Virtualization in the ARM Architecture

Lecture for the Embedded Systems Course
CSD, University of Crete (May 20 & 23, 2022)

» Manolis Marazakis (maraz@ics.forth.gr)

forTHcs |nstitute of Computer Science (ICS)
Foundation for Research and Technology — Hellas (FORTH)

Essentials of a hypervisor

v

Parent partition (minimum-footprint OS) + Hypervisor

» Hypervisor: Thin layer of software running on the hardware
Supports creation of partitions (virtual machines)

Each partition has one or more virtual processors
Partitions can own or share hardware resources

» Enforces memory access rules
» Enforces policy for CPU usage

Virtual processors are scheduled on real processors
» Enforces ownership of other devices
» Provides inter-partition messaging

Messages appear as interrupts

» Exposes simple programmatic interface: “hypercalls”

2 Virtualization in the ARM Architecture FORTH-ICS

o of Computar Science

Hypervisor functions (recap)

Memory management

Device emulation

Device assignment

Exception handling

Instruction trapping

Managing virtual exceptions

Interrupt controller management
Context switching

Memory translation

Managing multiple virtual address spaces

3 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Traditional ARM Architecture: ARM11 (ARMv6)

» Privilege Level O
User mode

» Privilege Level 1
System
IRQ
FIQ

Supervisor
Abort

Virtualization Extensions (CPU, Memory, 1/0) on the ARM

architecture are based on Security Extensions (“Trust Zone”).

4 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Overview of ARM Virtualization Extension

» Based on ARM TrustZone (TZ) Security Architecture
» CPU: new mode (HYP), and new Privilege Level (non-secure
privilege level 2)
Support for sensitive instructions
Multiple interrupt vector tables
Hypervisor call
» Memory: Intermediate Physical Address (IPA)
Guest OS cannot access physical address space directly.
» 1/O: Virtual Generic Interrupt Controller (vGIC)
Faster delivery of interrupts to VMs

5 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Security Extensions (“TrustZone”)

Normal Normal Normal
App App App

Secure OS

Non-Secure 0OS (ex: RTOS)
(ex: Linux)

ARM Cortex-A8 and beyond

6 Virtualization in the ARM Architecture

Non-Secure State / Secure State: T\

' FORTH-ICS

. 7 institute of Computar Science

Privilege Levels in TrustZone [1/2]

Non-Secure State

Privilege Level O of Non-Secure
State

Privilege Level 1 of Non-Secure
State

Privilege Level 0 of Secure State

Privilege Level 1 of Secure State

Monitor mode

ARM Cortex-A8 and beyond

7 Virtualization in the ARM Architecture

/ Secure State: -

' FORTH-ICS

. 7 institute of Computar Science

Privilege Levels in TrustZone [2/2]

Privilege Level O of Non-Secure
State Privilege Level O of Secure State

Privilege Level 1 of Non-Secure State

Privilege Level 1 of Secure State

Monitor mode

ARM Cortex-A15 and beyond

8 Virtualization in the ARM Architecture

f Non-Secure State K / Secure State: -

' FORTH-ICS

. 7 institute of Computar Science

Virtualization extensions to the ARMv7-A architecture

» Virtualization extensions to the ARMv7-A architecture:
Available in Cortex A-15 / A-7 CPUs
Hyp - New privilege level (for hypervisor)
GuestOS: SVC privilege level, Applications: USR privilege level
2-stage address translation (for OS and hypervisor levels)
Complementary to TrustZone security extensions
» Mechanisms to minimize hypervisor intervention for “routine”
GuestOS tasks:
Page table management
Interrupt masking & Communication with the interrupt controller (GIC)
Device drivers (hypervisor memory relocation)
Emulation of Load/Store accesses and trapped instructions
Hypervisor Syndrome Register: Hyp mode entry reason (syndrome)

» Traps into Hyp mode for ID register accesses & idling (WFI/WFE)
» System instructions to read/write key registers

9 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

)y

ARMv7 CPU Virtualization

PL1

ARM Cortex-A15

10

Guest 051

Guest OS 2

Virtualization in the ARM Architecture

RTOS

Monitor

\ mode . /

' FORTH-ICS

.7« institute of Computar Science

ARM TrustZone (Secure System Partitioning) [1/2]

- ARM TrustZone extensions introduce:

new processor mode: monitor
- similar to VT-x root mode
- banked registers (PC, LR)

- can run unmodified guest
OS binary in non-monitor
kernel mode

new privileged instruction: SMI Hypervisor

- enters monitor mode
new processor status: secure
partitioning of resources

- memory and devices marked secure or insecure

- in secure mode, processor has access to all resources

- ininsecure mode, processor has access to insecure resources only
monitor switches world (secure «» insecure)
really only supports one virtual machine (guest in insecure mode)

- need another hypervisor and para-virtualization for multiple guests

Virtualization in the ARM Architecture FORTH ICS

< Institute of Computar Science

ARM TrustZone [2/2]

Normal World Secure World
E Applications | | E :
: Requiring | | p § 3% b ‘g :
: Secure OS || 2 - 22 ||
JPSpen suppore | 11| © 8 3 LK
« | Applications X :
: Jistzonedtt ¥ Secure OS :
' TZ Dfiver : ' :
: »| . :
.| Embedded OS 'i| Monitor :
e = .

Cortex-A / ARM1176 Processor with ARM TrustZone Technology

Secure Element
(SecurCore)

|> 12 Virtualization for Embedded Systems ~F('_lFm-l ICS

~Institute of Computar Science

Propagation of System Security Mode

Bus Slaves

Virtual
Address

Core state
{(Mode and
NS bit)

Arbiter

Decoder

Datal/lnstruction
Stores

Secure
Access
Perm
Checks

Datal/lnstruction
Loads

Abort

NS : Not Secure - treated like an address line

Highlight shows
additions for TrustZone

13 Virtualization in the ARM Architecture FORTH-ICS

.7 ninstitute of Computar Science

Vg

ARMV7 processor modes

Non-Secure state

ELO User

EL1 Kernel

Secure state

ELO User

EL1 Kernel

EL2 Hypervisor

14

Monitor Mode (Secure EL3)

Virtualization in the ARM Architecture

FORTH-ICS

» of Computar Science

Privilege levels

» Guest OS: same kernel/user privilege structure

» HYP mode: higher privilege than OS kernel level

hvc instruction (hypercall)
VMM controls wide range of OS accesses

» Hardware maintains TZ security (4t privilege level)

Non-secure State User Mode

(Non-privileged)

Guest Operating System1 Guest Operating System2

S ~y
(More Privileged)

TrustZone Secure Monitor

' FORTH-ICS

.7 ninstitute of Computar Science

Vg

15

Virtualization in the ARM Architecture

By default, HYP mode is disabled.
- Should be explicitly enabled in
secure bootloader code.

Supervisor Mode 5 Secure
(Pri\/”eged) Operating System

Secure State

Secure
Apps

1

Exceptions

&

y

Exception Returns

Differences with Intel’s VT-x

» VT-x: Root-Mode is orthogonal to privilege levels (“rings”)

» ARM HYP: “just one more processor mode”
More privileged than existing “kernel” modes

Hypervisor must save guest VM'’s register state
With VT-x, this is done automatically (by hardware)

16 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Boot sequence with Hypervisor

Non-Secure Secure
Power on Reset
ey
ARM core
Software flow state
ARM Non-Secure Guest 0S1 || Guest 0S2 l i
User mode Apps Apps . v
oot code
y - ARM Secure
| SVC mode
¥ I I Startup code
ARM Non-Secure
Privileged modes Guest OS1 || Guest OS2
(SVC, IRQ, ...))
X y Enter monitor
mode
4
ARM Non-Secure Hypervisor <1--1 Monitor software ARM Secure
Hyp mode Monitor mode

17 Virtualization in the ARM Architecture FORTH-ICS

Institute of Computar Science

Vector Tables

.\
\

y Non-Secure State

Privilege Level O of Non-Secure

State Privilege Level O of Secure State

VT for
Non-
Secure
PLO&1

VT for
Secure

Privilege Level 1 of Non-Secure State PLO&1

Privilege Level 1 of Secure State

u, Hyp mode | YV forHyp § Monmode VT for Mon.
mode | mode

ARM Cortex-A15

18 Virtualization in the ARM Architecture ' FORTH-ICS

. 7 Institute of Computer Science

SVCvs. HV

Virtual M

C[1/2]

» SVC: Supervisor Call

— sve_handler: e Software Interrupt (SWI)
Kernel instruction: allow program
e to actively trigger an event
to enter supervisor mode
(from user mode)
» Processor jumps to SVC
vector stub (in kernel space)
s CPU mode:

svC #.(.).x190 User MOde

19 Virtualization in the ARM Architecture FORTH-ICS

/ ,;,muc-m!é-m

SVC vs. HVC [2/2]

» HVC: Hypervisor Call

instruction that allows program to
actively trigger an event to enter
hypervisor mode

e Non-Secure PL1 = Non-Secure PL2

Table » Processor jumps to HVC vector
stub (0x14)

hvc_handler:

NS PL2

Hypervisor

Vector Table with virtualization

Guest extension

oS

hvc #0x190

Hypervisor Call
Data Abort
Prefetch Abort

Supervisor Call

Undefined Instruction

Reset

> 20 Virtualization in the ARM Architecture ' FORTH-ICS

.7« institute of Computar Science

Large Physical Address Extension

» Large Physical Address Extension
64-bit descriptor entries, up to 3 levels
Input/Output addresses: up to 40 bits

» VMID: Virtual Machine Identifier

Identifies current VM, with its own Address Space ldentifier
(ASID — part of TLB maintenance tags)

» VTTBR: Virtual Translation Table Base Register
8-bit VMID

21 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Virtual Memory (1-stage translation)

» Without virtualisation, the OS owns the memory
Allocates areas of memory to the different applications
Virtual Memory commonly used in “rich” operating systems

— Translations =
o

o _'L]_ from | S
© translation 7
E S table (owned |_| ©
= by the OS) 3
=2 || <

o

S g S
g5 L £
> q) |) —

22 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Virtual Memory (2-stage translation)

Stage 1 translation owned
by each Guest OS

__I_I Stage 2 translation owned by the VMM
Hardware has 2-stage

™\ > \/<
memory translation

\\ Tables from Guest OS
translate VA to IPA

Second set of tables from

/ VMM translate IPA to PA

Allows aborts to be routed to
appropriate software layer

_ Physical Address (PA) Map

J

23 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

ARMVS8 Privilege Model

T T I N :
:-ll lllllllllllllllllllll FEREEEREEEEE L é:
LA L AR AR L LSRR R AR NIRRT RN LR R LR L RN AL R EERE RN T EEE NN : 'h
. =3
Sl Guest Operating System | Guest Operating Systemz2 |- Secure World OS5 E
: 3 @
llllllllll LA R LR RE R AR BRI R EE N ERE RN NI NS RN RN R NN E m:h“: Eﬂ b,
. separate privilege levels|, 3 .
Virtual Machine Monitor (VMM) or : AArch32: -
. . 1 =
Hy—p.erh"sur : same prl‘H‘“EgE |E\FE| :
llllllllllllll LR R R RLE R ERE RSN ERN] l‘...--.‘.-ll.II-IlIll-ll'I-I--I‘II-l-‘ll"l-‘.“l"j‘l“]‘.ii.li‘-.i .
=1
i
=
- Each processor mode has its own linear address space, defined by a distinct page table.
- EL2 has its own translation regime - tag in TLB entries
. - No need to flush TLB in transitions bet. EL2 and other CPU modes.
D 24 Virtualization in the ARM Architecture FORTH ICS

ARM processor modes

MNon-Secure state

ELD User

Secure state

ELO User

EL1 Kernel

EL1 Kernel

EL2 Hypervisor

Monitor Mode (Secure EL3)

EL2: simply a more privileged CPU mode

(i.e. can be used for purposes other than VM support)

The hypervisor enables the processor’s virtualization features in EL2 before switching to a

VM. The VM will then execute normally, in ELO and EL1

... until some condition is reached that requires the intervention of the hypervisor = trap into EL2

Each “interrupt” (IRQ, FIRQ) can be configured to trap directly into a VM’s EL1

Instead of going through EL2 - e.g. system calls, page faults

Any state that needs to be saved & restored must be handled explicitly

Contrast: Intel VT-x = VM control block is automatically saved & restored, with a single
instruction, when switching bet. Root — Non-Root modes.

25

Virtualization in the ARM Architecture FORTH-ICS

Institute of Computar Science

Stage-1 and Stage-2 page table walk

TTBR VA
\—_,_.
L -
Stage | L1 .
L3 Table | L2
3| Table | L3 Y
—:l- Pape :—GP.-‘*'L
VTTBR
o
Stage 2 L1 >
3| Table | L2 >
»| Table - L3
—>» Page] L4 Y

S Page T PA

VA (virtual address in VM) > gPA (guest physical address) = hPA (host physical address)

26 Virtualization in the ARM Architecture FORTH-ICS

o of Computar Science

2-stage address translation

Wirfual Memaory Map
{under control of guast
035)

P !

{ Peripherals }"

o)

[Application _-J’

b,

27

(sean by guest, controlled by

/

Translation Tables
TTBROM_EL1

Virtualization in the ARM Architecture

FPhysical Memory Map

Hypervisor)

r

R

"

’[Paripherals l
,[FLASH }

Translalion Tablaes
VTTER_ELZ

Real Physical
hMemory Blap

i R
?J: Paripharals }

A=)

Cremmems)
L™

(FasH)

b, A

' FORTH-ICS

. 7 institute of Computar Science

Steps for World Switch

1
2
3.
4

28

Store all host GP registers onto EL2 stack
Configure vGIC and virtual timers for VM
Save host-specific CSRs onto EL2 stack

Load VM’s CSR’s (no impact on current execution, as EL2 uses
its own CSRs — separate from host state)

Configure EL2 to trap FP operations for “lazy” context
switching of VFP registers, trap interrupts, trap WFI/WFE (CPU
halt) instructions, trap SMC instructions & specific CSR &
debug-register accesses

Write VM-specific IDs into shadow ID registers

Set Stage-2 page table base register (VTTBR), enable Stage-2
address translation

Restore all Guest GP registers, and trap into either user or
kernel mode for the VM.

Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

VM and Host State (Cortex-A15)

Action Nr. | State
Context Switch 38 | General Purpose (GP) Registers
26 | Control Registers
16 | VGIC Control Registers
4 VGIC List Registers
2 | Arch. Timer Control Registers
32 | 64-bit VFP Registers
4 32-bit VFP Control Registers
Trap-and-Emulate |- | CP14 Trace Registers

WEFI Instructions

SMC Instructions

ACTLR Access

Cache Ops. by Set/Way
L2CTLR / L2ECTLR Registers

29 Virtualization in the ARM Architecture

' FORTH-ICS

.7« institute of Computar Science

Types of Hypervisors [1/2]

Virtual machine 1 Virtual machine 2 (vm1) vm2)
I ™ s ™y : - | ™
||| Application ||| Application
Application | | Application Application | | Application : L G)
I . s ™
h 4P 7 | 1/| Guest 0s | || Guestos
I'\f" AN ’J;
Guest OS5 1 Guest 0S5 2 I i A
| Hypervisor Applications
- AR o I . _J
- e ~
Virtualizer software (or Hypervisor) : Guest 05
\ | J
|
!
|
I

Type 1
Bare metal |

—_— L] — L] J

| Type
Hosted

—_— L] — L] J

Hypervisor support in ARMvS8 (aarch64):

Dedicated exception level (EL2) for hypervisor
Trapping exceptions that change core context/state
Routing of exceptions and virtual interrupts
2-stage memory translation
Dedicated exception (HVC) for Hypervisor Call

Virtualization in the ARM Architecture

' FORTH-ICS

.7 ninstitute of Computar Science

Types of Hypervisors [2/2]

» Full virtualization
Unmodified Guest OS

Guest I/O

emulated
... or handled by virtualization-aware HW

» Para-virtualization
Guest OS is aware of the hypervisor
Privileged instructions are replaced by VMM hooks

» Hybrid
Use as much as possible hardware-assisted virtualization

Devices (network, block) para-virtualized or passthrough’ed
Use of emulation is very limited

> 31 Virtualization in the ARM Architecture ‘FORTH-ICS

~Institute of Computar Scisnce

Common hypervisors on ARM architecture

Dom0 VM Host OS VM
ELD serspace U=erzpace ELD Userspace =arspace
Backend Virtio
D'__ 1 Kernel D'__ i
EL1 Kermel| A DE‘-"DEantEmH m Keme EL1 Device /0 I I Kernel
- Driver ” KM | vGIC Driver & i
I g = H
/ > L vitio VO * = | Virtio 1O
. - GIC * | KVM
EL2 le EL2 * KM,
Host EMU Wi
User QEI User
ELO {User) A
N Bl
H 7 ¥ VM
ELI (Kernel) 105t Lol KoM { o
Keme . Highvisor . Reme
I |
" Trap " '['rnp'“'
- l‘ " -
EL2 (Hypervisor) N| Lowvisor x
* — - - — 4
32 Virtualization in the ARM Architecture FORTH-ICS

ARMvVS Virtualization Features

» 2"d stage of memory translation
Adds extra level of indirection between guest & physical memory
TLBs are tagged by Virtual Machine ID (VMID: 8-/16-bit)

» Ability to trap access of most system registers

The hypervisor decides what it wants to trap

» Can handle IRQs, FIQs and asynchronous aborts
The guest doesn’t see physical interrupts firing
» Guests can call into EL2 mode (HVC instruction)

Allows para-virtualizated services

» Standard architecture peripherals are virtualization-aware
GIC and timer have specific features to help virtualization

33 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

EL2 in ARMv8

» EL2 is not a superset of NS-EL1
Orthogonal mode to EL1
Allows multiplexing of NS-EL1 guests on the hardware

» Own translation regime

Separate Stage-1 translation, no Stage-2 translation
» It would be difficult to run Linux in EL2

too many changes to be practical

» EL2 could be used for “world switch”
Between guests (bare-metal hypervisor/Type |)
Between host and guest (hosted hypervisor/Type Il)
This makes the host a form of specialized guest ...

34 Virtualization in the ARM Architecture FORTH-ICS

Institute of Computar Science

Type-l Hypervisor

ELO
Guest Kernel Guest Kernel Guest Kernel EL1
Hypervisor EL2

35 Virtualization in the ARM Architecture FORTH-ICS

X ~ Institute of Computar Science

Type-ll Hypervisor

» 36

Host
Userspace

Host Kernel Guest Kernel

HYP

Guest Kernel

Switching Code

Virtualization in the ARM Architecture

ELO

EL1

EL2

' FORTH-ICS

.7« institute of Computar Science

Virtualization Host Extensions (VHE)

» Part of ARMvS8.1 (AArch64 specific): expands the capability of EL2
Designed to improve the support of the Type-Il hypervisors

Allows the host OS to be run at EL2

Significantly reduces the number of system registers shared between
Host and Guest

The host OS requires minimal changes to run at EL2

Use HYP timer interrupt, instead of Guest’s timer interrupt

User-space still runs at ELO

Host has no software running at EL1
VHE provides a mechanism to access the extra EL2 register state
transparently.

Simply providing extra EL2 registers is not sufficient to run unmodified
OSes in EL2, because existing OSes are written to access EL1 registers.

37 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Type-Il Hypervisor with VHE

Type 1: E2H Bit Clear

Type 2: E2H Bit Set

VM = VM
SysCa
EL 1 (Kernel) & traps
EL 2 (Hypervisor) |Xen Hypervisor ¥ Host Kernel and KVM

Type-ll Hypervisor with VHE

» 38

Host
Userspace

Guest Kernel

Guest Kernel

Host Kernel + HYP

Virtualization in the ARM Architecture

ELO

EL1

EL2

‘FORTH-ICS

~Institute of Computar Scisnce

VHE: Impact on Hypervisor (kvm)

» Reduced save/restore of host system registers
Only 4 registers

» “Lazy” save/restore of Guest system registers

Deferred until actually needed by Host, or upon VM switch
» Reduced interrupt latency

Less state to be restored before handling the interrupt
» No trap to enter hypervisor (normal function call!)

» No HYP mappings needed
The kernel runs at EL2

39 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Nested Virtualization

» Part of ARMVS8.3

» Allows an hypervisorin a VM
Unmodified guest hypervisor running in NS EL1

VM thinks it runs at “virtual” EL2 (using VHE)

VM uses EL1 register accesses to access EL2
registers (HCR_EL2.NV, Shadow EL1 registers)

Very few traps needed (EL1 - EL2, “eret”)
» Implementation of a host hypervisor
required
Running at EL2

Use cases :
b Develop/test/debug hypervisor in VM
2 |laaS hosting private cloud

40 Virtualization in the ARM Architecture

VM
ELO
EL1
IPA -> VM PA
vEL2 Guest KVM
—{vMPA>PA
EL2 Host KVM

' FORTH-ICS

“/ . Institute of Computar Science

KVM: Kernel-based Virtual Machine

» Hosted (Type-Il) hypervisor
Unlike Xen : Type-I

» Use of assisted hardware virtualization
» Devices are

emulated (QEMU)
para-virtualized (VIRTIO)

» All CPUs are using the same scheduler
guest vCPU is a task for the host OS

» Resource management can be done using cgroups
Standard way in Linux to control resources

41 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

KVM Architecture

KVM guest
Applications l
v i Hardware | ©Onlyone thread can
KM F'llle system‘and emulation | ™" QEMU code
Y block devices at any time
guest’s
kernel] | Drivers | (QEMU) (gamu_rmutex)
r
T‘I'? Generates [/ O
. N ioth requests to the host
vepuo B ‘ lothread on guest’s behalf
gy 7%) i and handles events
EVM (kvm ko)
File system and)
block devices Linux
Physical drivers | kernel
0
Hardware
cpul o o o cpul
42 Virtualization in the ARM Architecture

‘FORTH-ICS

~Institute of Computar Scisnce

KVM architecture with ARMvS8.0-A

State to save/restore:

Host

Stage-2 translation table
Userspace

ELO |. Trap configuration
General-purpose registers

System control registers

FP registers

GIC configuration
Host Kernel Guest Kernel Guest Kernel EL1 |- Timer configuration

KVM

Switching Code EL2

> 43 Virtualization in the ARM Architecture ‘FORTH-ICS

. Institute of Computar Science

KVM architecture with ARMvS8.1-A

Host

Userspace ELO

ARMv8.1 features:
Guest Kernel || Guest Kernel » 16-bit VMIDs
S |
(expanded EL2)
Host Kernel + KVM EL2

> 44 Virtualization in the ARM Architecture ' FORTH-ICS

“ v institute of Computar Science

Xen: Para-virtualization

Dom0O DomU DomU DomU
PV backends - ™ PV Frontends PV Frontends PV Frontends
HW drivers
Xen
Hardware
45 Virtualization in the ARM Architecture

E_QR'[H-IE:S

» of Computar Science

Xen: Driver Domains

Disk Driver Network
Dom0O : : : DomU
Domain Driver Domain
BlockBack NetBack -s: BlockFront
Toolstack Disk Driver Network Driver NetFront

Xe

¥
il

Hardware

46

Virtualization in the ARM Architecture

FDRTH-IFS

Institute of Computar Science

GIC: Generic Interrupt Controller

» Single interrupt controller in ARM architecture
» + Firmware: “Interrupt Distributor”

Distributor

CPU Interface Non-Secure
State

Secure
State

> 47 Virtualization in the ARM Architecture

vGIC: virtual CPU interface

+ distributor

' FORTH-ICS

. Institute of Computar Science

Virtualization of interrupts

» An interrupt might need to be routed to one of:
Current or different GuestOS

Hypervisor

OS/RTOS running in the secure TrustZone environment

» Physical interrupts are taken initially in the Hypervisor
If the Interrupt should go to a GuestOS :
Hypervisor maps a “virtual” interrupt for that GuestOS

v o Dz 1 it Lo |

| Virtual

e)

Physical
Interrupt Interrupt

System without virtualisation System with virtualisation

48 Virtualization in the ARM Architecture ' FORTH-ICS

. 7 Institute of Computer Science

V

Virtual Interrupt Controller

» ISR of GuestOS interacts with the virtual controller
Pending and Active interrupt lists for each GuestOS
Interact with the physical GIC in hardware
Creates Virtual Interrupts only when priority indicates it is necessary

» GuestOS ISRs therefore do not need calls for:
Determining interrupt to take [Read of Interrupt Acknowledge]
Marking the end of an interrupt [Sending EOI]

Changing CPU Interrupt Priority Mask [Current Priority]

» GIC has separate sets of internal registers:

Physical registers and virtual registers

Non-virtualized system and hypervisor access the physical registers
Virtual machines access the virtual registers
Guest OS functionality does not change when accessing the vGIC

» Hypervisor remaps virtual registers for use by GuestOS’es
Interrupts generate a hypervisor trap

49 Virtualization in the ARM Architecture FORTH-ICS

Institute of Computar Science

Virtual interrupt sequence

External IRQ (configured as virtual by the hypervisor) arrives at the GIC

GIC Distributor signals a Physical IRQ to the CPU

CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical

CPU Interface

Hypervisor makes an entry in register list in the GIC

GIC Distributor signals a Virtual IRQ to the CPU

CPU takes an IRQ exception, and Guest OS running on the virtual machine reads

the interrupt status from the Virtual CPU Interface

External
Interrupt
source

Distributor

A

\4

A

Virtual _
Virtual IRQ
CPU Guest OS
Interface
Physical CPU
CPU Hypervisor
Interface | PhysicalIRQ

50

Virtualization in the ARM Architecture

FORTH-ICS

Virtual I/O devices

» Memory-mapped devices

Read/write accesses to device registers have specific side-effects
» Virtual devices = emulation

Typically, read/write accesses have to trap to Hypervisor

Fetch & interpretation of emulated load/stores is performance-intensive
Syndrome: key information about an instruction

Source/destination register, Size of data transfer, ...
Available for some loads/stores (on abort)

If not available, then it is required to fetch the instruction for full emulation

» System MMU: 2"9-stage address translation for devices
Allows devices to be programmed into Guest’s VA space

51 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

System MMU (I0-MMU)

DDR3/
LPDDR2

DDR3/
LPDDR2

Virtualization in the ARM Architecture

& ’%FDRTH ICS

,,md Computar Science

Device emulation

» Platform devices are memory-mapped, and guest accesses
to devices are subject to at least Stage 2 translation when
virtualization is in effect.

» Guests can detect a platform device by reading its ID
register, or by interrogating registers mentioned in the
device tree.

53

The hypervisor can return dummy values for Guest reads and
ignore writes, effectively giving the Guest the impression that
the device does not exist on the platform.

When the device model has some data to deliver, the hypervisor
raises a virtual IRQ (vIRQ).

The Guest OS responds by attempting to read hardware registers. The
hypervisor traps these accesses and provides simulated responses.

Virtualization in the ARM Architecture FORTH-ICS

o of Computar Science

Device assignment

» Need to hide from the Guest the fact that the device is at a
different physical address

Alternatively, the hypervisor might choose to hide a device from
a set of guests - either because the device is not present or has
already been assigned to a different guest.
» Generate a different interrupt ID than that which the guest
IS expecting.

54 Virtualization in the ARM Architecture FORTH-ICS

» of Computar Science

Sources (1)

4

David Brash, Extensions to the ARMv7-A Architecture, HotChips
2010

John Goodacre, Hardware accelerated Virtualization in the
ARM Cortex Processors, XenSummit Asia 2011

Roberto Mijat and Andy Nightingale, Virtualization is Coming to
a Platform Near You: The ARM Architecture Virtualization
Extensions and the importance of System MMU for virtualized
solutions and beyond, ARM White paper, 2011

Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and
Georgios Koloventzos, ARM Virtualization: Performance and
Architectural Implications, In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture

55 Virtualization in the ARM Architecture FORTH-ICS

Sources (2)

» AArch64 virtualization Documentation

» https://static.docs.arm.com/100942/0100/aarch64 virtualization 100
942 0100 en.pdf? ga=2.124504458.128789899.1557134708-
1811630367.1537190275

» AArch64 virtualization: Hypervisor software
» https://developer.arm.com/docs/100942/latest/hypervisor-software
» Julien Grall: “Hypervisors on ARM: Overview and Design
choices”, Root Linux Conference 2017

» Slides: https://www.slideshare.net/xen com mgr/rootlinux17-
hypervisors-on-arm-overview-and-design-choices-by-julien-grall-arm

» Video: https://www.youtube.com/watch?v=jZNXtqFJpuc
» ARMV8.1-A: hitps://oo0.6l/Ox4AthV

» ARMVS8.2-A: https://eoo.gl/ONs37U
» ARMVS8.3-A: https://eoo.gl/Clvin0

|> 56 Virtualization in the ARM Architecture ~F('_lFm-l ICS

~Institute of Computar Science

https://static.docs.arm.com/100942/0100/aarch64_virtualization_100942_0100_en.pdf?_ga=2.124504458.128789899.1557134708-1811630367.1537190275
https://developer.arm.com/docs/100942/latest/hypervisor-software
https://www.slideshare.net/xen_com_mgr/rootlinux17-hypervisors-on-arm-overview-and-design-choices-by-julien-grall-arm
https://www.youtube.com/watch?v=jZNXtqFJpuc
https://goo.gl/Ox4thV
https://goo.gl/0Ns37U
https://goo.gl/CJv1n0

