
 

CS425  Programming Assignment 3  1 

CS425: Computer Systems Architecture 

 

Programming Assignment 3 

Assignment Date: 14/01/2022 

Due Date: Monday 07/02/2022 23:59 
 

Instructions: Put your answers in a .pdf file and send them together with your other deliverables via 

e-mail to HY425 course e-mail (hy425@csd.uoc.gr). Set the e-mail subject: HY425 – Programming 

Assignment 3 

 

 

Cache Simulation 
 

The purpose of this assignment is to help you familiarize with the details of caches. You have to 

simulate caches yourself and measure their quantitative properties by applying different 

configurations. You will also see the impact of alternative design choices in the miss rate and IPC. 

For the simulation of caches, you will use the gem5 simulator 

(www.gem5.org/documentation/learning_gem5/introduction/). 

 

Simulator 
 

In this assignment you will compile gem5 to target on the x86 ISA. The build requirements can be 

found here: www.gem5.org/documentation/learning_gem5/part1/building/ 

You are able to work on this assignment solely on your own environment. You can get a snapshot of 

the simulator by cloning this repository: 

 

    https://github.com/sotot0/cs425_PA3.git 

 

The repository contains: 

i. the gem5 directory, 

ii. and the benchmark directory  

 

After you have installed the indicated dependencies, clone the repository and compile the simulator 

by typing: 
     python3 `which scons` build/X86/gem5.opt -j9  

inside the gem5 directory. The compilation step consumes time so complete it as soon as possible! 

 

To run a batch of five (5) benchmarks with the simulator you have to use the following command 

inside the benchmark directory:  

    
      ./runall.sh [List of Arguments] 

 

This command will run all the benchmarks, for each Task below (1-3), while simulating a setting with 

an Out-Of-Order CPU (O3CPU) and a good performing branch predictor (TournamentBP). You are 

encouraged to examine thoroughly the runall.sh / README files in order to figure out the different 

arguments that you are able and allowed to pass. The arguments that are related to the branch predictor 

(TournamentBP) and the CPU are should not be changed. In this assignment you will tweak different 

parameters that are only related to caches and their policies (list below). Note that the -I [Instruction 

Count] argument means that for each benchmark the gem5 simulates [Instruction Count] instructions. 

You can change this parameter parameter during early testing but for generating final numbers you 

should have at-least 100 million instructions. If you set a very large number of instructions the 

simulation time will increase dramatically. (Even with the parameter set to 100 million instructions 

mailto:hy425@csd.uoc.gr
http://www.gem5.org/documentation/learning_gem5/introduction
http://www.gem5.org/documentation/learning_gem5/part1/building/
https://github.com/sotot0/cs425_PA3.git


 

CS425  Programming Assignment 3  2 

you may experience long simulation times especially when running benchmark4/benchmark5). 

Ensure that your comparisons are based on the same instruction count between different benchmarks 

and/or settings to extract uniform and fair results. Also, ensure that this parameter is large enough to 

extract meaningful results. An estimated number would be between 100-150 million instructions. In 

any case, this is another reason to begin the assignment as soon as possible! 

 

 

Task 1: Measure L1 Miss Rate and IPC 
 

Your first task is to explore the effects of cache-block/cache-line size and associativity in an L1 data 

cache. Assume that your L1 data cache budget is 32 KBytes, the cache supports the LRU replacement 

policy and that there is no prefetching in L1. Run experiments with varying block sizes and 

associativity for all the given benchmarks, draw miss-rate and IPC graphs similar to those presented 

in class and find the configuration that gives the highest average IPC. Also, note that the rest of the 

parameters must remain stable during Task 1.  

Explore the following block sizes:  

(i) 32 bytes, (ii) 64 bytes, (iii) 128 bytes  

and the following associativity settings:  

(i) direct-mapped, (ii) 2-way, (iii) 4-way 

 

Task 2: Measure L1/L2 Combined Miss Rate and Overall IPC 
 

At this part of the assignment, you need to figure out the best performing L2 cache size, associativity, 

replacement policy (only for L2) and “inclusivity” while keeping stable your previously found (best 

performing) L1 cache configuration. Run experiments with varying parameters for all the given 

benchmarks, draw global miss-rates (combination of L1 and L2) and overall IPC graphs similar to 

those presented in class and find the L2 configuration that gives the highest average IPC. 

Explore the following L2 cache sizes: 

  (i) 128KB, (ii) 256KB , (iii) 512KB  

the following L2 associativity settings: 

 (i) 4-way, (ii) 8-way, (iii) 16-way 

the following L2 replacement polices: 

 (i) LRURP, (ii) RandomRP, (iii) FIFORP 

and the following L2 inclusivity options: 

 (i) mostly_incl, (ii) mostly_excl 

 

Task 3: Measure the Impact of Hardware Prefetchers  
 

Use the best performing L1 and L2 cache configurations that you found above, and figure out which 

prefetcher type and under which configuration (prefetch degree) achieves the best results when 

attached only on the L2 cache. Prefetchers are extremely simple hardware schemes that attempt to 

exploit spatial locality beyond cache-block boundaries. Typically, when a cache experiences a cache 

miss for line A, then a simple next-K-line prefetcher fetches the next K sequential cache-blocks, if 

not already present in the cache; K is known as the prefetch degree. 

An important implication of cache prefetching is the need for higher memory bandwidth. Based on 

the memory traffic statistics of the simulator (system.mem_ctrl.dram.bwTotal::total), find the 

prefetching configuration that best balances between IPC and memory bandwidth. 

Explore the following prefetcher types: 

 (i) StridePrefetcher (ii) TaggedPrefetcher 

With a prefetch degree in the range 1-16 next lines 

 

Hint: Calculate the metric Memory Bandwidth/IPC. 



 

CS425  Programming Assignment 3  3 

Write on your report your findings and explanations using graphs/tables. It is important to get familiar 

with the generated m5out directories under /benchmarkN directories after each run. These directories 

include files showing the simulated configuration and its statistical information. 

 

Deliverables 
You have to deliver one zip/tar.gz with the following files: 

 Your report in PDF format 

 Any custom scripts that you used 

 Any other files that you find useful 

 


