CS425
Computer Systems Architecture

Fall 2019

Caches: The Basics

CS425 - Vassilis Papaefstathiou

Who Cares about Memory Hierarchy?

Processor-DRAM Memory Gap (latency)

*“Moore's Law’
A

rrrrr

CS425 - Vassilis Papaefstathiou

DRAM

4 pProc

60%/yr.
(2X/1.5yr)

Processor-Memory
Performance Gap:
(grows 50% / year)

DRAM

9Q%lyr.
(2X/10 yrs)

Latency lags bandwidth

Relative bandwidth improvemant

10,000

1000

100

rii'
-

Microprocessor

A Nemmk

a : ’ lLIl\
.<." {Latency mprovement -
bandwidth improvement)

10 100
Relative latency improvement

Reasons for Bountiful
Bandwidth but Lagging
Latency
“There is an old network saying:
Bandwidth problems can be cured
with money. Latency problems are
harder because the speed of light is
fixed—you cant bribe God.”

—Anonymous

Memory abstraction in architecture

Addressable memory

» Association between address Generic memory

and values in storage
Command (RD/WR)
5|

» Addresses index bytes in storage

» Values aligned in multiples of Address (name))
word size Data (WR)

» Accessed through sequence of >
reads and writes) Data (RD)

» Write binds value to address Done

» Read returns most recent value
stored in address

CS425 - Vassilis Papaefstathiou

Levels of Memory Hierarchy

Upper Level

Capacity
Access Time Staging
Cost Xfer Unit) faster
CPU Registers .
100s Bytes Registers
<10s ns t Instr. O d prog./compiler
nsitr. Uperandas -
Cache 1-8 bytes
K Bytes
10-100 ns Cache
1-0.1 cents/bit cache cntl
¢ Blocks 8-128 bytes
Main Memory
M Bytes Memory
200ns- 500ns
$.0001-.00001 cents /bit (o 1]
Disk : Pages 512-4K bytes
G Bytes, 10 ms
(10,000,000 ns) Disk
5 -6 .
10 "- 10 cents/bit _ user/operator |
Files Mbytes
Tape Larger
infinite
sec-min Tape Lower Level
10

CS425 - Vassilis Papaefstathiou

Definition of Cache
Definition

» First level of memory hierarchy after registers

» Any form of storage that bufferes temporarily data
» OS buffer cache, name cache, Web cache, ...

» Designed based on the principle of locality

» Temporal locality: Accessed item will be accessed again in
the near future

» Spatial locality: Consecutive memory accesses follow a
sequential pattern, references separated by unit stride

CS425 - Vassilis Papaefstathiou

Cache on DLX

RAM
I ” I
D-cache
Instr. Decode Execute Mempry | Write
Reg. Fetch Addr. Calc § Ac s Back

i (=B
SEY

1

Ca

IFTTLTLLLE LT

CS425 - Vassilis Papaefstathiou

Memory Hierarchy: Apple iMac G5 (2005)

Managed Managed Managed by OS,
by compiler by hardware hardware,
/ / \\ application
1977+27yr Reg L1 Inst = L1 Data DRAM Disk
Size in Bytes 1K 64K 32K 512K 256M 380G -)
iMac G5

Latency in
Cycles, | leye, | 3cye, | 3cye, | llcye, |88cyc, 107cyc, 1.6 GHz
Time 0.6ns | 19ns | 19ns | 69ns | 55ns | 12ms 600 (memii

Goal: Illusion of large, fast, cheap memory

Let programs address a memory space that scales to the disk size,
at a speed that is usually nearly as fast as register access

iMac G5 1.6 GHz clock, 55 ns DRAM vs. Apple I1 1 MHz, 400ns DRAM
Perform: CPU 1600 X, DRAM 7.3 X faster in 27 yrs => 2X/ 2.5y, 9.3y

CS425 - Vassilis Papaefstathiou

PowerPC 970 (G5): All caches on-chip

L1 (64K Instruction)
| e s B

1/2 KB
registers

, 1 |
-
i

[N — Ly :
i) g | & .
- | N 3 il - N1 ol | "~ —
: |3 S5 Ll il |F X
| i 5} 15 E {2 £F i
ke o e e e = |

.-. "’

sy g i g I8
. s R - -
] ol i 3
! ’ 4 ~ A
: : : . ‘
- *E Nl ged v |
: aidl ' \ !
5 '1] ~N : .l |
1/2 KB g 2,
- ; {5 ik 1 .l - |
1T 1] 1) |
registers i | I -
o i L A
; : e i
i bl .
| |
)

-
Sede v ” -

Sl It :
{ — ——
‘;m|
| | ! — — — — —_ — . — —

L1 (32K Data)

CS425 - Vassilis Papaefstathiou

Locality

Spatial locality

>

>

Appears due to iterative execution and linear data access patterns

Exploited by using larger block sizes — data to be used prefetched with
block

Exploited by data and code transformations by the compiler
Exploited by unit-stride prefetching mechanisms and policies

Temporal locality

Appears due to iterative execution and data reuse
Exploited by caches, through which data is reused

Working set: data that needs to be kept cached in a window of time to
maximize locality

Reuse distance: number of blocks of memory accessed between two
consecutive accesses to same block

CS425 - Vassilis Papaefstathiou

Memory Hierarchy: Terminology

e Hit: data appears in some block in the upper level
o Hit Rate: the fraction of memory accesses found in the upper level

o Hit Time: Time to access the upper level which consists of

Time to determine hit/miss
e Miss: data needs to be retrieved from a block in the lower level
e Miss Rate =1 - (Hit Rate)
e Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block to the upper level

e Hit Time << Miss Penalty (=500 instructions on 21264!)

Lower Level
 To Processor Upper Level Large Size
Memory Memory
—

Blk X

From Processor . Blk Y

CS425 - Vassilis Papaefstathiou

Cache Hit

Cache hit Block X

To processor
€

From processor
>

upper-level
memory

Block X

CS425 - Vassilis Papaefstathiou

lower-level
memory

Block Y

Cache Miss

Cache miss Block X

{To processor

upper-level
memory

lower-level
memory

From processor| m

CS425 - Vassilis Papaefstathiou

Block Y

Cache Measures

e Hit rate: fraction found in that level
o So high that usually talk about Miss rate = 1 - Hit rate
o Miss rate fallacy: as MIPS to CPU performance, miss rate to AMAT in
memory

e AMAT = Hit time + Miss rate x Miss penalty (ns or clocks)

e Miss penalty: time to supply a missed block from lower level,
including any CPU-visible delays to save replaced write-back
data to make room in upper level cache. {"All active caches are
full”)

e access time: time to lower level = f'(latency to lower level)
e ftransfer time: time to transfer block =/ (BW between upper & lower levels)

e replacement time: time to make upper-level room for new block, if all
active caches are full

CS425 - Vassilis Papaefstathiou

Average Memory Access Time (AMAT)

AMAT components

Average memory access time = Hit time 4+ Miss rate x Miss penalty
CPU time = (CPU execution clock cycles + Memory stall clock cycles)
x Clock cycle time

Memory stall clock cycles
Instruction

CPU time = IC x (CPIHE,;U,M” +) x Clock cycle time

, : Memory accesses *
P = Pl - M M I
CPU time = IC x (C axecution + Miss rate x m<troction x Miss pena ty)

x Clock cycle time

Assuming that cache hits do not stall the machine!

CS425 - Vassilis Papaefstathiou

An example

e Assumption on computer A
o CPI = 1.0 when all memory accesses hit
» Data accesses are only loads and stores (explain 50% of insts.)
e Miss penalty: 25 cc
o Miss rate: 2%

e Compute the speedup of computer B, for which all cache accesses
are hit

exectimey = (CPUcc + MemStallcc)x Clock cycle time
=(ICxCPI+0)xcct =1C x1.0x Clock cycle time

MemStallce = IC x MemAccess x MissRate x MissPenalty

Instruction

=ICx(1+0.5)x0.02x25=ICx0.75
exectime, = (CPUcc + MemStallcc) x Clock cycle time
=(ICxCPI+ICx0.75)x Clock cycle time

= I1C x 1.75 x Clock cycle time
CS425 - Vassilis Papaefstathiou

4 Questions for Memory Hierarchy

For a given level of the memory hierarchy

» Q1: Where can a block be placed in the upper level?
(Block placement)

» Q2: How is a block found if it is in the upper level? (Block
identification)

» Q3: Which block should be replaced on a miss? (Block
replacement)

» Q4: What happens on a write? (Write strategy)

CS425 - Vassilis Papaefstathiou

Q1: Where to Place Blocks?

e Jargon: Each address of a memory location is
partitioned into:

e block address
tag

index

e block offset

Block address Block
Tag Index offset

Fig. C.3

© 2003 Elsevier Science (USA). All rights reserved.

CS425 - Vassilis Papaefstathiou

Simplest Cache: Direct Mapped

Use Index in Address to find Cache Location

Memory

Memory Address

0 ~]
1

2

3

4]
5

6

7

8

9

A

B /
C /
D

E

F

CS425 -

4 Byte Direct Mapped Cache
Cache Index
0
1
2
3
* Location 0 can be occupied by
data from:
— Memory location 0, 4, 8, ... etc.

— In general: any memory location
whose 2 LSBs of the address are 0s

— Address<1:0> => cache index

 Which one should we place in
the cache?

« How can we tell which one is in
the cache?

Vassilis Papaefstathiou

1 KB Direct Mapped Cache, 32B blocks

 Fora 2 ** N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size =2 ** M)

31 9 4
Cache Tag Example: 0x50 Cache Index Byte Select
Ex: 0x01 Ex: 0x00
Stored as part
of the cache “state”
Valid Bit Cache Tag Cache Data
Byte 31| °** |Bytel | Bytd0 |0
0x50 Byte 63| *°* | Byte 33 Byt§32 |-
2
3
Byte 1023 .. Byte 992 | 31

CS425 - Vassilis Papaefstathiou

Direct Mapped Cache

Advantages

» Simple, low complexity, low power consumption

» Fast hit time

» Data available before cache determines hit or miss
» Hit/miss check done in parallel with data retrieval

Disadvantages

» Conflicts between blocks mapped to same block in cache

CS425 - Vassilis Papaefstathiou

Two-way Set Assoclative Cache

* N-way set associative: N entries for each Cache Index
— N direct mapped caches operates in parallel (N typically 2 to 4)

« Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— The two tags in the set are compared in parallel

— Data is selected based on the tag result
Cache Index

Valid

Cache Tag Cache Data

Cache Block 0

Cache Data

Cache Tag

Valid

Cache Block 0

OR
_\lv'/ Y Cache Block
Hit

CS425 - Vassilis Papaefstathiou

Two-way Set Assoclative Cache

Advantages

» Choice of mapping memory block to different cache blocks
in a set

» LRU or other policies for good selection of victim blocks
» Reduction of conflicts

Disadvantages
» Increased complexity — comparators, multiplexor, parallel
tag comparison
» Increased power consumption
» Increased hit time, due to comparators and multiplexor
» Data available after cache determines hit or miss

CS425 - Vassilis Papaefstathiou

Cache Mapping Example
Mapping block 12 from RAM in 8-block cache

fully associative direct mapped

Cache — —
two-way associative four-way associative

Number of sets = #Blocks / Associativity
Set/Index = (Block Address) MOD (Number of sets in cache)

CS425 - Vassilis Papaefstathiou

24

Q2: How iIs a block found in the cache

Cache tag array

Block Address Block

» Index points to line in data array — one block or set
» Offset points to byte in block

» Tag compared against tag field in address

» Valid bit ORed with output of tag comparator

CS425 - Vassilis Papaefstathiou

Q3: Which block is replaced on a miss

e Easy if direct-mapped (only 1 block “1 way” per set index)
e Three common choices for set-associative cache:

» Replace an eligible random block
o Replace the least recently used (LRU) block

can be hard to keep track of, so often only approximated

» Replace the oldest eligible block (First In, First Out, or FIFO)
e SPEC2000 benchmark (misses per 1000 instructions)

Set associativity

Two-way Four-way Eight-Way

Size LRU | Random | FIFO |LRU |Random |FIFO |LRU | Random | FIFO

16KB 1141 | 1173 | 1155 | 1M11.7 | 115.1 113.3 | 109.0| 111.8 | 1104

64KB 103.4| 104.3 | 103.9 | 1024 | 1023 | 103.1| 99.7 | 100.5 | 100.3

256KB | 92.2 92.1 925 | 921 92.1 92.5 | 92.1 92.1 92.5

(From Sussman)

CS425 - Vassilis Papaefstathiou

Q4: What happens on a write?

Write-Through

Write-Back

Data word written to
cache block

is also written to next

Write new data word
only to 1 cache block

Update lower level just

writes?

Policy Iower—lt_evel memory before a written block
Example, instr. sw to L1$ leaves cache, so not
also goes to L2$ lose true value
Debugging Easier Harder
Can read misses force No Yes (used to slow some

reads; now write-buffer)

Do repeated writes
touch lower level?

Yes, memory busier

No

Two options on a write miss:
*Fetch line from lower-level and perform write hit (“write allocate”)
Perform write only to the lower-level cache (“no-write allocate”)

CS425 - Vassilis Papaefstathiou

Write Buffers for Write-Tr

Processor

Cache
]

A —

rough Caches

Write Buffer

e

Lower
Level
Memory

Holds (addresses&) data awaiting write-
through to lower level memory

Q. Why a write buffer ?

Q. Why a buffer, why not
just one register ?

Q. Are Read After Write
(RAW) hazards an issue for
write buffer?

Q. Can Write Buffer work
with Write-Back Cache?

A. So CPU doesn’t stall

A. Bursts of writes are

COmimnon.

A. Yes! Drain buffer before
next read, or send read 15 after
check write buffers.

A. Yes. Send a block in the write-

buffer on each write-back.
CS425 - Vassilis Papaefstathiou

Write Buffer Optimization: Write Combine Buffer

e Write buffer mechanics, with merging

¢ An entry may contain multiple words (maybe even a whole
cache block)

o If there’s an empty entry, the data and address are written to
the buffer, and the CPU 1s done with the write

e [f buffer contains other modified blocks, check to see 1f new
address matches one already in the buffer — if so, combine the
new data with that entry

e If buffer full and no address match, cache and CPU wait for an
empty entry to appear (meaning some entry has been written to
main memory)

o Merging improves memory efficiency, since multi-word writes
usually faster than one word at a time

CS425 - Vassilis Papaefstathiou

Recap: Average Memory Access Time (AMAT)

AMAT components

Average memory access time = Hit time 4+ Miss rate x Miss penalty
CPU time = (CPU execution clock cycles + Memory stall clock cycles)
x Clock cycle time

Memory stall clock cycles
Instruction

CPU time = IC x (GPIE,{EM,-G” +) x Clock cycle time

* . Memory accesses 1
CPU time = IC x | CPI on + Miss rate x : x Miss penal
(execution Instruction P W)
x Clock cycle time
Assuming that cache hits do not stall the machine!

CS425 - Vassilis Papaefstathiou

Example
UltraSPARC lli

» in-order processor

» CPlexecution = 1.0

» miss penalty = 100 cycles

» miss rate = 2%

» 1.5 memory references per instruction
» 30 cache misses per 1000 instructions

1.
CPU time = IC x (1.0 + 0.02 x TS X 100) x Clock cycle time = IC x 4 x cycle time

30
1000

CPU time = IC x (1.0 - x1ﬂ|}) x Clock cycle time = IC x 4 x cycle time

CS425 - Vassilis Papaefstathiou

Example

UltraSPARC lli

» Cache miss latency increases execution time by 4x

» Higher clock rates imply more clock cycles wasted due to
miss penalty

» Higher relative impact of cache on performance

» HW/SW cache-conscious optimizations attempt reduce
AMAT

» Performance depends on both clock cycle and AMAT —
trade-off

CS425 - Vassilis Papaefstathiou

Example

Direct-mapped vs. set-associative cache

» 1 GHz processor
> CPlexecution = 2.0

» 64 KB caches with 64-byte blocks
» 1.5 memory references per instruction
» Direct mapped cache miss rate = 1.4%

» Set associative cache stretches clock cycle by 1.25,
miss rate = 1.0%

» 75 ns miss penalty (i.e. 75 cc or 60 cc)

» 1 cycle hit time
AMAT girect—mapped = 1.0 + (.014 x 75) = 2.05ns
AMAT,_yzy = 1.0 x 1.25 4 (.01 x 75) = 2.00ns

CS425 - Vassilis Papaefstathiou

Example

Direct-mapped vs. set-associative cache

Misses
Instruction
CPU timegirect—mapped = IC x (2.0 x 1.0 +0.014 x 1.5 x 75) = 3.58 x IC

CPU timego—way = IC x (2.0 x 1.25+0.01 x 1.5 x 75) =3.63 x IC

CPU time = IC x (CPfexegumﬁ + X MIss penalty) x clock cycle time

» Associative cache achieves lower AMAT than direct-mapped
cache

» Direct-mapped cache achieves higher performance than
associative cache

Why? In this example common case (hits) are faster for Direct-mapped cache.

CS425 - Vassilis Papaefstathiou

Overlapping memory latency in OOQO processors

Miss penalty in OO0
» Processor can execute instructions while cache miss is
pending
» Processors can execute instructions also while cache hit is
pending

» Hard to attribute stall cycles to instructions
» Stall cycle is any cycle where at least one instruction does

not commit
» First
Memory stall cycles Misses . :
: y : y = . — x (Total miss latency — overlapped miss latency)
Instruction Instruction

CS425 - Vassilis Papaefstathiou

