
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2019

Snoopy Cache Coherence

1

Where are We Now?

• Multiprocessor: multiple processors with a single shared
address space

• Cluster: multiple computers (each with their own address
space) connected over a local area network (LAN) functioning
as a single system

Processor

Control

Datapath

Memory

Input

Output

Input

Output

Memory

Processor

Control

Datapath

CS425 - Vassilis Papaefstathiou 2

Multiprocessor Basics

• Q1: How do they share data?

• Q2: How do they coordinate?

• Q3: How scalable is the architecture? How many processors?

of Proc

Communication

model

Message passing 8 to 2048

Shared

address

NUMA 8 to 256

UMA 2 to 64

Physical

connection

Network 8 to 256

Bus 2 to 36

CS425 - Vassilis Papaefstathiou 3

Single Bus (Shared Address UMA) Multi’s

• Caches are used to reduce latency and to lower bus traffic
⎻ Write-back caches used to keep bus traffic at a minimum

• Must provide hardware to ensure that caches and memory are consistent
(cache coherency)

• Must provide a hardware mechanism to support process synchronization

Proc1 Proc2 Proc4

Caches Caches Caches

Single Bus

Memory I/O

Proc3

Caches

CS425 - Vassilis Papaefstathiou 4

Multiprocessor Cache Coherency

• Cache coherency protocols
⎻ Bus snooping: cache controllers monitor shared bus traffic with

duplicate address tag hardware (so they don’t interfere with
processor’s access to the cache)

Proc1 Proc2 ProcN

DCache DCache DCache

Single Bus

Memory I/O

Snoop Snoop Snoop

CS425 - Vassilis Papaefstathiou 5

Bus Snooping Protocols

• Multiple copies are not a problem when reading

• Processor must have exclusive access to write a word
⎻ What happens if two processors try to write to the same shared data

word in the same clock cycle? The bus arbiter decides which processor
gets the bus first (and this will be the processor with the first exclusive
access). Then the second processor will get exclusive access. Thus, bus
arbitration forces sequential behavior.

⎻ This sequential consistency is the most conservative of the memory
consistency models. With it, the result of any execution is the same as if
the accesses of each processor were kept in order and the accesses
among different processors were interleaved.

• All other processors sharing that data must be informed of writes

CS425 - Vassilis Papaefstathiou 6

Handling Writes

• Ensuring that all other processors sharing data are informed of
writes can be handled two ways:

1. Write-update (write-broadcast) – writing processor broadcasts
new data over the bus, all copies are updated
⎻ All writes go to the bus  higher bus traffic

⎻ Since new values appear in caches sooner, can reduce latency

2. Write-invalidate – writing processor issues invalidation signal
on bus, cache snoops check to see if they have a copy of the
data, if so they invalidate their cache block containing the
word (this allows multiple readers but only one writer)
⎻ Uses the bus only on the first write  lower bus traffic, so better use of

bus bandwidth

CS425 - Vassilis Papaefstathiou 7

A Write-Invalidate CC Protocol

Shared

(clean)
Invalid

Modified

(dirty)

write-back caching

protocol in black

read (miss)
read (hit)

read (hit) or write (hit)

w
ri

te
 (

m
is

s
)

s
e

n
d

 i
n

v
a

lid
a

te

signals from the processor

coherence additions in red
signals from the bus

coherence additions in blue

receives invalidate

(write by another processor

to this block)

w
ri

te
 (

m
is

s
 +

 i
n

v
)

b
y

a
n

o
th

e
r

p
ro

c
e

s
s
o

r

to
 t
h

is
 b

lo
c
k

CS425 - Vassilis Papaefstathiou 8

Write-Invalidate CC Examples (1/2)

Proc 1

A S

Main Mem

A

Proc 2

A I

1. read miss for A

2. P2 read request for A

3. snoop sees read

request for A & lets

MM supply A

4. gets A from MM &

changes its state to S

Proc 1

A S

Main Mem

A

Proc 2

A I

1. write miss for A

4. writes A & changes

its state to M

2. P2 sends invalidate for A

3. change A

state to I

CS425 - Vassilis Papaefstathiou 9

Write-Invalidate CC Examples (2/2)

Proc 1

A M

Main Mem

A

Proc 2

A I

1. read miss for A

3. snoop sees read

request for A, writes-

back A to MM changes

it state to S

2. P2 read request for A

4. gets A from MM &

changes its state to S

Proc 1

A M

Main Mem

A

Proc 2

A I

1. write miss for A

4. writes A & changes

its state to M

2. P2 sends invalidate for A

3. change A

state to I

CS425 - Vassilis Papaefstathiou 10

FFT

0

2

4

6

8

1 2 4 8 16

Capacity miss rate

Coherence miss rate

SMP Data Miss Rates

• Shared data has lower spatial and temporal locality
⎻ Share data misses often dominate cache behavior even though they

may only be 10% to 40% of the data accesses

Ocean

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16

Capacity miss rate

Coherence miss rate

64KB 2-way set associative

data cache with 32B blocks

Hennessy & Patterson,

Computer Architecture: A

Quantitative Approach

CS425 - Vassilis Papaefstathiou 11

Block Size Effects

• Writes to one word in a multi-word block mean
⎻ either the full block is invalidated (write-invalidate)

⎻ or the full block is exchanged between processors (write-update)

o alternatively, could broadcast only the written word

• Multi-word blocks can also result in false sharing: when two processors
are writing to two different variables in the same cache block
⎻ With write-invalidate false sharing increases cache miss rates

• Compilers can help reduce false sharing by allocating highly correlated
data to the same cache block

A B

Proc1 Proc2

4 word cache block

CS425 - Vassilis Papaefstathiou 12

MESI Protocol (1)

• There are many variations on cache coherence protocols

• Another write-invalidate protocol used in the Pentium 4 (and
many other processors) is MESI with four states:
⎻ Modified: (same) only modified cache copy is up-to-date; memory copy

and all other cache copies are out-of-date

⎻ Exclusive: only one copy of the shared data is allowed to be cached;
memory has an up-to-date copy
o Since there is only one copy of the block, write hits don’t need to send invalidates

⎻ Shared: multiple copies of the shared data may be cached (i.e., data
permitted to be cached with more than one processor); memory has an
up-to-date copy

⎻ Invalid: same

CS425 - Vassilis Papaefstathiou 13

MESI Protocol (2)

• Cache line changes state as a function of memory access
events.

• Event may be either
⎻ Due to local processor activity (i.e. cache access)

⎻ Due to bus activity as a result of snooping

• Cache line has its own state affected only if address matches

CS425 - Vassilis Papaefstathiou 14

MESI Protocol (3)

• Operation can be described informally by looking at action in
local processor
⎻ Read Hit

⎻ Read Miss

⎻ Write Hit

⎻ Write Miss

• More formally by state transition diagram

CS425 - Vassilis Papaefstathiou 15

MESI Local Read Hit

• Line must be in one of MES

• This must be correct local value (if M it must have been
modified locally)

• Simply return value

• No state change

CS425 - Vassilis Papaefstathiou 16

MESI Local Read Miss (1)

• No other copy in caches
⎻ Processor makes bus request to memory

⎻ Value read to local cache, marked E

• One other cache has E copy
⎻ Processor makes bus request to memory

⎻ Snooping cache puts copy value on the bus

⎻ Memory access is abandoned

⎻ Local processor caches value

⎻ Both lines set to S

CS425 - Vassilis Papaefstathiou 17

MESI Local Read Miss (2)

• Several caches have S copy
⎻ Processor makes bus request to memory

⎻ One of the other caches puts copy value on the bus (arbitrated)

⎻ Memory access is abandoned

⎻ Local processor caches value

⎻ Local copy set to S

⎻ Other copies remain S

CS425 - Vassilis Papaefstathiou 18

MESI Local Read Miss (3)

• One cache has M copy
⎻ Processor makes bus request to memory

⎻ Snooping cache puts copy value on the bus

⎻ Memory access is abandoned

⎻ Local processor caches value

⎻ Local copy tagged S

⎻ Source (M) value copied back to memory

⎻ Source value M → S

CS425 - Vassilis Papaefstathiou 19

MESI Local Write Hit

• Line must be one of MES

• M
⎻ Line is exclusive and already ‘dirty’

⎻ Update local cache value

⎻ No state change

• E
⎻ Update local cache value

⎻ State E → M

• S
⎻ Processor broadcasts an invalidate on bus

⎻ Snooping processors with S copy change S → I

⎻ Local cache value is updated

⎻ Local state change S → M

CS425 - Vassilis Papaefstathiou 20

MESI Local Write Miss (1)

• Detailed action depends on copies in other processors

• No other copies
⎻ Value read from memory to local cache

⎻ Value updated

⎻ Local copy state set to M

• Other copies, either one in state E or more in state S
⎻ Value read from memory to local cache - bus transaction marked

RWITM (read with intent to modify)

⎻ Snooping processors see this and set their copy state to I

⎻ Local copy updated & state set to M

CS425 - Vassilis Papaefstathiou 21

MESI Local Write Miss (2)

• Another copy in state M

• Processor issues bus transaction marked RWITM

• Snooping processor sees this
⎻ Blocks RWITM request

⎻ Takes control of bus

⎻ Writes back its copy to memory

⎻ Sets its copy state to I

⎻ Unblocks RWITM request

• Is now simple no-copy case
⎻ Value read from memory to local cache

⎻ Local copy value updated

⎻ Local copy state set to M

CS425 - Vassilis Papaefstathiou 22

Putting it all together

• All of this information can be described compactly using a state
transition diagram

• Diagram shows what happens to a cache line in a processor as
a result of
⎻ memory accesses made by that processor (read hit/miss, write

hit/miss)

⎻ memory accesses made by other processors that result in bus
transactions observed by this snoopy cache (Mem read,
RWITM,Invalidate)

CS425 - Vassilis Papaefstathiou 23

MESI: locally initiated accesses

Invalid

Modified Exclusive

Shared
Read

Hit

Read

Hit
Read

Hit

Read

Miss(SH)

Read

Miss(EX)

Write

Hit

Write

Hit

Write

HitWrite

Miss

RWITM
Invalidate

Mem Read S

Mem Read X

= bus transaction

CS425 - Vassilis Papaefstathiou 24

MESI: remotely initiated accesses

Invalid

Modified Exclusive

Shared

Mem Read

Mem Read

Mem Read

Invalidate

RWITMRWITM

= copy back to memory

CS425 - Vassilis Papaefstathiou 25

= bus transaction

MESI notes

• There are minor variations (particularly to do with write miss)

• Normal ‘write back’ when cache line is evicted is done if line
state is M

• Multi-level caches
⎻ If caches are inclusive, only the lowest level cache needs to snoop on

the bus

CS425 - Vassilis Papaefstathiou 26

