Assignment

Structures

Address Translation 

Structures

Device D1

Device D2

Address Translation 

Structures

DMA Requests

Device ID Virtual Address Length

DMA Remapping

Engine

Translation Cache

Context Cache

Fault Generation

…
Bus 255

Bus 0

Bus N

Page

Frame

4KB Page 

Tables

Dev 31, Func 7

Dev P, Func 2

Dev 0, Func 0

Dev P, Func 1



AMD’s IOMMU architecture
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[ source:  AMD IOMMU specification (revision 2) ]


