
Linux Kernel Overview
Nick Kossifidis - HY428 12/5/2023

History and features

What is Linux…

3

● Monolithic kernel
● Built in 1991 by Linus Torvalds
● Written in C
● Licensed under the GPLv2
● Open standards (e.g. POSIX / SUS) compliant
● Multi-arch
● Multi-user
● Preemptive multitasking
● Scalable
● Fully Customizable
● Bleeding edge !

Linux is huge !

4

~23 million lines of code and counting

~64k files in the kernel tree

Almost 2.000 developers / release

More than 20.000 developers have contributed so far

Under the hood

A visualisation attempt

6

Kernel Build System

7

Linux kernel modules

8

● Object files that extend the kernel’s functionality.
● Can be compiled as part of the kernel (built-in) or loaded at runtime (loadable).
● Each module has a module_init function that runs when the module is added to the kernel.
● For built-in modules module_init translates to a device initcall so that it becomes part of the initcall

chain.
● Loadable modules in contrast with built-in modules can be unloaded and can provide a module_exit

function to do the cleanup.
● Modules can register a set of module parameters using the module_param macro. Parameters can

be passed on loadable modules via the insmod/modprobe command and to built-in modules via the
kernel’s cmdline in the form module_name.parameter=value.

● They can also contain information such as the module’s author, license, description and parameter
description. To access that info use the modinfo command.

● Modules support versioning, can contain a checksum for further validation and can be protected by
signature checks on recent kernels so that only signed modules can be loaded.

Some extra kernel <-> user interfaces

9

● Pseudo file systems (VFS)
● /dev -> Device access
● /proc -> Runtime kernel / process status/parameters

○ /proc/self/ or /proc/$pid -> Process state/config
○ /proc/cpuinfo -> CPU layout
○ /proc/vmstat -> Virtual Memory statistics
○ /proc/interrupts -> Interrupt counters
○ /proc/cmdline -> Kernel command line
○ /proc/sys -> System status/parameters
○ …

● /sys -> System layout (device model)
○ /sys/block -> Block devices
○ /sys/bus -> Registered buses
○ /sys/class -> Devices by device class
○ /sys/devices -> Devices layout
○ /sys/kernel -> Runtime kernel parameters, includes configfs and debugfs mountpoints
○ /sys/modules -> Loaded kernel modules and their parameters (under the parameters/ subfolder)
○ …

● Sysctl/ioctl/netlink
● Device-mapper uevents
● Kdbus (IPC transport)
● CryptoAPI
● …
● Vdso

Some companion libraries/daemons

10

● Libaio -> Advanced I/O
● Libdrm -> Direct Rendering Manager
● Libmesa -> Graphics Acceleration
● Libasound -> Access to sound devices via ALSA
● Libevdev -> Access to event interface (/dev/input)
● Libnl -> Generic Netlink
● Libnftln -> NFTables (Netfilter configuration)
● Iproute2 -> Network configuration
● Cfg80211/nl80211 -> WiFi configuration / driver access
● …

● Udev -> Userspace /dev (hotplugging, firmware loading etc)
● Pulseaudio/JackD/Pipewire -> Access to sound cards (multiplexing, mixing etc)
● Irqbalance -> IRQ balancing across CPUs
● Wpa supplicant / xsupplicant -> 802.11i (WPA) 802.1x (PNAC / MacSEC)
● Hostapd -> WiFi Access Pont daemon
● …

Firmware services…

11

● CPU-level power management (cpu hotplug)
● Platform-level power management (suspend / resume)
● Early access to console / Framebuffer
● Performance monitoring
● Clock / timer setup
● Initial physical memory map setup
● Various privileged operations, including interaction with the Secure Monitor etc
● …
● UEFI Boot/Runtime services:

○ https://uefi.org/specs/UEFI/2.9_A/07_Services_Boot_Services.html
○ https://uefi.org/specs/UEFI/2.9_A/08_Services_Runtime_Services.html

● ARM Trusted firmware:
○ https://elinux.org/images/0/05/Elc-tfa.pdf

● RISC-V SBI:
○ https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.pdf

Open source firmware implementations:

Tianocore / EDK2: https://www.tianocore.org/ (UEFI)

CoreBoot: https://www.coreboot.org/

OpenSBI: https://github.com/riscv-software-src/opensbi (RISC-V)

ARM Trusted Firmware: https://github.com/ARM-software/arm-trusted-firmware (ARM)

https://uefi.org/specs/UEFI/2.9_A/07_Services_Boot_Services.html
https://uefi.org/specs/UEFI/2.9_A/08_Services_Runtime_Services.html
https://elinux.org/images/0/05/Elc-tfa.pdf
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.pdf
https://www.tianocore.org/
https://www.coreboot.org/
https://github.com/riscv-software-src/opensbi
https://github.com/ARM-software/arm-trusted-firmware

Device discovery…

12

● Desktop Management Interface (DMI) tables (SMBIOS)
○ https://www.dmtf.org/standards/dmi

● Advanced Control Power Interface (ACPI) tables
○ https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/index.html

● Device-tree
○ https://www.devicetree.org/

Data available through /sys/firmware/

Decode with dmidecode / acpidump & iasl / fdtdump

Other useful tools: lspci, lsusb, lshw, i2cdetect…

https://www.dmtf.org/standards/dmi
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/index.html
https://www.devicetree.org/

Device discovery…

13

Device discovery…

14

Device discovery…

15

Device discovery via bus controllers…

16

The boot process

17

● BootROM (aka Zero-stage Boot Loader)
○ Directly addressable ROM/NOR Flash
○ Very early CPU/Platform initialization (e.g. DRAM controller, config/status registers etc)
○ Very small, very constrained
○ Unpacks/verifies (and possibly decompress/decrypt) first stage boot loader
○ No access to peripherals yet, only memory/flash

● First stage boot loader
○ Firmware and Secure monitor initialization
○ More complicated platform / SoC setup
○ Has access to storage (but usually only VFAT support)
○ May have network access (e.g. for booting over network or perform firmware update)
○ May have private storage for configuration variables
○ May even have a GUI (e.g. your PC’s UEFI or older BIOS setup)
○ Fetches second stage boot loader and / or OS kernel and executes it in a less privileged mode (supervisor / hypervisor mode)

using an arch-specific boot protocol or UEFI (which is arch-independent).
● Second stage boot loader (Optional)

○ Supports more options for fetching OS kernel, e.g. more filesystems, more storage devices, more OS-specific boot protocols etc

Kernel initialization overview…

18

● Unpack kernel to memory
● Initialize memory map
● Initialize internal states and structures (lock validator, debug objects, stack protector, cgroups

etc)
● Do architecture specific initialization (CPU initialization, Detect HW layout from ACPI / Device

Tree, configure hypervisor mode etc)
● Initialize the remaining kernel features, bring up the remaining cores, initialize memory

management, caches, NUMA etc
● Start the High Resolution timer for the scheduler
● Initialize early console output

Kernel initialization overview…

19

● Save cmdline
● Starts two kernel threads, PID1 that will later become the init userspace program and PID2 that’s used for adding

new threads (kthreadadd)
● Begins crawling of the chain of initcalls. Initcalls are split in to arrays of function pointers aka initcall levels:

○ Core → Remaining core kernel services, platform-related (power management, buses, interrupts etc)
○ Postcore → Remaining core kernel services that depend on the above
○ Arch → Misleading name, think of it as post-postcore (same goes for most of the “levels”). It also includes

some remaining arch-specific calls but it’s mostly platform-related stuff (e.g. dma, clocksource etc)
○ Subsys → Kernel subsystems (e.g. pci, various buses, networking etc) and things that depend on the

above
○ Fs → (pseudo) Filesystems and things that depend on the above
○ Rootfs → Mount rootfs / populate rootfs from initrd/initramfs, and things that depend on the above
○ Device → Device drivers
○ Late → Cleanup calls and things that depend on the above
○ Console → Console devices (e.g. serial)
○ Security →Linux Security Modules (SELinux, Tomoyo, Apparmor etc)

● Run the init program from rootfs, try various default paths or the one passed by the init= parameter on cmdline

PID 1…

20

Resources…

21

https://www.kernel.org/doc/html/latest/

https://lwn.net/

https://kernelnewbies.org/

https://elixir.bootlin.com/linux/latest/source

https://github.com/0xAX/linux-insides

https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html

Some (outdated) books:

● Linux Device Drivers, 3rd edition
● Understanding the Linux kernel, 3rd edition
● Linux Kernel Development, 3rd edition
● Linux System Programming 2ed: Talking Directly to the Kernel and C Library

https://www.kernel.org/doc/html/latest/
https://lwn.net/
https://kernelnewbies.org/
https://elixir.bootlin.com/linux/latest/source
https://github.com/0xAX/linux-insides
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html

RISC-V Specific

RISC-V Privilege modes

23

● Mandatory
● The most privileged /

protected mode visible to the
software (there is also Debug
mode but it’s only accessible /
visible to hw debuggers)

● Physical memory addressing
● Physical memory protection
● Trap/Interrupt handling and

delegation

● Optional (depends on
M-mode)

● The least privileged /
protected mode

● Physical/virtual memory
addressing Physical/virtual
memory protection

● No trap/interrupt handling

● Optional (depends on M-mode
and U-mode)

● Sits between M-mode and
U-mode

● Provides virtual memory
addressing / protection

● Trap/interrupt handling through
delegation, managed by M-mode

● May act as a hypervisor (aka
HS-mode) through the use of an
extra set of CSRs, also providing
a second stage of translation /
protection for guests (aka
VS-mode instances)

Machine Mode User Mode Supervisor Mode

The RISC-V Privileged Spec
https://github.com/riscv/riscv-isa-manual/releases

https://github.com/riscv/riscv-isa-manual/releases

RISC-V Virtual memory

24

● 3 level page table for RV32 (Sv32)
● 3, 4, 5 level page tables for RV64

(Sv39/48/57)
● 2nd stage of translation for VS mode

(G-stage), managed by HS mode
● NAPOT encoding available
● Up to 16bit ASID
● SMEP always active
● SMAP controlled by sstatus.SUM bit
● Page-based memory types (Non

Cacheable, I/O) for RV64

Facilities on M-mode

25

Provide infos on the current hardware thread (hart):

● Vendor id (mvendorid), Microarchitecture id (marchid), Implementation id (mimpid)
● Current hart’s id (hartid)
● Available hart extensions (misa, menvcfg)
● Pointer to the configuration structure (mconfigptr) from which we can also generate the device tree

or ACPI tables

Configure hart extensions (misa, menvcfg, mstatus) and security features (mseccfg)

Physical Memory Protection (PMP/ePMP)

Configure profile counters

Fixed-frequency timer (mtime) with the ability to schedule timer interrupts (mtimecmp)

Configure trap and interrupt auto-delegation to S / HS modes

RISC-V Trap and interrupt delegation / mode switching

26

RISC-V Interrupt delivery

27

The old way (SiFive CLINT / PLIC)

● Wired interrupts only, no MSIs
● Shared between privilege modes
● Directly to M-mode and then delegated (so even

S-mode software interrupts go through M-mode)
● No virtualization support

The new way (RISC-V ACLINT / AIA)

● Both wired and MSIs
● Different interrupt settings per privilege mode
● Interrupts delivered to specific privilege modes
● Virtualization support

For more information:
https://github.com/riscv/riscv-aia
https://github.com/riscv/riscv-aclint
Advanced Interrupt Architecture and Advanced CLINT
Anup Patel, John Hauser - RISC-V Summit 2021
(https://www.youtube.com/watch?v=je9Qr23mclU)

https://github.com/riscv/riscv-aia
https://github.com/riscv/riscv-aclint
https://www.youtube.com/watch?v=je9Qr23mclU

Firmware architecture

28

Supervisor Binary Interface (SBI)

29

Firmware call API
● S-Mode <-> M-Mode
● HS-Mode <-> M-Mode
● VS-Mode <-> HS-Mode

Available services:
● Provide access to M-mode facilities

○ Timer, PMU, hart/imp/vendor IDs…
● Inter-Processor Interrupts (IPI)
● Remote Fence (memory barrier)
● Hart State Management (suspend/resume)
● System Reset
● …

For more information: https://github.com/riscv-non-isa/riscv-sbi-doc

https://github.com/riscv-non-isa/riscv-sbi-doc

RISC-V OS Boot protocol

30

Direct:

● Get Device Tree through a1 gp register
● Get Hart ID through a0 gp register

EFI stub:

● Get Device Tree through EFI Config Table
● Get Hart ID through the device tree’s

chosen/boot-hartid or through the new
RISCV_EFI_BOOT_PROTOCOL

For more information:
Atish Pattra - An introduction to RISC-V Boot flow (RISC-V Summit 2019)
https://www.youtube.com/watch?v=sPjtvqfGjnY
https://archive.fosdem.org/2021/schedule/event/firmware_uor/
https://github.com/riscv-admin/riscv-uefi-edk2-docs
arch/riscv/kernel/head.S
drivers/firmware/efi/libstub/riscv-stub.c

RISC-V Device Tree bindings under Documentation/bindings:
/riscv/cpus.yaml
/interrupt-controller/riscv,cpu-intc.txt
/interrupt-controller/sifive,plic-1.0.0.yaml
/cpu/cpu-topology.txt

https://www.youtube.com/watch?v=sPjtvqfGjnY
https://archive.fosdem.org/2021/schedule/event/firmware_uor/
https://github.com/riscv-admin/riscv-uefi-edk2-docs

Runtime firmware implementations

31

Reference implementation: OpenSBI
Can act as a standalone firmware / first stage boot loader
Can be used as a library for other runtime firmware implementations

Used on EDK2 (EFI Runtime firmware)
Can be used for static partitioning of the system (OpenSBI Domains)

Other implementations of the SBI spec
● Hypervisors (to provide SBI for their guests):

○ KVM, Xvisor, Diosix
● RustSBI
● Coffer (Secure monitor)

Useful links:
https://github.com/riscv-software-src/opensbi
https://github.com/xvisor/xvisor
https://diosix.org/
https://github.com/rustsbi/rustsbi
https://github.com/jwnhy/coffer

https://github.com/riscv-software-src/opensbi
https://github.com/xvisor/xvisor
https://diosix.org/
https://github.com/rustsbi/rustsbi
https://github.com/jwnhy/coffer

Questions ?

Thank you !

