
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

 Manolis Marazakis (maraz@ics.forth.gr)

Virtualization in the ARM Architecture
Lecture for the Embedded Systems Course

CSD, University of Crete (May 20 & 23, 2022)

Essentials of a hypervisor

 Parent partition (minimum-footprint OS) + Hypervisor

 Hypervisor: Thin layer of software running on the hardware

 Supports creation of partitions (virtual machines)

 Each partition has one or more virtual processors

 Partitions can own or share hardware resources

 Enforces memory access rules

 Enforces policy for CPU usage

 Virtual processors are scheduled on real processors

 Enforces ownership of other devices

 Provides inter-partition messaging

 Messages appear as interrupts

 Exposes simple programmatic interface: “hypercalls”

2 Virtualization in the ARM Architecture

Hypervisor functions (recap)

 Memory management

 Device emulation

 Device assignment

 Exception handling

 Instruction trapping

 Managing virtual exceptions

 Interrupt controller management

 Context switching

 Memory translation

 Managing multiple virtual address spaces

3 Virtualization in the ARM Architecture

Traditional ARM Architecture: ARM11 (ARMv6)

 Privilege Level 0

 User mode

 Privilege Level 1

 System

 IRQ

 FIQ

 Supervisor

 Abort

4 Virtualization in the ARM Architecture

Virtualization Extensions (CPU, Memory, I/O) on the ARM

architecture are based on Security Extensions (“Trust Zone”).

Overview of ARM Virtualization Extension

 Based on ARM TrustZone (TZ) Security Architecture

 CPU: new mode (HYP), and new Privilege Level (non-secure
privilege level 2)

 Support for sensitive instructions

 Multiple interrupt vector tables

 Hypervisor call

 Memory: Intermediate Physical Address (IPA)

 Guest OS cannot access physical address space directly.

 I/O: Virtual Generic Interrupt Controller (vGIC)

 Faster delivery of interrupts to VMs

5 Virtualization in the ARM Architecture

Security Extensions (“TrustZone”)

6 Virtualization in the ARM Architecture

Privilege Levels in TrustZone [1/2]

7 Virtualization in the ARM Architecture

Privilege Levels in TrustZone [2/2]

8 Virtualization in the ARM Architecture

Virtualization extensions to the ARMv7-A architecture

 Virtualization extensions to the ARMv7-A architecture:
 Available in Cortex A-15 / A-7 CPUs
 Hyp - New privilege level (for hypervisor)

 GuestOS: SVC privilege level, Applications: USR privilege level

 2-stage address translation (for OS and hypervisor levels)
 Complementary to TrustZone security extensions

 Mechanisms to minimize hypervisor intervention for “routine”
GuestOS tasks:
 Page table management
 Interrupt masking & Communication with the interrupt controller (GIC)
 Device drivers (hypervisor memory relocation)
 Emulation of Load/Store accesses and trapped instructions

 Hypervisor Syndrome Register: Hyp mode entry reason (syndrome)

 Traps into Hyp mode for ID register accesses & idling (WFI/WFE)
 System instructions to read/write key registers

9 Virtualization in the ARM Architecture

ARMv7 CPU Virtualization

10 Virtualization in the ARM Architecture

ARM TrustZone (Secure System Partitioning) [1/2]

11 Virtualization in the ARM Architecture

ARM TrustZone [2/2]

12 Virtualization for Embedded Systems

Propagation of System Security Mode

13 Virtualization in the ARM Architecture

NS : Not Secure - treated like an address line

ARMv7 processor modes

14 Virtualization in the ARM Architecture

EL0 User

EL1 Kernel

EL2 Hypervisor

Non-Secure state

EL0 User

EL1 Kernel

Secure state

Monitor Mode (Secure EL3)

Privilege levels

15 Virtualization in the ARM Architecture

 Guest OS: same kernel/user privilege structure

 HYP mode: higher privilege than OS kernel level
 hvc instruction (hypercall)

 VMM controls wide range of OS accesses

 Hardware maintains TZ security (4th privilege level)
User Mode

(Non-privileged)

Supervisor Mode

(Privileged)

Hyp Mode

(More Privileged)

Guest Operating System1

App2App1

Guest Operating System2

App2App1

Virtual Machine Monitor / Hypervisor

1

2

3

TrustZone Secure Monitor (Highest Privilege)

Secure

Apps

Secure

Operating System

Non-secure State Secure State

E
x
c
e
p
ti
o
n
s

E
x
c
e
p
ti
o
n
 R

e
tu

rn
s

By default, HYP mode is disabled.

- Should be explicitly enabled in

secure bootloader code.

Differences with Intel’s VT-x

 VT-x: Root-Mode is orthogonal to privilege levels (“rings”)

 ARM HYP: “just one more processor mode”

 More privileged than existing “kernel” modes

 Hypervisor must save guest VM’s register state

 With VT-x, this is done automatically (by hardware)

16 Virtualization in the ARM Architecture

Boot sequence with Hypervisor

17 Virtualization in the ARM Architecture

Vector Tables

18 Virtualization in the ARM Architecture

SVC vs. HVC [1/2]

 SVC: Supervisor Call
 Software Interrupt (SWI)

instruction: allow program
to actively trigger an event
to enter supervisor mode
(from user mode)

 Processor jumps to SVC
vector stub (in kernel space)

19 Virtualization in the ARM Architecture

SVC vs. HVC [2/2]

 HVC: Hypervisor Call
 instruction that allows program to

actively trigger an event to enter
hypervisor mode

 Non-Secure PL1  Non-Secure PL2

 Processor jumps to HVC vector
stub (0x14)

20 Virtualization in the ARM Architecture

Large Physical Address Extension

 Large Physical Address Extension

 64-bit descriptor entries, up to 3 levels

 Input/Output addresses: up to 40 bits

 VMID: Virtual Machine Identifier

 Identifies current VM, with its own Address Space Identifier
(ASID – part of TLB maintenance tags)

 VTTBR: Virtual Translation Table Base Register

 8-bit VMID

21 Virtualization in the ARM Architecture

Virtual Memory (1-stage translation)

22 Virtualization in the ARM Architecture

 Without virtualisation, the OS owns the memory

 Allocates areas of memory to the different applications

 Virtual Memory commonly used in “rich” operating systems
V

ir
tu

a
l
a
d
d
re

s
s
 m

a
p
 o

f

e
a
c
h
 a

p
p
lic

a
ti
o
n

P
h
y
s
ic

a
l A

d
d
re

s
s
 M

a
pTranslations

from

translation

table (owned

by the OS)

Virtual Memory (2-stage translation)

23 Virtualization in the ARM Architecture

Stage 1 translation owned

by each Guest OS

Virtual address (VA) map of

each App on each Guest OS
“Intermediate Physical” address

map of each Guest OS (IPA)

Physical Address (PA) Map

Stage 2 translation owned by the VMM

Hardware has 2-stage

memory translation

Tables from Guest OS

translate VA to IPA

Second set of tables from

VMM translate IPA to PA

Allows aborts to be routed to

appropriate software layer

ARMv8 Privilege Model

24 Virtualization in the ARM Architecture

• Each processor mode has its own linear address space, defined by a distinct page table.

• EL2 has its own translation regime  tag in TLB entries

• - No need to flush TLB in transitions bet. EL2 and other CPU modes.

ARM processor modes

 The hypervisor enables the processor’s virtualization features in EL2 before switching to a
VM. The VM will then execute normally, in EL0 and EL1

 … until some condition is reached that requires the intervention of the hypervisor  trap into EL2

 Each “interrupt” (IRQ, FIRQ) can be configured to trap directly into a VM’s EL1

 Instead of going through EL2 - e.g. system calls, page faults

 Any state that needs to be saved & restored must be handled explicitly

 Contrast: Intel VT-x  VM control block is automatically saved & restored, with a single
instruction, when switching bet. Root – Non-Root modes.

25 Virtualization in the ARM Architecture

EL2: simply a more privileged CPU mode

(i.e. can be used for purposes other than VM support)

Stage-1 and Stage-2 page table walk

26 Virtualization in the ARM Architecture

VA (virtual address in VM)  gPA (guest physical address)  hPA (host physical address)

2-stage address translation

27 Virtualization in the ARM Architecture

Steps for World Switch

1. Store all host GP registers onto EL2 stack
2. Configure vGIC and virtual timers for VM
3. Save host-specific CSRs onto EL2 stack
4. Load VM’s CSR’s (no impact on current execution, as EL2 uses

its own CSRs – separate from host state)
5. Configure EL2 to trap FP operations for “lazy” context

switching of VFP registers, trap interrupts, trap WFI/WFE (CPU
halt) instructions, trap SMC instructions & specific CSR &
debug-register accesses

6. Write VM-specific IDs into shadow ID registers
7. Set Stage-2 page table base register (VTTBR), enable Stage-2

address translation
8. Restore all Guest GP registers, and trap into either user or

kernel mode for the VM.

28 Virtualization in the ARM Architecture

VM and Host State (Cortex-A15)

29 Virtualization in the ARM Architecture

Types of Hypervisors [1/2]

30 Virtualization in the ARM Architecture

Hypervisor support in ARMv8 (aarch64):

• Dedicated exception level (EL2) for hypervisor

• Trapping exceptions that change core context/state

• Routing of exceptions and virtual interrupts

• 2-stage memory translation

• Dedicated exception (HVC) for Hypervisor Call

Types of Hypervisors [2/2]

 Full virtualization
 Unmodified Guest OS

 Guest I/O
 emulated

 … or handled by virtualization-aware HW

 Para-virtualization
 Guest OS is aware of the hypervisor

 Privileged instructions are replaced by VMM hooks

 Hybrid
 Use as much as possible hardware-assisted virtualization

 Devices (network, block) para-virtualized or passthrough’ed

 Use of emulation is very limited

31 Virtualization in the ARM Architecture

Common hypervisors on ARM architecture

32 Virtualization in the ARM Architecture

ARMv8 Virtualization Features

 2nd stage of memory translation

 Adds extra level of indirection between guest & physical memory

 TLBs are tagged by Virtual Machine ID (VMID: 8-/16-bit)

 Ability to trap access of most system registers

 The hypervisor decides what it wants to trap

 Can handle IRQs, FIQs and asynchronous aborts

 The guest doesn’t see physical interrupts firing

 Guests can call into EL2 mode (HVC instruction)

 Allows para-virtualizated services

 Standard architecture peripherals are virtualization-aware

 GIC and timer have specific features to help virtualization

33 Virtualization in the ARM Architecture

EL2 in ARMv8

 EL2 is not a superset of NS-EL1

 Orthogonal mode to EL1

 Allows multiplexing of NS-EL1 guests on the hardware

 Own translation regime

 Separate Stage-1 translation, no Stage-2 translation

 It would be difficult to run Linux in EL2

 too many changes to be practical

 EL2 could be used for ”world switch”

 Between guests (bare-metal hypervisor/Type I)

 Between host and guest (hosted hypervisor/Type II)

 This makes the host a form of specialized guest …

34 Virtualization in the ARM Architecture

Type-I Hypervisor

35 Virtualization in the ARM Architecture

Type-II Hypervisor

36 Virtualization in the ARM Architecture

Virtualization Host Extensions (VHE)

 Part of ARMv8.1 (AArch64 specific): expands the capability of EL2

 Designed to improve the support of the Type-II hypervisors

 Allows the host OS to be run at EL2

 Significantly reduces the number of system registers shared between
Host and Guest

 The host OS requires minimal changes to run at EL2

 Use HYP timer interrupt, instead of Guest’s timer interrupt

 User-space still runs at EL0

 Host has no software running at EL1

 VHE provides a mechanism to access the extra EL2 register state
transparently.

 Simply providing extra EL2 registers is not sufficient to run unmodified
OSes in EL2, because existing OSes are written to access EL1 registers.

37 Virtualization in the ARM Architecture

Type-II Hypervisor with VHE

38 Virtualization in the ARM Architecture

Type-II Hypervisor with VHE

VHE: Impact on Hypervisor (kvm)

 Reduced save/restore of host system registers

 Only 4 registers

 “Lazy” save/restore of Guest system registers

 Deferred until actually needed by Host, or upon VM switch

 Reduced interrupt latency

 Less state to be restored before handling the interrupt

 No trap to enter hypervisor (normal function call!)

 No HYP mappings needed

 The kernel runs at EL2

39 Virtualization in the ARM Architecture

Nested Virtualization

 Part of ARMv8.3

 Allows an hypervisor in a VM
 Unmodified guest hypervisor running in NS EL1
 VM thinks it runs at “virtual” EL2 (using VHE)

 VM uses EL1 register accesses to access EL2
registers (HCR_EL2.NV, Shadow EL1 registers)

 Very few traps needed (EL1  EL2, “eret”)

 Implementation of a host hypervisor
required
 Running at EL2

40 Virtualization in the ARM Architecture

Use cases :

 Develop/test/debug hypervisor in VM

 IaaS hosting private cloud

KVM: Kernel-based Virtual Machine

 Hosted (Type-II) hypervisor

 Unlike Xen : Type-I

 Use of assisted hardware virtualization

 Devices are

 emulated (QEMU)

 para-virtualized (VIRTIO)

 All CPUs are using the same scheduler

 guest vCPU is a task for the host OS

 Resource management can be done using cgroups

 Standard way in Linux to control resources

41 Virtualization in the ARM Architecture

KVM Architecture

42 Virtualization in the ARM Architecture

KVM architecture with ARMv8.0-A

43 Virtualization in the ARM Architecture

State to save/restore:

• Stage-2 translation table

• Trap configuration

• General-purpose registers

• System control registers

• FP registers

• GIC configuration

• Timer configuration

KVM architecture with ARMv8.1-A

44 Virtualization in the ARM Architecture

ARMv8.1 features:

• 16-bit VMIDs

• VHE

(expanded EL2)

Xen: Para-virtualization

45 Virtualization in the ARM Architecture

Xen: Driver Domains

46 Virtualization in the ARM Architecture

GIC: Generic Interrupt Controller

 Single interrupt controller in ARM architecture

 + Firmware: “Interrupt Distributor”

47 Virtualization in the ARM Architecture

vGIC: virtual CPU interface

+ distributor

Virtualization of interrupts
 An interrupt might need to be routed to one of:

 Current or different GuestOS

 Hypervisor

 OS/RTOS running in the secure TrustZone environment

 Physical interrupts are taken initially in the Hypervisor

 If the Interrupt should go to a GuestOS :

 Hypervisor maps a “virtual” interrupt for that GuestOS

Virtualization in the ARM Architecture48

Virtual Interrupt Controller

 ISR of GuestOS interacts with the virtual controller
 Pending and Active interrupt lists for each GuestOS
 Interact with the physical GIC in hardware
 Creates Virtual Interrupts only when priority indicates it is necessary

 GuestOS ISRs therefore do not need calls for:
 Determining interrupt to take [Read of Interrupt Acknowledge]
 Marking the end of an interrupt [Sending EOI]

 Changing CPU Interrupt Priority Mask [Current Priority]

 GIC has separate sets of internal registers:
 Physical registers and virtual registers

 Non-virtualized system and hypervisor access the physical registers
 Virtual machines access the virtual registers
 Guest OS functionality does not change when accessing the vGIC

 Hypervisor remaps virtual registers for use by GuestOS’es
 Interrupts generate a hypervisor trap

49 Virtualization in the ARM Architecture

Virtual interrupt sequence

 External IRQ (configured as virtual by the hypervisor) arrives at the GIC

 GIC Distributor signals a Physical IRQ to the CPU

 CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical
CPU Interface

 Hypervisor makes an entry in register list in the GIC

 GIC Distributor signals a Virtual IRQ to the CPU

 CPU takes an IRQ exception, and Guest OS running on the virtual machine reads
the interrupt status from the Virtual CPU Interface

50 Virtualization in the ARM Architecture

Distributor
Physical

CPU

Interface

Virtual

CPU

Interface

Virtual IRQ

Physical IRQ

CPU

External
Interrupt
source

Hypervisor

Guest OS

Virtual I/O devices

 Memory-mapped devices

 Read/write accesses to device registers have specific side-effects

 Virtual devices  emulation

 Typically, read/write accesses have to trap to Hypervisor

 Fetch & interpretation of emulated load/stores is performance-intensive

 Syndrome: key information about an instruction

 Source/destination register, Size of data transfer, …

 Available for some loads/stores (on abort)

 If not available, then it is required to fetch the instruction for full emulation

 System MMU: 2nd-stage address translation for devices

 Allows devices to be programmed into Guest’s VA space

51 Virtualization in the ARM Architecture

System MMU (IO-MMU)

52 Virtualization in the ARM Architecture

Device emulation

 Platform devices are memory-mapped, and guest accesses
to devices are subject to at least Stage 2 translation when
virtualization is in effect.

 Guests can detect a platform device by reading its ID
register, or by interrogating registers mentioned in the
device tree.

 The hypervisor can return dummy values for Guest reads and
ignore writes, effectively giving the Guest the impression that
the device does not exist on the platform.

 When the device model has some data to deliver, the hypervisor
raises a virtual IRQ (vIRQ).

 The Guest OS responds by attempting to read hardware registers. The
hypervisor traps these accesses and provides simulated responses.

53 Virtualization in the ARM Architecture

Device assignment

 Need to hide from the Guest the fact that the device is at a
different physical address

 Alternatively, the hypervisor might choose to hide a device from
a set of guests - either because the device is not present or has
already been assigned to a different guest.

 Generate a different interrupt ID than that which the guest
is expecting.

54 Virtualization in the ARM Architecture

Sources (1)

 David Brash, Extensions to the ARMv7-A Architecture, HotChips
2010

 John Goodacre, Hardware accelerated Virtualization in the
ARM Cortex Processors, XenSummit Asia 2011

 Roberto Mijat and Andy Nightingale, Virtualization is Coming to
a Platform Near You: The ARM Architecture Virtualization
Extensions and the importance of System MMU for virtualized
solutions and beyond, ARM White paper, 2011

 Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and
Georgios Koloventzos, ARM Virtualization: Performance and
Architectural Implications, In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture

55 Virtualization in the ARM Architecture

Sources (2)

 AArch64 virtualization Documentation
 https://static.docs.arm.com/100942/0100/aarch64_virtualization_100

942_0100_en.pdf?_ga=2.124504458.128789899.1557134708-
1811630367.1537190275

 AArch64 virtualization: Hypervisor software
 https://developer.arm.com/docs/100942/latest/hypervisor-software

 Julien Grall: “Hypervisors on ARM: Overview and Design
choices”, Root Linux Conference 2017
 Slides: https://www.slideshare.net/xen_com_mgr/rootlinux17-

hypervisors-on-arm-overview-and-design-choices-by-julien-grall-arm

 Video: https://www.youtube.com/watch?v=jZNXtqFJpuc

 ARMv8.1-A: https://goo.gl/Ox4thV

 ARMv8.2-A: https://goo.gl/0Ns37U

 ARMv8.3-A: https://goo.gl/CJv1n0

56 Virtualization in the ARM Architecture

https://static.docs.arm.com/100942/0100/aarch64_virtualization_100942_0100_en.pdf?_ga=2.124504458.128789899.1557134708-1811630367.1537190275
https://developer.arm.com/docs/100942/latest/hypervisor-software
https://www.slideshare.net/xen_com_mgr/rootlinux17-hypervisors-on-arm-overview-and-design-choices-by-julien-grall-arm
https://www.youtube.com/watch?v=jZNXtqFJpuc
https://goo.gl/Ox4thV
https://goo.gl/0Ns37U
https://goo.gl/CJv1n0

