
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

Hardware-assisted virtualization: x86
Lecture for the Embedded Systems Course
CSD, University of Crete (May 5 & 7, 2025)

Virtualization of the x86 instruction set

 Trap-and-Emulate

 Alternatives:

 Binary translation (e.g. early VMware), with “code substitution”

 CPU para-virtualization (e.g. Xen), with “hyper-calls”

 Hardware-assisted virtualization

 Objective: reduce need for binary translation and emulation

 Host + Guest state, per core

 “World switch”

 Intel VT-x, AMD SVM

 Intel EPT (extended page tables), AMD NPT (nested page tables)

 Add a level of translation for guest physical memory

 R/W/X bits  can generate faults for physical memory accesses

 vCPU-tagged address spaces  avoid TLB flushes

2 Hardware-assisted virtualization: x86

Virtualized CPU

3 Hardware-assisted virtualization: x86

Trap-and-Emulate

 VMM and Guest OS :

 System Call (ring 3)

 CPU will trap to interrupt handler vector of VMM (ring 0).

 VMM jump back into guest OS (ring 1).

 Hardware Interrupt

 Hardware makes CPU trap to interrupt handler of VMM.

 VMM jump to corresponding interrupt handler of guest OS.

 Privileged Instruction

 Running privilege instructions in guest OS will trap to VMM for
instruction emulation.

 After emulation, VMM jumps back to guest OS.

4 Hardware-assisted virtualization: x86

Trap&Emulate + Binary Translation

5 Hardware-assisted virtualization: x86

[source: Scott Devine (VMware)]

Hybrid binary translation approach

6 Hardware-assisted virtualization: x86

[VMware, US Patent 6,397, 242]

 Binary translation for “sensitive” code

 Direct execution (Trap&Emulate) for most of the code

Switching between VMs
 Timer Interrupt in running VM.

 Context switch to VMM.

 VMM saves state of running VM.

 VMM determines next VM to execute.

 VMM sets timer interrupt.

 VMM restores state of next VM.

 VMM sets PC to timer interrupt handler of
next VM.

 Next VM active.

7 Hardware-assisted virtualization: x86

 VMM will hold the system
states of all VMs in memory
 When VMM context-switches

from one VM to another:
 Write the register values back

to memory

 Copy the register values of next
guest OS to CPU registers.

Intel “Vanderpool” VT-x [1/3]

 VMX Root Operation (Root Mode)

 All instruction behaviors in this mode are no different to
traditional ones.

 All legacy software can run in this mode correctly.

 VMM should run in this mode and control all system resources.

 VMX Non-Root Operation (Non-Root Mode)

 All sensitive instruction behaviors in this mode are redefined.

 The sensitive instructions will trap to Root Mode.

 Guest OS should run in this mode and be fully virtualized
through typical “trap and emulation model”.

8 Hardware-assisted virtualization: x86

VM Control Structure (VMCS)

- specifies guest state (configured by VMM)

- manages VMX non-root operation and VMX transitions

Intel VT-x [2/3]

9 Hardware-assisted virtualization: x86

 VMM de-privileges the guest OS into
Ring 1, and takes up Ring 0

 Guest OS is unaware that it is not
running in traditional ring 0 privilege

 Requires compute intensive SW translation
to mitigate

• VMM has its own privileged level

where it executes

• No need to de-privilege the guest OS

• OSes run directly on the hardware

Pre VT-x
With VT-x

Intel VT-x [3/3]

10 Hardware-assisted virtualization: x86

 VPID: 16-bit virtual-processor-
ID field in VMCS
 Tag for cached linear translations

 No flush of TLBs on VM entry or
VM exit if VPID active
 Gen.1 VT-x forced TLB flush on

each VMX transition 
performance lost on all VM-exit
and most VM-entry transitions.

 TLB entries of different VMs can
all co-exist in the TLB.

Three abstractions of memory:

 Machine address space

 Physical address spaces

 Virtual address spaces

Memory virtualization

11 Hardware-assisted virtualization: x86

[source: Scott Devine (VMware)] Page sharing example

Motivation for nested page tables

VMCS: Virtual Machine Control Structure (4KB page)

 State Area
 Store host OS system state upon VM-Entry.

 Store guest OS system state upon VM-Exit.

 Control Area
 Control instruction behaviors in Non-Root Mode.

 Control VM-Entry and VM-Exit process.

 Exit Information
 Provide the VM-Exit reason and associated hardware information.

 When VM Entry or VM Exit occur, CPU will automatically
read/write corresponding information into VMCS.
 VMM is responsible for VMCS configuration.

12 Hardware-assisted virtualization: x86

Intel VMX (Virtual Machine Extensions)

13 Hardware-assisted virtualization: x86

Host mode Guest mode

VXMON

VMLAUNCH

VMEXIT

VMRESUME

Expensive transitions:

 VM entry/exit

 Mode switch (world switch)

Some “exits” are heavier than others

System state management

14 Hardware-assisted virtualization: x86

 Binding virtual machine to virtual CPU
 VCPU (Virtual CPU) consists of two parts:

 VMCS: maintains virtual system states, which is managed by hardware.
 Non-VMCS: maintains other non-essential system information, which is

managed by software.

 VMM needs to handle the Non-VMCS part.

World Switch

 VMM switch different virtual machines with Intel VT-x :
 VMXON/VMXOFF

 These two instructions are used to turn on/off CPU Root Mode.

 VM Entry
 This is usually caused by the execution of VMLAUNCH/VMRESUME instructions,

which will switch CPU mode from Root Mode to Non-Root Mode.

 VM Exit
 This may be caused by many reasons, such as hardware interrupts or

sensitive instruction executions.
 Switch CPU mode from Non-Root Mode to Root Mode.

15 Hardware-assisted virtualization: x86

Registers and address space swapped in one atomic operation.

Shadow page tables in the VMM

 VMM maintains shadow page tables that map guest-virtual
pages directly to machine pages.

 Guest modifications to page tables synced to VMM’s shadow page
tables.

 Guest OS page tables are marked as read-only.

 Modifications of page tables by guest OS trigger trap to VMM.

 Shadow page tables are sync’ed to the guest OS tables.

 Maintaining consistency between guest page tables and
shadow page tables leads to an overhead VMM traps

 Loss of performance due to TLB flush on every “world-switch”.

 Memory overhead due to shadow copying of guest page tables.

16 Hardware-assisted virtualization: x86

EPT: Extended Page Table

 Instead of walking along with only one page table hierarchy, EPT
implements one additional page table hierarchy:

 One page table is maintained by guest OS, which is used to generate guest
physical address.

 Another page table is maintained by VMM, which is used to map guest
physical address to host physical address.

 For each memory access operation, the EPT MMU will directly get
guest physical address from guest page table, and then get host
physical address by the VMM mapping table automatically.

 Benefit: Guest page table updates are not trapped  VM exits reduced.

 Also: reduced memory footprint

 Cost: TLB miss is very costly since guest-physical address to machine address
needs an extra EPT walk (for each stage address translation).

17 Hardware-assisted virtualization: x86

One memory access from the guest VM may lead up to 20 memory accesses (for 4-level page table).

I/O (NIC) without virtualization

Application

OS

syscall

TCP/IP

SW stack

PCIe device

driver (NIC)

privileged

instructions

NIC Hardware

CPU Privilege

Level

Ring 3

Ring 0

 Application issues system call

• Trap to OS kernel

 Driver: issues PCIe TLP

• Setup DMA

 NIC: transmits Ethernet frame

• Assert interrupt when done

Hardware-assisted virtualization: x8618

SR-IOV

 PCI-SIG Single Root I/O Virtualization and Sharing spec.

 Physical Functions (PF)

 Full configuration & management capability

 Virtual Functions (VF)

 “lightweight” functions: contain data-movement resources, with a
reduced set of configuration resources

 An SR-IOV-capable device can be configured to appear (to
the VMM) in the PCI configuration space as multiple
functions

 The VMM assigns VF(s) to a VM by mapping the
configuration space of the VF(s) to the configuration space
presented to the VM.

19 Hardware-assisted virtualization: x86

SR-IOV : NIC example

20 Hardware-assisted virtualization: x86

IOMMU concept

Hardware-assisted virtualization: x8621

 Indirection between
addresses used for DMA
and physical addresses

 Similar MMU, for address
translation in the device
context

 Devices can only access
memory addresses
“present” in their
protection domain

 I/O virtualization through
direct device assignment

IOMMU

 Faster I/O via Pass-Through Devices
 Exclusively used devices can be directly exposed to guest VM, without

introducing device virtualization code
 However, erroneous/malicious DMA operations are capable of

corrupting/attacking memory spaces
 Options:

 Remapping of DMA operations by hardware (e.g. Intel VT-d)
 Virtualizable devices (e.g. PCI-Express SR-IOV)

 I/O MMU
 allow a guest OS running under a VMM to have direct control of a

device
 fine-grain control of device access to system memory
 transparent to device drivers
 software: swiotlb (bounce buffers), xen grant tables
 hardware: AMD GART, IBM Calgary, AMD Pacifica

22 Hardware-assisted virtualization: x86

kvm components

 “hypervisor” module (/dev/kvm character device)

 … heavily relies on Linux kernel subsystems

 ioctl() API calls for requests

 1 file descriptor per “resource”:

 System: VM creation, capabilities

 VM: CPU initialization, memory management, interrupts

 Virtual CPU (vCPU): access to execution state

 Platform emulator (qemu)

 Misc. modules & tools:

 KSM (memory deduplication for VM images)

 Libvirt.org tools (virsh, virt-manager)

23 Hardware-assisted virtualization: x86

kvm Hypervisor API

 ioctl() system calls to /dev/kvm
 Create new VM

 Provision memory to VM

 Read/write vCPU registers

 Inject interrupt into vCPU

 “Run” a vCPU

 /dev/kvm == ‘communication channel’ bet. kvm and QEMU

 Communication bet. kvm and VM instances:
 kvm assumes x86 architecture with virtualization extensions

 [Intel VT-x / AMD-V] VMCS + vmx instructions
 VMXON, VMXOFF, VMLAUNCH, VMRESUME

 [root non-root] VM-Entry

 [non-root  root] VM-Exit

 VMCS: VMREAD, VMWRITE

24 Hardware-assisted virtualization: x86

qemu-kvm for user-space:

• Config. VMs and I/O devices

• Execute Guest code via /dev/kvm

• I/O emulation

Qemu main event loop

fd = open(“/dev/kvm”, O_RDWR);

ioctl(fd, KVM_CREATE_VM, …);

ioctl(fd, KVM_CREATE_VCPU, …);

for(;;) {

ioctl(fd, KVM_RUN, …);

switch(exit_reason) {

case EXIT_REASON_IO_INSTRUCTION: … break;

case EXIT_REASON_TASK_SWITCH: … break;

case EXIT_REASON_PENDING_INTERRUPT: … break;

…

}

}

25 Hardware-assisted virtualization: x86

Event handling:

• timers

• I/O

• monitor commands

Event handling via select/poll system

calls to wait on multiple file descriptors

VM creation with kvm

int fd_kvm = open("/dev/kvm", O_RDWR);

int fd_vm = ioctl(fd_kvm, KVM_CREATE_VM, 0);

ioctl(fd_vm, KVM_SET_TSS_ADDR, 0xffffffffffffd000);

ioctl(fd_vm, KVM_CREATE_IRQCHIP, 0);

26 Hardware-assisted virtualization: x86

1 process per Guest

1 thread per vCPU

+ 1 thread for the main event loop

+ ‘offload’ threads

Adding physical memory to a VM with kvm

void *addr = mmap(NULL, 10 * MB, PROT_READ |
PROT_WRITE,

MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

struct kvm_userspace_memory_region region = {

.slot = 0,

.flags = 0, // Can be Read Only

.guest_phys_addr = 0x100000,

.memory_size = 10 * MB,

.userspace_addr = (__u64)addr

};

ioctl(fd_vm, KVM_SET_MEMORY_REGION, ®ion);

27 Hardware-assisted virtualization: x86

vCPU initialization with kvm

int fd_vcpu = ioctl(fd_vm, KVM_CREATE_VCPU, 0);

struct kvm_regs regs;

ioctl(fd_vcpu, KVM_GET_REGS, ®s);

regs.rflags = 0x02;

regs.rip = 0x0100f000;

ioctl(fd_vcpu, KVM_SET_REGS, ®s);

28 Hardware-assisted virtualization: x86

Running a vCPU in kvm

int kvm_run_size = ioctl(fd_kvm, KVM_GET_VCPU_MMAP_SIZE, 0);

// access to the arguments of ioctl(KVM_RUN)

struct kvm_run *run_state =

mmap(NULL, kvm_run_size, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd_vcpu, 0);

for (;;) {

int res = ioctl(fd_vcpu, KVM_RUN, 0);

switch (run_state->exit_reason) {

// use run_state to gather information about the exit

}

}

29 Hardware-assisted virtualization: x86

Safely execute Guest code directly on the Host CPU

(relying on virtualization support in the CPU)

Programmed I/O (PIO) in kvm

struct kvm_ioeventfd {

__u64 datamatch;

__u64 addr; /* legal pio/mmio address */

__u32 len; /* 1, 2, 4, or 8 bytes */

__s32 fd;

__u32 flags;

__u8 pad[36];

};

A guest write in the registered address will signal the

provided event instead of triggering an exit.

30 Hardware-assisted virtualization: x86

Memory-mapped I/O (MMIO) in kvm

Exit reason : KVM_EXIT_MMIO

struct {

__u64 phys_addr;

__u8 data[8];

__u32 len;

__u8 is_write;

} mmio;

31 Hardware-assisted virtualization: x86

kvm guest execution flow

 I/O  PIO,
MMIO,
interrupts
 Trap &

emulate

 External
events 
signals

32 Hardware-assisted virtualization: x86

[user mode] [guest mode] [kernel mode]

Init. guest

execution (ioctl)

Enter guest-mode

Execute natively

Handle VM-exit

Special I/O

instruction?
Handle I/O

Y

Signal

pending?Y

N

N

Sources (1)

 www.linux-kvm.org
 www.xen.org
 Mendel Rosenblum, Carl Waldspurger: "I/O Virtualization"

ACM Queue, Volume 9, issue 11, November 22, 2011
URL: http://queue.acm.org/detail.cfm?id=2071256

 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield,
Xen and the Art of Virtualization, SOSP’03

 Xen (v.3.0. for x86) Interface Manual
 http://pdub.net/proj/usenix08boston/xen_drive/resources/de

veloper_manuals/interface.pdf
 Jun Nakajima, Asit Mallick, Ian Pratt, Keir Fraser, X86-64 Xen-

Linux: Architecture, Implementation, and Optimizations, OLS
2006

 Xen: finishing the job, lwn.net - 2009

33 Hardware-assisted virtualization: x86

http://www.xen.org/
http://queue.acm.org/detail.cfm?id=2071256

Sources (2)

 Avi Kivity, et al: kvm: The Linux Virtual Machine Monitor,
Proceedings of the Linux Symposium, 2007

 http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf

 http://kerneltrap.org/node/8088

 Muli Ben-Yehuda, Eran Borovik, Michael Factor, Eran Rom, Avishay
Traeger, Ben-Ami Yassour
Adding Advanced Storage Controller Functionality via Low-Overhead
Virtualization, FAST '12

 Abel Gordon, Nadav Amit, Nadav Har'El, Muli Ben-Yehuda, Alex
Landau, Assaf Schuster, Dan Tsafrir ELI: Bare-Metal Performance for
I/O Virtualization, ASPLOS '12

 Alex Landau, Muli Ben-Yehuda, Abel Gordon
SplitX: Split Guest/Hypervisor Execution on Multi-Core, WIOV '11

 Abel Gordon, Muli Ben-Yehuda, Dennis Filimonov, Maor Dahan,
VAMOS: Virtualization Aware Middleware, WIOV '11

34 Hardware-assisted virtualization: x86

http://www.linux-kvm.com/sites/default/files/kivity-Reprint.pdf

Sources (3)

 Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav
Har'El, Abel Gordon, Anthony Liguori, Orit Wasserman, Ben-Ami Yassour
The Turtles Project: Design and Implementation of Nested
Virtualization, OSDI '10

 Ben-Ami Yassour, Muli Ben-Yehuda, Orit Wasserman
On the DMA Mapping Problem in Direct Device Assignment, SYSTOR '10

 Alex Landau, David Hadas, Muli Ben-Yehuda,
Plugging the Hypervisor Abstraction Leaks Caused by Virtual
Networking, SYSTOR '10

 Nadav Amit, Muli Ben-Yehuda, Dan Tsafir, Assaf Schuster, vIOMMU:
Efficient IOMMU Emulation, USENIX ATC 2011

 KVM ioctl() API:
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt

35 Hardware-assisted virtualization: x86

QEMU Monitor Protocol

 Protocol allowing control of a QEMU instance
 Text-based, easy to parse data format
 JSON: JavaScript Object Notation (RFC 4627)
 Details at https://wiki.qemu.org/Documentation/QMP

 qemu [...] -qmp tcp:localhost:4444,server,nowait –monitor
stdio
 telnet localhost 4444
 Returns QMP greeting banner
 qmp_capabilities command: { "execute": "qmp_capabilities" }
 QMP enters command mode

 list of supported commands: { "execute": "query-commands" }

 See also: qmp-shell (Under the scripts/qmp/ directory of the QEMU
source tree)

 qmp-shell ./qmp-sock
 (QEMU) device_add driver=e1000 id=net1

36 Hardware-assisted virtualization: x86

Cost of VM exits

 netperf client run on 1 GbE, with para-virtualized NIC

 Total run: ~7.1x1010 cycles vs ~5.2x1010 cycles for bare-metal

 35% slow-down due to the guest and hypervisor sharing the
same core

37 Hardware-assisted virtualization: x86

[source: Landau, et al, WIOV 2011]

Exit Type Number of

Exits

Cycle Cost/Exit

External interrupt 8961 363,000

I/O instruction 10042 85,000

APIC access 691249 18,000

EPT violation 645 12,000

Acceleration of VMs (SplitX)

 Cost of an VM exit  3 components
 Direct (CPU “World switch”)

 Synchronous (due to exit processing in hypervisor)

 Indirect (slowdown from having 2 contexts on same core 
cache pollution)

38 Hardware-assisted virtualization: x86

Acceleration of VMs (ELI)

39 Hardware-assisted virtualization: x86

Instead of running the guest with its

own IDT, run the guest with “shadow IDT”

… prepared by the host

Intel VT-d

Hardware-assisted virtualization: x8640

Memory Access with System

Physical Address

Memory-resident Partitioning And

Translation Structures

Device

Assignment

Structures

Address Translation

Structures

Device D1

Device D2

Address Translation

Structures

DMA Requests

Device ID Virtual Address Length

DMA Remapping

Engine

Translation Cache

Context Cache

Fault Generation

…
Bus 255

Bus 0

Bus N

Page

Frame

4KB Page

Tables

Dev 31, Func 7

Dev P, Func 2

Dev 0, Func 0

Dev P, Func 1

AMD’s IOMMU architecture

41 Hardware-assisted virtualization: x86

[source: AMD IOMMU specification (revision 2)]

