CS425
Computer Systems Architecture

Fall 2020

Caches: The Basics

CS425 - Vassilis Papaefstathiou

Who Cares about Memory Hierarchy?

Processor-DRAM Memory Gap (latency)

TOOQ e 4~ uProc

’ , ” 60%/yr.
Moore's Law - (2X/1.5yr)

10Q Processor-Memory
Performance Gap:
10| oo (grows 50% / year)

4 DRAM
oraM Q%Y.
1 e (2X/10 yrs)

CS425 - Vassilis Papaefstathiou

Latency lags bandwidth

Relative bandwidth improvemeant

10,000

1000

100

A0 [rommfefemmmeme e et
r"'
P

Microprocessor

Neworc

=t : ’ “\
.- {Latency improvement =
bandwidth improvement)

10 100
Relative latency improvement

Reasons for Bountiful
Bandwidth but Lagging
Latency
“There is an old network saying:
Bandwidth problems can be cured
with money. Latency problems are
harder because the speed of light is
fixed—ryou can't bribe God.”

—Anonymous

Memory abstraction in architecture

Addressable memory

» Association between address Generic memory

and values in storage
Command (RD/WR)
3|

» Addresses index bytes in storage

» Values aligned in multiples of Address (name)|
word size Data (WR)

» Accessed through sequence of ”
reads and writes) Data (RD)

» Write binds value to address Done

» Read returns most recent value
stored in address

CS425 - Vassilis Papaefstathiou

Levels of Memory Hierarchy

Capacity Upper Level
Access Time Staging
Cost Xfer Unit) faster
CPU Registers .
100s Bytes Registers
<10s ns ¢ Instr. O d prog./compiler

nstr. Yperands -

1-8 b
Cache ytes
K Bytes
10-100ns Cache
1-0.1 cents/bit cache cntl
: Blocks 8-128 bytes
Main Memory
M Bytes Memory
200ns- 500ns
$.0001-.00001 cents /bit 0s
Disk ¢ Pages 512-4K bytes
G Bytes, 10 ms
(10,000,000 ns) Disk
5 -6 .
10 "- 10 cents/bit _ user/operator |
c Files Mbytes

Tape Larger
infinite
sec-min Tape Lower Level
10

CS425 - Vassilis Papaefstathiou

Definition of Cache
Definition

» First level of memory hierarchy after registers

» Any form of storage that bufferes temporarily data
» OS buffer cache, name cache, Web cache, ...

» Designed based on the principle of locality

» Temporal locality: Accessed item will be accessed again in
the near future

» Spatial locality: Consecutive memory accesses follow a
sequential pattern, references separated by unit stride

CS425 - Vassilis Papaefstathiou

Cache on DLX

RAM

Instr. Decode
: Reg. Fetch

TEET

=ET

Ca

Execute
Addr. Calc

CIEELCLLELLLLT]

D-cache

Mempry
Ac 5

i Write

Back

WE Data

CS425 - Vassilis Papaefstathiou

IFTTLLLTEE I

Memory Hierarchy: Apple iMac G5 (2005)

Managed Managed Mﬂﬂﬂgﬁd by OS,
by compiler by hardware hardware,
/ / \\ application
1977+27yr Reg L1 Inst L1 Data DRAM Disk
Size in Bytes 1K 64K 32K 512K @ 256M 80G -)
iMac G5

Latency in
Cycles, | leye, | 3cye, | 3cye, | llcye, | 88cyc,| 107cy, 1.0 GHz
Time 0.6ns | 19ns | 19ns | 69ns | 55ns | 12ms | 16003 (memi7)

Goal: Illusion of large, fast, cheap memory

Let programs address a memory space that scales to the disk size,
at a speed that is usually nearly as fast as register access

iMac G5 1.6 GHz clock, 55 ns DRAM vs. Apple 11 1 MHz, 400ns DRAM
Perform: CPU 1600 X, DRAM 7.3 X faster in 27 yrs => 2X/ 2.5y, 9.3y

CS425 - Vassilis Papaefstathiou

PowerPC 970 (G5): All caches on-chip

L1 (64K Instruction)

1/2 KB
registers

"v
| = =
|
il
]
!
L)
!
l
!
i
]
L) .
o oL
B N
.Ix.“
Ll
_’l
|
P
]
]
‘.I
]
|ln

1/2 KB = |i|_'f: !
registers i o) 1101 \ll
i {0 1 AU

g
ey y -
| 11| [N

'

L1 (32K Data)

CS425 - Vassilis Papaefstathiou

Locality

Spatial locality

>

>

Appears due to iterative execution and linear data access patterns

Exploited by using larger block sizes — data to be used prefetched with
block

Exploited by data and code transformations by the compiler
Exploited by unit-stride prefetching mechanisms and policies

Temporal locality

Appears due to iterative execution and data reuse
Exploited by caches, through which data is reused

Working set: data that needs to be kept cached in a window of time to
maximize locality

Reuse distance: number of blocks of memory accessed between two
consecutive accesses to same block

CS425 - Vassilis Papaefstathiou

Memory Hierarchy: Terminology

e Hit: data appears in some block in the upper level
o Hit Rate: the fraction of memory accesses found in the upper level
e Hit Time: Time to access the upper level which consists of
Time to determine hit/miss
e Miss: data needs to be retrieved from a block 1n the lower level
e Miss Rate =1 - (Hit Rate)
e Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block to the upper level
e Hit Time << Miss Penalty (=500 instructions on 21264!)

Lower Level
~ To Processor Upper Level Large Size
Memory Memory
—

Blk X

From Processor . Blk Y

CS425 - Vassilis Papaefstathiou

Cache Hit

Cache hit Block X

To processor
<€

From processor
>

upper-level
memory

Block X

CS425 - Vassilis Papaefstathiou

lower-level
memory

Block Y

Cache Miss

Cache miss Block X

iTD processor

upper-level
memory

lower-level
memory

From processor m

CS425 - Vassilis Papaefstathiou

Block Y

Cache Measures

e [it rate: fraction found 1n that level
o So high that usually talk about Miss rate = | - Hit rate
o Miss rate fallacy: as MIPS to CPU performance, miss rate to AMAT in
memory

e AMAT = Hit time + Miss rate x Miss penalty (ns or clocks)

e Miss penalty: time to supply a missed block from lower level,
including any CPU-visible delays to save replaced write-back
data to make room in upper level cache. {"All active caches are
full”}

e access time: time to lower level = f'(latency to lower level)
e ftransfer time: time to transfer block =/ (BW between upper & lower levels)

e replacement time: time to make upper-level room for new block, if all
active caches are full

CS425 - Vassilis Papaefstathiou

Average Memory Access Time (AMAT)

AMAT components

Average memory access time = Hit time 4+ Miss rate x Miss penalty
CPU time = (CPU execution clock cycles + Memory stall clock cycles)
x Clock cycle time

Memory stall clock cycles
Instruction

CPU time = IC x (CPIHE,;U,M” +) x Clock cycle time

, : Memory accesses *
P — | Pl , M M I
CPU time = IC x (C execution + Miss rate x m<troction x Miss pena ty)

x Clock cycle time

Assuming that cache hits do not stall the machine!

CS425 - Vassilis Papaefstathiou

An example

e Assumption on computer A
o CPI= 1.0 when all memory accesses hit
o Data accesses are only loads and stores (explain 50% of insts.)
e Miss penalty: 25 cc
o Miss rate: 2%

e Compute the speedup of computer B, for which all cache accesses
are hit

exectime, = (CPUcc + MemStallcc) x Clock cycle time
=(ICxCPI+0)xcct=ICx1.0x: Clock cycle time

MemStallce,= IC x MemAccess x MissRate x MissPenalty

Instruction

=ICx(1+0.5)x0.02x25=1ICx0.75
exectime , = (CPUcc + MemStallcc)x Clock cycle time
=(ICxCPI+ICx0.75)x Clock cycle time

= 1C x 1.75 x Clock cycle time
CS425 - Vassilis Papaefstathiou

4 Questions for Memory Hierarchy

For a given level of the memory hierarchy

» Q1: Where can a block be placed in the upper level?
(Block placement)

» Q2: How is a block found if it is in the upper level? (Block
identification)

» Q3: Which block should be replaced on a miss? (Block
replacement)

» Q4: What happens on a write? (Write strategy)

CS425 - Vassilis Papaefstathiou

Q1: Where to Place Blocks?

e Jargon: Each address of a memory location is
partitioned into:

e block address
tag

index

e block offset

Block address Block
Tag Index offset

Fig. C.3

© 2003 Elsevier Science (USA). All rights reserved.

CS425 - Vassilis Papaefstathiou

Simplest Cache: Direct Mapped

Use Index in Address to find Cache Location

Memory Address
0 ~]
1
2
3
4 .
5
6
7
8
9
A
B /
C /
D
E
F

Memory

CS425 -

4 Byte Direct Mapped Cache
Cache Index
0
1
2
3
* Location 0 can be occupied by
data from:
— Memory location 0, 4, 8, ... etc.

— In general: any memory location
whose 2 LSBs of the address are Os

— Address<1:0> => cache index

 Which one should we place in
the cache?

* How can we tell which one is in

the cache?
Vassilis Papaefstathiou

1 KB Direct Mapped Cache, 32B blocks

 Fora 2™ N byte cache:

— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size =2 ** M)

31 9 4
Cache Tag Example: 0x50 Cache Index Byte Select
Ex: 0x01 Ex: 0x00
Stored as part
of the cache “state”
Valid Bit Cache Tag Cache Data
Byte 31| ** |Bytel |Bytd0 |0
0x50 Byte 63| °°* | Byte 33 Byt?.’:‘l |-
2
3
Byte 1023 . Byte 992 | 31

CS425 - Vassilis Papaefstathiou

Direct Mapped Cache

Advantages

» Simple, low complexity, low power consumption

» Fast hit time

» Data available before cache determines hit or miss
» Hit/miss check done in parallel with data retrieval

Disadvantages

» Conflicts between blocks mapped to same block in cache

CS425 - Vassilis Papaefstathiou

Two-way Set Associative Cache

* N-way set associative: N entries for each Cache Index
— N direct mapped caches operates in parallel (N typically 2 to 4)

« Example: Two-way set associative cache
— Cache Index selects a “set” from the cache

— The two tags in the set are compared in parallel

— Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block 0 Cache Block 0

Mux 0 Sel0 /_C
_\lv'/ ¥ Cache Block
Hit

CS425 - Vassilis Papaefstathiou

-
=

Two-way Set Associative Cache

Advantages

» Choice of mapping memory block to different cache blocks
in a set

» LRU or other policies for good selection of victim blocks
» Reduction of conflicts

Disadvantages
» Increased complexity — comparators, multiplexor, parallel
tag comparison
» Increased power consumption
» Increased hit time, due to comparators and multiplexor
» Data available after cache determines hit or miss

CS425 - Vassilis Papaefstathiou

Cache Mapping Example
Mapping block 12 from RAM in 8-block cache

fully associative direct mapped

Cache — —
two-way associative four-way associative

Number of sets = #Blocks / Associativity
Set/Index = (Block Address) MOD (Number of sets in cache)

CS425 - Vassilis Papaefstathiou

24

Q2: How iIs a block found in the cache

Cache tag array

Block Address Block

» Index points to line in data array — one block or set
» Offset points to byte in block

» Tag compared against tag field in address

» Valid bit ORed with output of tag comparator

CS425 - Vassilis Papaefstathiou

Q3: Which block I1s replaced on a miss

e Easy if direct-mapped (only 1 block “1 way” per set index)
e Three common choices for set-associative cache:

e Replace an eligible random block
o Replace the least recently used (LRU) block

can be hard to keep track of, so often only approximated

» Replace the oldest eligible block (First In, First Out, or FIFO)
e SPEC2000 benchmark (misses per 1000 instructions)

Set associativity

Two-way Four-way Eight-Way

Size LRU |[Random | FIFO |LRU |Random |FIFO |LRU | Random | FIFO

16KB 1141 | 1173 | 1155 | 111.7 | 1151 113.3 | 109.0| 111.8 | 1104

64KB 103.4| 104.3 | 103.9 | 1024 | 1023 | 103.1 | 99.7 100.5 | 100.3

256KB | 92.2 92.1 925 | 921 92.1 92.5 | 92.1 92.1 92.5

(From Sussman)

CS425 - Vassilis Papaefstathiou

Q4: What happens on a write?

Write-Through Write-Back
Data word written to Write new data word
cache block only to 1 cache block
Polic is also written to next Update lower level just
y |0WE""?“E| memory before a written block
Example, instr. sw to L1$ leaves cache, so not
also goes to L2% lose true value
Debugging Easier Harder
Can read misses force N Yes (used to slow some
writes? 0 reads; now write-buffer)
Do repeated writes .
touch lower level? Yes, memory busier No

Two options on a write miss:
*Fetch line from lower-level and perform write hit (“write allocate”)

Perform write only to the lower-level cache (“no-write allocate”)
CS425 - Vassilis Papaefstathiou

Write Buffers for Write-Through Caches

—| Cache |+=——| Lower
Processor L — Level

Memory

Write Buffer

e

Holds (addresses&) data awaiting write-
through to lower level memory

Q. Why a write buffer ? A. So CPU doesn’t stall
Q. Why a buffer, why not A. Bursts of writes are
just one register ? common.

Q. Are Read After Write A. Yes! Drain buffer before
(RAW) hazards an issue for next read, or send read 1%t after

write buffer? check write buffers.
Q. Can Write Buffer work A. Yes. Send a block in the write-
with Write-Back Cache? buffer on each write-back.

CS425 - Vassilis Papaefstathiou

Write Buffer Optimization: Write Combine Buffer

e Write buffer mechanics, with merging

¢ An entry may contain multiple words (maybe even a whole
cache block)

o If there’s an empty entry, the data and address are written to
the buffer, and the CPU 1s done with the write

e [f buffer contains other modified blocks, check to see 1f new
address matches one already in the buffer — 1f so, combine the
new data with that entry

e If buffer full and no address match, cache and CPU wait for an
empty entry to appear (meaning some entry has been written to
main memory)

o Merging improves memory efficiency, since multi-word writes
usually faster than one word at a time

CS425 - Vassilis Papaefstathiou

Recap: Average Memory Access Time (AMAT)

AMAT components

Average memory access time = Hit time 4+ Miss rate x Miss penalty
CPU time = (CPU execution clock cycles + Memory stall clock cycles)
x Clock cycle time

Memory stall clock cycles
Instruction

CPU time = IC x (GPIHEMMH +) x Clock cycle time

1 : Memory accesses 4
CPU time = IC x | CPI -n + Miss rate x : x Miss penal
(exsoution Instruction P W)
x Clock cycle time
Assuming that cache hits do not stall the machine!

CS425 - Vassilis Papaefstathiou

Example
UltraSPARC il

» in-order processor

> CPlexecution = 1.0

» miss penalty = 100 cycles

» miss rate = 2%

» 1.5 memory references per instruction
» 30 cache misses per 1000 instructions

1.
CPU time = IC x (1.0 + 0.02 x TS X 100) x Clock cycle time = IC x 4 x cycle time

30
1000

CPU time = IC x (1.0 - x1ﬂ|}) x Clock cycle time = IC x 4 x cycle time

CS425 - Vassilis Papaefstathiou

Example

UltraSPARC lli

» Cache miss latency increases execution time by 4x

» Higher clock rates imply more clock cycles wasted due to
miss penalty
» Higher relative impact of cache on performance

» HW/SW cache-conscious optimizations attempt reduce
AMAT

» Performance depends on both clock cycle and AMAT —
trade-off

CS425 - Vassilis Papaefstathiou

Example

Direct-mapped vs. set-associative cache

» 1 GHz processor
> CPlexecution = 2.0

» 64 KB caches with 64-byte blocks
» 1.5 memory references per instruction
» Direct mapped cache miss rate = 1.4%

» Set associative cache stretches clock cycle by 1.25,
miss rate = 1.0%

» 75 ns miss penalty (i.e. 75 cc or 60 cc)

» 1 cycle hit time
AMAT Girect—mapped = 1.0 + (.014 x 75) = 2.05ns
AMAT_yay = 1.0 x 1.25 4 (.01 x 75) = 2.00ns

CS425 - Vassilis Papaefstathiou

Example

Direct-mapped vs. set-associative cache

Misses
Instruction
CPU timegirect—mapped = IC x (2.0 x 1.0+ 0.014 x 1.5 x 75) =3.58 x IC

CPU timemo—way = IC x (2.0 x 1.254+0.01 x 1.5 x 75) =3.63 x IC

CPU time = IC x (CPI&,,,EDU,,-&” - X Miss penalty) x clock cycle time

» Associative cache achieves lower AMAT than direct-mapped
cache

» Direct-mapped cache achieves higher performance than
associative cache

Why? In this example common case (hits) are faster for Direct-mapped cache.

CS425 - Vassilis Papaefstathiou

Overlapping memory latency in OOO processors

Miss penalty in OO0
» Processor can execute instructions while cache miss is
pending
» Processors can execute instructions also while cache hit is
pending

» Hard to attribute stall cycles to instructions
» Stall cycle is any cycle where at least one instruction does

not commit
» First
Memory stall cycles Misses : :
: 4 : y = . — x (Total miss latency — overlapped miss latency)
Instruction Instruction

CS425 - Vassilis Papaefstathiou

