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GPUs are SIMD Engines Underneath

* The instruction pipeline operates like a SIMD pipeline (e.g., an
array processor)

 However, the programming is done using threads, NOT SIMD
Instructions

* First let’s distinguish between
— Programming Model (Software)
— Execution Model (Hardware)

CS425 - Vassilis Papaefstathiou



Programming Model vs. Hardware Execution Model

* Programming Model refers to how the programmer expresses the
code

— E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, Multi-
threaded (MIMD, SPMD), ...

 Execution Model refers to how the hardware executes the code
underneath

— E.g., Out-of-order execution, Vector processor, Array processor, Dataflow
processor, Multiprocessor, Multithreaded processor, ...

* Execution Model can be very different from the Programming Model
— E.g., von Neumann model implemented by an OoO processor
— E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?

Scalar Sequential Code

Let's examine three programming
options to exploit instruction-level

for (i=0; i < N; i++) :
C[i] = A[i] + B[i]; ¢

parallelism present in this sequential
code:

1. Sequential (SISD)
2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)
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Prog. Model 1: Sequential (SISD)

Scalar Sequential Code Can be executed on a:

for (1=07 1 < N; it4) Pipelined processor

C[i] = A[i] + B[i];

Out-of-order execution processor

o Independent instructions executed
when ready

- Different iterations are present in the
Instruction window and can execute In
parallel in multiple functional units

o In other words, the loop is
dynamically unrolled by the hardware

Superscalar processor

- Can fetch and execute multiple
Instructions per cycle

Iter. 1
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Prog. Model 2: Data Parallel (SIMD)

Vectorized Code

Vector Instrf€fba S VLD A->V1

for (i=0; i < N; i++) | VLD B-—>V2

C[i] = A[i] + B[i];

VADD V1+V2->V3

VST V3=>C

Iter. 2
Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
Instruction to execute the same instruction from all
iterations across different data

!

Best executed by a SIMD processor (vector, array)

Iter. 2
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Prog. Model 3: Multithreaded

Scalar Sequential Code

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Prog. Model 3: Multithreaded

Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine
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A GPU is a SIMD (SIMT) Machine

« Except it is not programmed using SIMD instructions

* It Is programmed using threads (SPMD programming model)

— Each thread executes the same code but operates a different piece of
data

— Each thread has its own context (i.e., can be treated/restarted/executed
iIndependently)

A set of threads executing the same instruction are dynamically
grouped into a warp (wavefront) by the hardware
—Awarp is essentially a SIMD operation formed by hardware!
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Warp 0 at PC X+2

Warp O at PC X+3

for (i=0; i < N; i++)

Iter. 1

C[i] = A[i] + B[i]:

Iter. 2

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)

This particular model is also called:
SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model.
Single Instruction Multiple Thread
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SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD instructions -
each instruction specifies multiple data inputs

— [VLD, VLD, VADD, VST], VLEN

 SIMT. Multiple instruction streams of scalar instructions - threads
grouped dynamically into warps
— [LD, LD, ADD, ST], NumThreads

« Two Major SIMT Advantages:

— Can treat each thread separately - i.e., can execute each thread
Independently (on any type of scalar pipeline) - MIMD processing
— Can group threads into warps flexibly = I.e., can group threads that are

supposed to truly execute the same instruction > dynamically obtain and
maximize benefits of SIMD processing
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Fine-Grained Multithreading of Warps

« Assume a warp consists of 32 threads
* If you have 32K iterations, and 1 iteration/thread = 1K warps

« Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

] Warp 0 at PC X

] Warp 20 at PC X+2

for (i=0; i < N; i++)
C[i] = A[i] + B[i]:;

Iter. Iter.
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Warps and Warp-Level FGMT

« Warp: A set of threads that execute the same instruction (on
different data elements) - SIMT (Nvidia-terminology)

e All threads run the same code

-~ | Thread Warp 3
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Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.




High-Level View of a GPU
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Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.
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Latency Hiding via Warp-Level FGMT

« Warp: A set of threads that execute
the same instruction (on different
data elements)

* Fine-grained multithreading

— One instruction per thread in pipeline at a time
(No interlocking)

— Interleave warp execution to hide latencies
» Register values of all threads stay in register file

« FGMT enables long latency tolerance
— Millions of pixels
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Warp Execution

32-thread warp executing ADD A[tid],B[tid] = C[tid]

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25]A[26] B[26]A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[12] B[12] A[13] B[13]A[14] B[14] A[15] B[15]
! l/ ! ! ! #/

| C[9] f \C[1O]¢ \C[11]f
| CI51] | Cl6] | Cl71]

e
7 7

v v v
C[1] C[2] C[3]

Space >
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SIMD Execution Unit Structure

Registers
for each
Thread

Lane

Functional Unit
/
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Registers for Registers for Registers for Registers for
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Memory Subsystem
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Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
— Example machine has 32 threads per warp and 8 lanes
— Completes 24 operations/cycle while issuing 1 warp/cycle

‘ Load Unit Multiply Unit Add Unit
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I Warp issue >
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SIMT Memory Access

« Same Instruction in different threads uses thread id to index and
access different data elements
Let's assume N=16, 4 threads per warp > 4 warps

10 11 12 13 14 15 Threads

Data elements
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Warps not Exposed to GPU Programmers

« CPU threads and GPU kernels

— Sequential or modestly parallel sections on CPU
— Massively parallel sections on GPU: Blocks of threads

Serial Code (host) g
Parallel Kernel (device) X || S || KX X
KernelA<<< nBlk, nThr >>>(args); 3 % S . S
Serial Code (host) g

Parallel Kernel (device) LY | | LR | | LD LD
KernelB<<< nBlk, nThr >>>(args);
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Sample GPU SIMT Code (Simplified)

CPU code
[for (ii = 0; ii < 100000; ++ii)ﬂ

Clii] = A[ii] + BI[ii];

¥
CUDA code I

(// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

J J
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Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global __ add_matrix

( float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int ] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock( blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>( a, b, ¢, N);

}
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From Blocks to Warps

* GPU cores: SIMD pipelines
— Streaming Multiprocessors (SM)
— Streaming Processors (SP)

 Blocks are divided into warps

— SIMD unit (32 threads)

Block O’s warps
|

Block 1’s warps

t0tl1t2 .. t31
NNNANNANAN

Block 2’s warps

t0tl1t2 .. t31
NNNNNNANAN

tot1t2..t31
EOCTERTRNR

S
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Warp Scheduler || Warp Scheduler
Dispatch Unit || Dispatch Unit

Register File

NVIDIA Fermi architecture
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Warp-based SIMD vs. Traditional SIMD

 Traditional SIMD contains a single thread
— Sequential instruction execution; lock-step operations in a SIMD instruction
— Programming model is SIMD (no extra threads) - SW needs to know vector length
— ISA contains vector/SIMD instructions

« Warp-based SIMD consists of multiple scalar threads executing in a SIMD
manner (i.e., same instruction executed by all threads)

— Does not have to be lock step

— Each thread can be treated individually (i.e., placed in a different warp) =
programming model not SIMD

o SW does not need to know vector length
o Enables multithreading and flexible dynamic grouping of threads
— ISA is scalar = SIMD operations can be formed dynamically
— Essentially, it is SPMD programming model implemented on SIMD hardware
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SPMD

 Single procedure/program, multiple data
— This is a programming model rather than computer organization

« Each processing element executes the same procedure, except on different data
elements

— Procedures can synchronize at certain points in program, e.g. barriers

« Essentially, multiple instruction streams execute the same program
— Each program/procedure 1) works on different data, 2) can execute a different control-flow
path, at run-time

— Many scientific applications are programmed this way and run on MIMD hardware
(multiprocessors)

— Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD instructions -
each instruction specifies multiple data inputs

— [VLD, VLD, VADD, VST], VLEN

 SIMT. Multiple instruction streams of scalar instructions - threads
grouped dynamically into warps
— [LD, LD, ADD, ST], NumThreads

* Two Major SIMT Advantages:
— Can treat each thread separately = i.e., can execute each thread

— Can group threads Into warps erX|ny 9 l.e., can group threads that are

supposed to truly execute the same instruction > dynamically obtain and
maximize benefits of SIMD processing

CS425 - Vassilis Papaefstathiou 26



Threads Can Take Different Paths in Warp-based SIMD

« Each thread can have conditional control flow instructions
* Threads can execute different control flow paths

Thread Warp Common PC

Thread| Thread|Thread | Thread
1 2 3 4
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Control Flow Problem in GPUs/SIMT

* A GPU uses a SIMD pipeline to
save area on control logic

— Groups scalar threads into warps

« Branch divergence occurs when
threads inside warps branch to
different execution paths

This is the same as conditional/predicated/masked execution.

SRRRRRY
SRRRRRY

Path B

Branch
; Path A

e
AL

SRRRRRY

Recall the Vector Mask and Masked Vector Operations?
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Remember: Each Thread Is Independent

« Two Major SIMT Advantages:

— Can treat each thread separately - i.e., can execute each thread
Independently on any type of scalar plpellne - MIMD processing

* If we have many threads
* We can find individual threads that are at the same PC
« And, group them together into a single warp dynamically

 This reduces “divergence” - improves SIMD utilization

— SIMD utilization: fraction of SIMD lanes executing a useful operation (i.e.,
executing an active thread)

CS425 - Vassilis Papaefstathiou
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Dynamic Warp Formation/Merging

* |dea: Dynamically merge threads executing the same
Instruction (after branch divergence)

 Form new warps from warps that are waiting

— Enough threads branching to each path enables the creation of full new
warps

WarpX ¥ ¥ o Pedd e Hd o wapz
Warp Y v v oy

-— -
-
- -
-
-
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Dynamic Warp Formation/Merging

- Idea: Dynamically merge threads executing the same instruction
(after branch divergence)

RN RY
RN
RN
EERRNER
TXIE RN
e oy T } !

Path B

Fung et al., “Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow,” MICRO 2007.
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Dynamic Warp Formation Example

4

Ayl

x/1111

B x/1110
y/0011

Baseline

Dynamic
Warp

Formation

Legend
A

f—>| Execution of Warp y
|_>| at Basic Block A

=

A
[—>| Execution of Warp x

|1| at Basic Block A

gl
D

A new warp created from scalar
3| threads of both Warp x and y
—» | executing at Basic Block D

N

v
v ovy
Yyiyio
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Hardware Constraints Limit Flexibility of Warp Grouping
/Functiona/ Unit

Registers
for each
Thread

Lane

( < ; \ < \ ; \
il T T
| Y [ [ [ |
C \ / \ / \ / \
— I—— —t— —
Ehergei:zle{ISD ;0" Registers for Registers for Registers for
hread ID hread ID
0,4,8, .. S 2610, - T Can you
A A A A A < move any
‘\ \ 4 V</F ‘\ \ 4 V</F ‘\ \ 4 V</F ‘\ \ 4 V</F thread
L[ L[ | ] flexibly to
L N N T any lane?
iy S S S

\ 4

\ 4

Memory Subsystem
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Large Warps and Two-Level Warp Scheduling

« Two main reasons for GPU resources be underutilized
— Branch divergence
— Long latency operations

Core A” Warps Compute} ............................................................ [A” Warps Compute]
Req Warp 0 <
Memory Req Warp 1 < o
System *.
Reg Warp 15«

»time

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp Scheduling,” MICRO 2011.
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Large Warp Microarchitecture Example

« Reduce branch divergence by having large warps

* Dynamically break down a large warp into sub-warps

Decode Stage

Sub-warp 0 mask
11111

OIB|O(O|IB|O|O |2
B|OIB|O|O|O|B|0
O|0O|IOB|O|IB|O|O
OIB|O(O0O|O|IB|O |2

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp Scheduling,” MICRO 2011.

Sub-warp 0 mask
11111
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1

1

1

1
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Two-Level Round Robin

Scheduling in two levels to deal with long latency operations

Core A” Warps Compute} ............................................................ [A” Warps Computel
Req Warp 0 « > :
Memory Req Warp 1 +— >
System *
Req Warp 15« >

=t§ime
Round Robin Scheduling, 16 total warps :

Group 0 Group 1 Group 0 Group 1 :
Core Compute Compute] .......................................... [Compute ComputeL >
5 Saved Cycles
Req Warp 0 < >
Req Warp 1 < o >
Req Warp 7 : >
Memory
System Req Warp 8 « >

Req Warp 9 < o

v

o
Req Warp 15« > »time

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each
CS425 - Vassilis Papaefstathiou
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NVIDIA GeForce GTX 285

* NVIDIA-terminology:
— 240 stream processors
— “SIMT execution”

* Generic classification:
— 30 cores
— 8 SIMD functional units per core

CS425 - Vassilis Papaefstathiou
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NVIDIA GeForce GTX 285 “core”

64 KB of storage
for thread contexts

ol = SIMD functional unit, control
shared across 8 units

= multiply-add
B = multiply

CS425 - Vassilis Papaefstathiou

(registers)

= instruction stream decode

= execution context storage
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NVIDIA GeForce GTX 285 “core”

] ] ] 64 KB of storage
. . . - . . . for thread contexts
(registers)

« Groups of 32 threads share instruction stream (each group is a Warp)
« Up to 32 warps are simultaneously interleaved
« Up to 1024 thread contexts can be stored

CS425 - Vassilis Papaefstathiou
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NVIDIA GeForce GTX 285
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Evolution of NVIDIA GPUs
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NVIDIA V100

* NVIDIA-terminology:
— 5120 stream processors
— “SIMT execution”

* Generic classification:
— 80 cores
— 64 SIMD functional units per core

— Tensor cores for Machine Learning

* NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.
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NVIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller

-
§
o
-
£
=

Meamory Contri

80 cores on the V100
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NVIDIA V100 Core

| 15.7 TFLOPS Single Precision
= ————Je——————ll 7.8 TFLOPS Double Precision

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) .
e —— 125 TFLOPS for Deep Learning (Tensor cores)
INT INT FPa3 FPa2 & INT PR3} FPR2
INT m: P32 INT FPa2 PR
ot FPAR P TENSOR TENSOR T, FR PP ENSOR TENSOR
INT Fidfp CORE CORE ot BBdEl CORE CORE
INT FRI2 1PR2 wr Fead Fena
INT FP2 FPAY Pu FRnl
= Sum with

T FP3t PR3 s FFa2 sz i

: = ‘ ] FP16 Full precision FP32 Convert to
Tr) Cavt bard doed et bae 0T v R AR | S storage/input product accumulator FP32 result

i more products
Warp Schaduler (32 threadicik - L]
Dispatch Unit (32 thread/dlk) Dispatch Unit {32 thread/clk) _I_i.

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -I

INT INT P33 Fes2 ) INT INT  FPS2 PR

INT FPa2 PP INT INT FP32 FPad
INT a2 pras W P32 FEn

INT FPa2 #P32 P rear

TENSOR TENSOR
CORE CORE

TENSOR TENSOR

s CORE CORE

INT FPO2 FP32
INT FP32 FP32 FP31 FPRR D e
INT FP32 FRAZ s FP32 FPIY

T P32 PR3y P32 PR

FP16 or FP32

FP16 or FP32

Lo/ LY LD¢ LOf
8T ST ST ST SFU

https://devblogs.nvidia.com/inside-volta/
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