
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

Virtualization in the ARM Architecture
Lecture for the Embedded Systems Course

CSD, University of Crete (May 19, 2025)

Traditional ARM Architecture: ARM11 (ARMv6)

 Privilege Level 0

 User mode

 Privilege Level 1

 System

 IRQ

 FIQ

 Supervisor

 Abort

2 Virtualization in the ARM Architecture

Virtualization Extensions (CPU, Memory, I/O) on the ARM

architecture are based on Security Extensions (“Trust Zone”).

Arm TrustZone (TZ): security technology that creates a hardware-based

separation bet. two execution environments (“Worlds”): Secure, Normal.

- uses a "Secure Monitor" to manage transitions between the two worlds.

- extends security across the system: memory, peripherals, and interrupts

- protects sensitive operations – eg. secure boot, biometric authentication,

and digital rights management.

Security Extensions (“TrustZone”)

3 Virtualization in the ARM Architecture

Privilege Levels in TrustZone [1/2]

4 Virtualization in the ARM Architecture

Privilege Levels in TrustZone [2/2]

5 Virtualization in the ARM Architecture

Overview of ARM Virtualization Extension

 Based on ARM TrustZone (TZ) Security Architecture

 CPU: new mode (HYP), and new Privilege Level (non-secure
privilege level 2)

 Support for sensitive instructions

 Multiple interrupt vector tables

 Hypervisor call

 Memory: Intermediate Physical Address (IPA)

 Guest OS cannot access physical address space directly.

 I/O: Virtual Generic Interrupt Controller (vGIC)

 Faster delivery of interrupts to VMs

6 Virtualization in the ARM Architecture

Virtualization extensions to the ARMv7-A architecture

 Virtualization extensions to the ARMv7-A architecture:
 Available in Cortex A-15 / A-7 CPUs
 Hyp - New privilege level (for hypervisor)

 GuestOS: SVC privilege level, Applications: USR privilege level

 2-stage address translation (for OS and hypervisor levels)
 Complementary to TrustZone security extensions

 Mechanisms to minimize hypervisor intervention for “routine”
GuestOS tasks:
 Page table management
 Interrupt masking & Communication with the interrupt controller (GIC)
 Device drivers (hypervisor memory relocation)
 Emulation of Load/Store accesses and trapped instructions

 Hypervisor Syndrome Register: Hyp mode entry reason (syndrome)

 Traps into Hyp mode for ID register accesses & idling (WFI/WFE)
 System instructions to read/write key registers

7 Virtualization in the ARM Architecture

ARMv7 CPU Virtualization

8 Virtualization in the ARM Architecture

ARM TrustZone (Secure System Partitioning) [1/2]

9 Virtualization in the ARM Architecture

ARM TrustZone [2/2]

10 Virtualization for Embedded Systems

Propagation of System Security Mode

11 Virtualization in the ARM Architecture

NS : Not Secure - treated like an address line

System MMU (IO-MMU)

12 Virtualization in the ARM Architecture

memory protection &

translation services

for I/O devices

-> security attributes in the

translation tables

-> two separate translation

table bases (secure, non-secure)

ARMv7 processor modes

13 Virtualization in the ARM Architecture

EL0 User

EL1 Kernel

EL2 Hypervisor

Non-Secure state

EL0 User

EL1 Kernel

Secure state

Monitor Mode (Secure EL3)

Privilege levels

14 Virtualization in the ARM Architecture

 Guest OS: same kernel/user privilege structure

 HYP mode: higher privilege than OS kernel level
 hvc instruction (hypercall)

 VMM controls wide range of OS accesses

 Hardware maintains TZ security (4th privilege level)
User Mode

(Non-privileged)

Supervisor Mode

(Privileged)

Hyp Mode

(More Privileged)

Guest Operating System1

App2App1

Guest Operating System2

App2App1

Virtual Machine Monitor / Hypervisor

1

2

3

TrustZone Secure Monitor (Highest Privilege)

Secure

Apps

Secure

Operating System

Non-secure State Secure State

E
x
c
e
p
ti
o
n
s

E
x
c
e
p
ti
o
n
 R

e
tu

rn
s

By default, HYP mode is disabled.

- Should be explicitly enabled in

secure bootloader code.

Differences with Intel’s VT-x

 VT-x: Root-Mode is orthogonal to privilege levels (“rings”)

 ARM HYP: “just one more processor mode”

 More privileged than existing “kernel” modes

 Hypervisor must save guest VM’s register state

 With VT-x, this is done automatically (by hardware)

15 Virtualization in the ARM Architecture

Boot sequence with Hypervisor

16 Virtualization in the ARM Architecture

Vector Tables

17 Virtualization in the ARM Architecture

SVC vs. HVC [1/2]

 SVC: Supervisor Call
 Software Interrupt (SWI)

instruction: allow program
to actively trigger an event
to enter supervisor mode
(from user mode)

 Processor jumps to SVC
vector stub (in kernel space)

18 Virtualization in the ARM Architecture

SVC vs. HVC [2/2]

 HVC: Hypervisor Call
 instruction that allows program to

actively trigger an event to enter
hypervisor mode

 Non-Secure PL1 Non-Secure PL2

 Processor jumps to HVC vector
stub (0x14)

19 Virtualization in the ARM Architecture

Large Physical Address Extension

 Large Physical Address Extension

 64-bit descriptor entries, up to 3 levels

 Input/Output addresses: up to 40 bits

 VMID: Virtual Machine Identifier

 Identifies current VM, with its own Address Space Identifier
(ASID – part of TLB maintenance tags)

 VTTBR: Virtual Translation Table Base Register

 8-bit VMID

20 Virtualization in the ARM Architecture

Virtual Memory (1-stage translation)

21 Virtualization in the ARM Architecture

 Without virtualisation, the OS owns the memory

 Allocates areas of memory to the different applications

 Virtual Memory commonly used in “rich” operating systems
V

ir
tu

a
l
a
d
d
re

s
s
 m

a
p
 o

f

e
a
c
h
 a

p
p
lic

a
ti
o
n

P
h
y
s
ic

a
l A

d
d
re

s
s
 M

a
pTranslations

from

translation

table (owned

by the OS)

Virtual Memory (2-stage translation)

22 Virtualization in the ARM Architecture

Virtual address (VA) map of

each App on each Guest OS
“Intermediate Physical” address

map of each Guest OS (IPA)

Physical Address (PA) Map

Hardware has 2-stage

memory translation

Tables from Guest OS

translate VA to IPA

Second set of tables from

VMM translate IPA to PA

Allows aborts to be routed to

appropriate software layer

Stage 1 translation owned

by each Guest OS

Stage 2 translation owned by the VMM

ARMv8 Privilege Model

23 Virtualization in the ARM Architecture

• Each processor mode has its own linear address space, defined by a distinct page table.

• EL2 has its own translation regime tag in TLB entries

• - No need to flush TLB in transitions bet. EL2 and other CPU modes.

ARM processor modes

 The hypervisor enables the processor’s virtualization features in EL2 before switching to a
VM. The VM will then execute normally, in EL0 and EL1

 … until some condition is reached that requires the intervention of the hypervisor trap into EL2

 Each “interrupt” (IRQ, FIRQ) can be configured to trap directly into a VM’s EL1

 Instead of going through EL2 - e.g. system calls, page faults

 Any state that needs to be saved & restored must be handled explicitly

 Contrast: Intel VT-x VM control block is automatically saved & restored, with a single
instruction, when switching bet. Root – Non-Root modes.

24 Virtualization in the ARM Architecture

EL2: simply a more privileged CPU mode

(i.e. can be used for purposes other than VM support)

Stage-1 and Stage-2 page table walk

25 Virtualization in the ARM Architecture

VA (virtual address in VM) gPA (guest physical address) hPA (host physical address)

2-stage address translation

26 Virtualization in the ARM Architecture

Steps for World Switch

1. Store all host GP registers onto EL2 stack
2. Configure vGIC and virtual timers for VM
3. Save host-specific CSRs onto EL2 stack
4. Load VM’s CSR’s (no impact on current execution, as EL2 uses

its own CSRs – separate from host state)
5. Configure EL2 to trap FP operations for “lazy” context

switching of VFP registers, trap interrupts, trap WFI/WFE (CPU
halt) instructions, trap SMC instructions & specific CSR &
debug-register accesses

6. Write VM-specific IDs into shadow ID registers
7. Set Stage-2 page table base register (VTTBR), enable Stage-2

address translation
8. Restore all Guest GP registers, and trap into either user or

kernel mode for the VM.

27 Virtualization in the ARM Architecture

VM and Host State (Cortex-A15)

28 Virtualization in the ARM Architecture

ARMv8 Virtualization Features

 2nd stage of memory translation

 Adds extra level of indirection between guest & physical memory

 TLBs are tagged by Virtual Machine ID (VMID: 8-/16-bit)

 Ability to trap access of most system registers

 The hypervisor decides what it wants to trap

 Can handle IRQs, FIQs and asynchronous aborts

 The guest doesn’t see physical interrupts firing

 Guests can call into EL2 mode (HVC instruction)

 Allows para-virtualizated services

 Standard architecture peripherals are virtualization-aware

 GIC and timer have specific features to help virtualization

29 Virtualization in the ARM Architecture

EL2 in ARMv8

 EL2 is not a superset of NS-EL1

 Orthogonal mode to EL1

 Allows multiplexing of NS-EL1 guests on the hardware

 Own translation regime

 Separate Stage-1 translation, no Stage-2 translation

 It would be difficult to run Linux in EL2

 too many changes to be practical

 EL2 could be used for ”world switch”

 Between guests (bare-metal hypervisor/Type I)

 Between host and guest (hosted hypervisor/Type II)

 This makes the host a form of specialized guest …

30 Virtualization in the ARM Architecture

Nested Virtualization

 Part of ARMv8.3

 Allows an hypervisor in a VM
 Unmodified guest hypervisor running in NS EL1
 VM thinks it runs at “virtual” EL2 (using VHE)

 VM uses EL1 register accesses to access EL2
registers (HCR_EL2.NV, Shadow EL1 registers)

 Very few traps needed (EL1 EL2, “eret”)

 Implementation of a host hypervisor
required
 Running at EL2

31 Virtualization in the ARM Architecture

Use cases :

 Develop/test/debug hypervisor in VM

 IaaS hosting private cloud

Nested Virtualization components:

 VHE, Two-Stage translation,

 Mem. access permissions (at multiple exception levels),

 Interrupt Virtualization

Virtualization Host Extensions (VHE)

 Part of ARMv8.1 (AArch64 specific): expands the capability of EL2

 Designed to improve the support of the Type-II hypervisors

 Allows the host OS to be run at EL2

 Significantly reduces the number of system registers shared between
Host and Guest

 The host OS requires minimal changes to run at EL2

 Use HYP timer interrupt, instead of Guest’s timer interrupt

 User-space still runs at EL0

 Host has no software running at EL1

 VHE provides a mechanism to access the extra EL2 register state
transparently.

 Simply providing extra EL2 registers is not sufficient to run unmodified
OSes in EL2, because existing OSes are written to access EL1 registers.

32 Virtualization in the ARM Architecture

VHE: Impact on Hypervisor (kvm)

 Reduced save/restore of host system registers

 Only 4 registers

 “Lazy” save/restore of Guest system registers

 Deferred until actually needed by Host, or upon VM switch

 Reduced interrupt latency

 Less state to be restored before handling the interrupt

 No trap to enter hypervisor (normal function call!)

 No HYP mappings needed

 The kernel runs at EL2

33 Virtualization in the ARM Architecture

GIC: Generic Interrupt Controller

 Single interrupt controller in ARM architecture

 + Firmware: “Interrupt Distributor”

34 Virtualization in the ARM Architecture

vGIC: virtual CPU interface

+ Distributor

Virtualization of interrupts
 An interrupt might need to be routed to one of:

 Current or different GuestOS

 Hypervisor

 OS/RTOS running in the secure TrustZone environment

 Physical interrupts are taken initially in the Hypervisor

 If the Interrupt should go to a GuestOS :

 Hypervisor maps a “virtual” interrupt for that GuestOS

Virtualization in the ARM Architecture35

Virtual Interrupt Controller

 ISR of GuestOS interacts with the virtual controller
 Pending and Active interrupt lists for each GuestOS
 Interact with the physical GIC in hardware
 Creates Virtual Interrupts only when priority indicates it is necessary

 GuestOS ISRs therefore do not need calls for:
 Determining interrupt to take [Read of Interrupt Acknowledge]
 Marking the end of an interrupt [Sending EOI]

 Changing CPU Interrupt Priority Mask [Current Priority]

 GIC has separate sets of internal registers:
 Physical registers and virtual registers

 Non-virtualized system and hypervisor access the physical registers
 Virtual machines access the virtual registers
 Guest OS functionality does not change when accessing the vGIC

 Hypervisor remaps virtual registers for use by GuestOS’es
 Interrupts generate a hypervisor trap

36 Virtualization in the ARM Architecture

Virtual interrupt sequence

 External IRQ (configured as virtual by the hypervisor) arrives at the GIC

 GIC Distributor signals a Physical IRQ to the CPU

 CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical
CPU Interface

 Hypervisor makes an entry in register list in the GIC

 GIC Distributor signals a Virtual IRQ to the CPU

 CPU takes an IRQ exception, and Guest OS running on the virtual machine reads
the interrupt status from the Virtual CPU Interface

37 Virtualization in the ARM Architecture

Distributor
Physical

CPU

Interface

Virtual

CPU

Interface

Virtual IRQ

Physical IRQ

CPU

External
Interrupt
source

Hypervisor

Guest OS

Virtual I/O devices

 Memory-mapped devices

 Read/write accesses to device registers have specific side-effects

 Virtual devices emulation

 Typically, read/write accesses have to trap to Hypervisor

 Fetch & interpretation of emulated load/stores is performance-intensive

 Syndrome: key information about an instruction

 Source/destination register, Size of data transfer, …

 Available for some loads/stores (on abort)

 If not available, then it is required to fetch the instruction for full emulation

 System MMU: 2nd-stage address translation for devices

 Allows devices to be programmed into Guest’s VA space

38 Virtualization in the ARM Architecture

Sources (1)

 David Brash, Extensions to the ARMv7-A Architecture, HotChips
2010

 John Goodacre, Hardware accelerated Virtualization in the
ARM Cortex Processors, XenSummit Asia 2011

 Roberto Mijat and Andy Nightingale, Virtualization is Coming to
a Platform Near You: The ARM Architecture Virtualization
Extensions and the importance of System MMU for virtualized
solutions and beyond, ARM White paper, 2011

 Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and
Georgios Koloventzos, ARM Virtualization: Performance and
Architectural Implications, In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture

39 Virtualization in the ARM Architecture

Sources (2)

 AArch64 virtualization Documentation
 https://static.docs.arm.com/100942/0100/aarch64_virtualization_100

942_0100_en.pdf?_ga=2.124504458.128789899.1557134708-
1811630367.1537190275

 AArch64 virtualization: Hypervisor software
 https://developer.arm.com/docs/100942/latest/hypervisor-software

 Julien Grall: “Hypervisors on ARM: Overview and Design
choices”, Root Linux Conference 2017
 Slides: https://www.slideshare.net/xen_com_mgr/rootlinux17-

hypervisors-on-arm-overview-and-design-choices-by-julien-grall-arm

 Video: https://www.youtube.com/watch?v=jZNXtqFJpuc

 ARMv8.1-A: https://goo.gl/Ox4thV

 ARMv8.2-A: https://goo.gl/0Ns37U

 ARMv8.3-A: https://goo.gl/CJv1n0

40 Virtualization in the ARM Architecture

https://static.docs.arm.com/100942/0100/aarch64_virtualization_100942_0100_en.pdf?_ga=2.124504458.128789899.1557134708-1811630367.1537190275
https://developer.arm.com/docs/100942/latest/hypervisor-software
https://www.slideshare.net/xen_com_mgr/rootlinux17-hypervisors-on-arm-overview-and-design-choices-by-julien-grall-arm
https://www.youtube.com/watch?v=jZNXtqFJpuc
https://goo.gl/Ox4thV
https://goo.gl/0Ns37U
https://goo.gl/CJv1n0

Essentials of a hypervisor

 Parent partition (minimum-footprint OS) + Hypervisor

 Hypervisor: Thin layer of software running on the hardware

 Supports creation of partitions (virtual machines)

 Each partition has one or more virtual processors

 Partitions can own or share hardware resources

 Enforces memory access rules

 Enforces policy for CPU usage

 Virtual processors are scheduled on real processors

 Enforces ownership of other devices

 Provides inter-partition messaging

 Messages appear as interrupts

 Exposes simple programmatic interface: “hypercalls”

41 Virtualization in the ARM Architecture

Hypervisor functions (recap)

 Memory management

 Device emulation

 Device assignment

 Exception handling

 Instruction trapping

 Managing virtual exceptions

 Interrupt controller management

 Context switching

 Memory translation

 Managing multiple virtual address spaces

42 Virtualization in the ARM Architecture

Types of Hypervisors [1/2]

43 Virtualization in the ARM Architecture

Hypervisor support in ARMv8 (aarch64):

• Dedicated exception level (EL2) for hypervisor

• Trapping exceptions that change core context/state

• Routing of exceptions and virtual interrupts

• 2-stage memory translation

• Dedicated exception (HVC) for Hypervisor Call

Types of Hypervisors [2/2]

 Full virtualization
 Unmodified Guest OS

 Guest I/O
 emulated

 … or handled by virtualization-aware HW

 Para-virtualization
 Guest OS is aware of the hypervisor

 Privileged instructions are replaced by VMM hooks

 Hybrid
 Use as much as possible hardware-assisted virtualization

 Devices (network, block) para-virtualized or passthrough’ed

 Use of emulation is very limited

44 Virtualization in the ARM Architecture

Common hypervisors on ARM architecture

45 Virtualization in the ARM Architecture

KVM: Kernel-based Virtual Machine

 Hosted (Type-II) hypervisor

 Unlike Xen : Type-I

 Use of assisted hardware virtualization

 Devices are

 emulated (QEMU)

 para-virtualized (VIRTIO)

 All CPUs are using the same scheduler

 guest vCPU is a task for the host OS

 Resource management can be done using cgroups

 Standard way in Linux to control resources

46 Virtualization in the ARM Architecture

Type-I Hypervisor

47 Virtualization in the ARM Architecture

Type-II Hypervisor

48 Virtualization in the ARM Architecture

Type-II Hypervisor with VHE

49 Virtualization in the ARM Architecture

Type-II Hypervisor with VHE

KVM Architecture

50 Virtualization in the ARM Architecture

KVM architecture with ARMv8.0-A

51 Virtualization in the ARM Architecture

State to save/restore:

• Stage-2 translation table

• Trap configuration

• General-purpose registers

• System control registers

• FP registers

• GIC configuration

• Timer configuration

KVM architecture with ARMv8.1-A

52 Virtualization in the ARM Architecture

ARMv8.1 features:

• 16-bit VMIDs

• VHE

(expanded EL2)

Xen: Para-virtualization

53 Virtualization in the ARM Architecture

Xen: Driver Domains

54 Virtualization in the ARM Architecture

Device emulation

 Platform devices are memory-mapped, and guest accesses
to devices are subject to at least Stage 2 translation when
virtualization is in effect.

 Guests can detect a platform device by reading its ID
register, or by interrogating registers mentioned in the
device tree.

 The hypervisor can return dummy values for Guest reads and
ignore writes, effectively giving the Guest the impression that
the device does not exist on the platform.

 When the device model has some data to deliver, the hypervisor
raises a virtual IRQ (vIRQ).

 The Guest OS responds by attempting to read hardware registers. The
hypervisor traps these accesses and provides simulated responses.

55 Virtualization in the ARM Architecture

Device assignment

 Need to hide from the Guest the fact that the device is at a
different physical address

 Alternatively, the hypervisor might choose to hide a device from
a set of guests - either because the device is not present or has
already been assigned to a different guest.

 Generate a different interrupt ID than that which the guest
is expecting.

56 Virtualization in the ARM Architecture

