
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2019

Branch Prediction

1

Branch Prediction

• Branch prediction is very important to achieve good performance. Why?

• Important in out-of-order or multi-issue processors (Amdahl’s Law)

CPI = Ideal CPI + Structural stalls + RAW stalls +

WAR stalls + WAW stalls + Control stalls

• The prediction is a hint that is assumed to be correct, and fetching begins

in the predicted direction. If the hint turns out to be wrong, the executed

(not committed) instructions from the wrong path are cancelled.

• This lecture presents the following topics: branch prediction, branch target

address, cancel branch mispredictions

MULT F0,F1,F2

DIVD F4,F0,F3

BNEZ F4,Loop

CS425 - Vassilis Papaefstathiou 2

Predicting the Branch Outcome

• Why does branch prediction work?
⎻ Underlying algorithm has regularities.

⎻ Data that is being operated on has regularities.

⎻ Instruction sequence has redundancies that are artifacts of way that
humans/compilers think about problems.

⎻ Loops are easy to predict their behavior

CS425 - Vassilis Papaefstathiou 3

Static Branch Prediction

• Major limitation: misprediction rate for the integer programs is high

CS425 - Vassilis Papaefstathiou 4

Dynamic Branch Prediction

• Is dynamic branch prediction better than static?

⎻ Josh Fisher had good paper on “Predicting Conditional Branch
Directions from Previous Runs of a Program”, ASPLOS ‘92.

⎻ In general, good results if allowed to run program for lots of data sets.
o How would this information be stored for later use?

o Still some difference between best possible static prediction (using a run to
predict itself) and weighted average over many different data sets

CS425 - Vassilis Papaefstathiou 5

Simplest Dynamic Approach: Branch History Table

• Performance = ƒ(accuracy, cost of misprediction)

• Branch History Table (ΒΗΤ): Lower bits of PC index 1-bit table
⎻ Specifies if branch was taken or not the last time

⎻ When branch delay is longer than time to compute target PC

PC[3:0]

1-bit table

CS425 - Vassilis Papaefstathiou 6

1-bit ΒΗΤ: Limitations?

• Limitation → in a loop, 1-bit BHT causes 2 mispredictions
⎻ first time through loop code, when it predicts exit instead of looping

⎻ end of loop case, when it predicts looping instead of exit

Loop: LD F0,0(R1);F0=vector element

ADDD F4,F0,F2;add scalar from F2

SD 0(R1),F4;store result

SUBI R1,R1,8 ;decrement pointer 8B (DW)

BNEZ R1,Loop ;branch R1!=zero

NOP ;delayed branch slot

CS425 - Vassilis Papaefstathiou 7

2-bit Prediction Scheme (Jim Smith, 1981)

• Solution → 2-bit scheme that changes prediction when two consecutive
wrong predictions happen:

• Brown States: taken

• Blue States: not taken

• Adds hysteresis in predictions

• Also known as saturation counter or bimodal predictor

CS425 - Vassilis Papaefstathiou 8

n-bit Predictors

• An n-bit scheme changes the direction of the prediction when
there are 2n-1 mispredictions in a row.

• Use n-bit counters

• Detailed evaluations of n-bit predictors have shown that 2-bit
predictors are very effective and accurate:
⎻ most systems today use 2-bit predictors.

CS425 - Vassilis Papaefstathiou 9

Use of Branch History Table

• BHT is an array of “Predictors”
⎻ Usually 2-bit, saturating counters

⎻ Indexed by PC address of Branch

• Access the BHT during the ID stage [or some IF stage(s)]. The target
address of a branch is computed during the ID stage (needs 1 delay slot)

• When the branch outcome has been evaluated:
⎻ Update corresponding Predictor Predictor 0

Predictor 7

Predictor 1

Branch PC

CS425 - Vassilis Papaefstathiou 10

2-bit BHT Accuracy

• Mispredictions:
⎻ Wrong guess for that

branch

⎻ Got branch history of
wrong branch (aliasing)

still high!

CS425 - Vassilis Papaefstathiou 11

Correlating Predictors (Example 1)

• Assumption: recent branches are correlated! The outcomes of recent
branches affect the prediction of the current branch.

(from eqntott benchmark)

If branches b1 and b2 are both not taken (i.e. first

two if statements are true) then b3 will be taken

CS425 - Vassilis Papaefstathiou 12

Correlating Predictors (Example 2)

CS425 - Vassilis Papaefstathiou 13

Example: (4,2) Predictor

• (4,2) GHT (Global
History Table) predictor
⎻ 4 means that we keep

four bits of history
⎻ 2 means that we have 2

bit counters in each slot.
⎻ Then behavior of recent

branches selects
between, say, 16
predictions of next
branch, updating just
that prediction

⎻ Note also that aliasing is
possible here... Each slot is 2-bit counter

2

BHT

CS425 - Vassilis Papaefstathiou 14

Correlating Branches

• (k, n) GHT predictor
⎻ k means that we keep k-bits of

history

⎻ n means that we have n-bit
counters in each slot.

⎻ Note that the original two-bit
counter solution would be a (0,2)
GAp predictor

⎻ Total memory/state bits:
o 2k * 2addr_size * n = 2k+addr_size * n

⎻ Trivial amount of additional HW

Each slot is n-bit counter

addr_size

CS425 - Vassilis Papaefstathiou 15

F
re

q
u

e
n
c

y
 o

f
M

is
p
r
e
d

ic
ti
o

n
s

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

n
a
s

a
7

m
a
tr

ix
3

0
0

to
m

c
a
tv

d
o
d

u
c
d

s
p
ic

e

fp
p
p

p

g
c
c

e
s
p

re
s
s

o

e
q
n

to
tt li

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes

CS425 - Vassilis Papaefstathiou

4096 Entries 2-bit BHT

Unlimited Entries 2-bit BHT

1024 Entries GHT (2,2)

0%

18%

F
re

q
u

e
n

c
y
 o

f
M

is
p

re
d

ic
ti

o
n

s

16

Yeh and Patt’s classification (ISCA’92)

CS425 - Vassilis Papaefstathiou 17

Yeh and Patt’s classification

• First Level:
⎻ the K most recent outcomes that have occurred

from any branch in the program
o Produces a “GAy” (for “global address”) in the Yeh and

Patt classification

⎻ the K most recent outcomes of the same branch
o Produces a “PAy” (for “per address”) in same

classification (e.g. PAg)

CS425 - Vassilis Papaefstathiou 18

Yeh and Patt’s classification

• Second Level:
⎻ Single entry for any branch “XAg”

⎻ Per branch history table “XAp”

⎻ Per set history table “XAs”
o The set attribute of a branch can be determined

by the branch opcode, branch class assigned by
a compiler, or branch address.

CS425 - Vassilis Papaefstathiou 19

Yeh and Patt’s classification

CS425 - Vassilis Papaefstathiou 20

Yeh and Patt’s classification

CS425 - Vassilis Papaefstathiou 21

Yeh and Patt’s classification

CS425 - Vassilis Papaefstathiou 22

Per-set history predictors

Yeh and Patt’s classification

CS425 - Vassilis Papaefstathiou 23

Branch Target Buffer

• A look-up table with the PC addresses of the branches. When
the PC matches it provides the target address (target PC) of the
branch and the taken/not-taken prediction.

• Optimization: Store the predicted-taken branches only

CS425 - Vassilis Papaefstathiou

Branch PC LookUp Predicted PC

=?

P
C

 o
f

in
s
tr

u
c
ti

o
n

F
E

T
C

H

Predict taken or not-taken

24

Branch Target Buffer

• The Branch Target Buffer (BTB) is accessed in the IF stage:
save one clock cycle.

CS425 - Vassilis Papaefstathiou

IF

Send PC to

memory and BTB

ID

Send out predicted PC

if entry found in BTB

EX

Update BTB

25

Branch Folding

• Save one or more target instructions together with the target
address inside the Branch Target Buffer (BTB).
⎻ could cause longer BTB access time...

⎻ Zero-cycle branches: replace the branch with the target instruction

oOnly for unconditional branches!

CS425 - Vassilis Papaefstathiou 26

Indirect Jumps

• Indirect procedure calls, switch/case
statements, gotos. The majority is
procedure/function returns.

• Problem → accuracy low when
procedure is called from multiple sites.

• Solution → small buffer of return
addresses operating as a stack
(Return Address Stack). This structure
caches the most recent return
addresses: pushing a return address
on the stack at a call and popping one
off at a return.

CS425 - Vassilis Papaefstathiou

In SPEC95 benchmarks,

procedure returns

account for more than

15% of the branches

27

Predicated Execution
• Avoid branch prediction by converting branches

to conditionally executed instructions:

• if (x) then A = B op C else NOP
⎻ If false, then neither store result nor cause exception

⎻ Expanded ISA of Alpha, MIPS, PowerPC, SPARC
have conditional move; PA-RISC can annul any
following instr.

⎻ IA-64: 64 1-bit condition fields selected so conditional
execution of any instruction

• Convert control dependence to data dependence
⎻ Reduce branch pressure (reduce pred. table updates)

⎻ Conditional Move (CMOV) is very common

CS425 - Vassilis Papaefstathiou

x

A = B op C

BNEZ R1,L

ADDU R2,R3,R0

L:

CMOVZ R2,R3,R1

28

Predicated Execution

• Drawbacks of conditional instructions
⎻Still takes a clock even if “annulled”

⎻Stall if condition evaluated late

⎻Complex conditions reduce effectiveness; condition becomes
known late in pipeline

CS425 - Vassilis Papaefstathiou 29

Dynamic Branch Prediction

• Branch prediction is of critical importance for the performance of
the processor and the system
⎻ Prediction is exploiting “information compressibility” in execution

• Branch History Table: 2-bits for loop accuracy

• Correlation: Recently executed branches correlated with next
branch
⎻ Either different branches (GA)

⎻ Or different executions of same branches (PA).

• Branch Target Buffer: include branch address & prediction

• Predicated Execution may reduce the number of branches and
the rate of branch mispredictions

CS425 - Vassilis Papaefstathiou 30

