

CS425 Programming Assignment 2 1

CS425: Computer Systems Architecture

Programming Assignment 2

Assignment Date: 16/12/2019

Due Date: Tuesday 07/01/2020 23:59

Instructions: Put your answers in a .pdf file and send them together with your source code via e-mail

to HY425 course e-mail (hy425@csd.uoc.gr). Set the e-mail subject: HY425 – Programming

Assignment 2

Cache Simulation

The purpose of this assignment is to help you familiarize with the details of caches. You have to

implement caches yourself and measure their quantitative properties. You will also see the impact of

alternative design choices in the miss rate and IPC. For the simulation of caches, you will use our

custom simulator that is based on the PIN dynamic binary instrumentation tool (www.pintool.org).

Simulator

You can get the simulator from the home directory of the course:

/home/misc/courses/hy425/HW/PA/PA2_CacheSimulation

The directory contains:

i. Τhe instrumentation tool (CacheSimulation.cpp),

ii. Α generic cache model (CacheModel.H),

iii. Α cache controller that performs the appropriate steps to implement the cache

functionality (CacheController.H),

iv. Α configuration class that keeps the current settings of the cache(s)

(CacheConfiguraton.H),

v. Α profiler class that keeps statistics and implements an extremely simple timing model

(CacheProfiler.H) and

vi. Α directory with 7 benchmarks (4 integer and 3 floating point) to exercise the caches and

measure their performance.

Copy the simulator in your home directory and study carefully the sources to familiarize with the

simulator. To compile the simulator just type: make

To run a benchmark with the simulator (e.g.fft) use the following command:

make SIM_ARGS=”-l1a 4” SIM_APP=”./benchmarks/6.fft/fft” run

SIM_ARGS sets the command line arguments that you can pass to the simulator (check the

CacheSimulation.cpp KNOBs to see the available switches) and SIM_APP sets the

application/benchmark that will run on the simulator.

The timing model of the simulator assumes an in-order processor that executes every instruction in 1

clock cycle, it has a perfect instruction cache, a perfect branch predictor and a main memory with

infinite bandwidth, but with a latency of 100 clock cycles. All the above assumptions allow us to

remove the implications of other components and focus on the data caches alone. An L1 hit costs 1

clock cycle while an L1 miss costs 101 clock cycles (fetch data from main memory).

Note: simulating each of the given benchmarks takes about 5 minutes to complete (they contain a few

billion instructions) and you will have to collect several data points so start early!

mailto:hy425@csd.uoc.gr
http://www.pintool.org/

CS425 Programming Assignment 2 2

Measure L1 Miss Rate and IPC

Your first task is to explore the effects of cache-block size and associativity in an L1 data cache.

Assume that your L1 data cache budget is 32 KB. Run experiments with varying block sizes and set-

associativity for all the given benchmarks, draw miss-rate and IPC graphs similar to those presented

in class and find the configuration that gives the highest average IPC.

Explore the following block sizes:

(i) 32bytes, (ii) 64 bytes, (iii) 128 bytes

and the following associativities:

(i) direct-mapped, (ii) 2-way, (iii) 4-way

Hint: Prepare scripts and use the command line switches, you can run the experiments overnight!

Implement and Measure an L2 Cache

Implement in the simulator a strictly-inclusive write-back L2 cache, i.e. every cache-block that is

present in L1 should always be present in L2 and if by chance you need to evict a cache-block from

L2 then you should also evict it from L1 if present.

The provided CacheModel is generic enough to be used for L2, so you need only to modify the

CacheController, however you are free to change the code at will. Add command line switches

(knobs) to parameterize the L2, implement the appropriate functions for configuration and profiling

of the L2 and modify the timing model to take into account the L2 cache.

Run experiments with varying L2 cache sizes and associativity for all the given benchmarks draw

global miss-rate and IPC graphs similar to those presented in class and find the L2 configuration that

gives the highest average IPC.

Explore the following L2 cache sizes:

 (i) 128KB, (ii) 256KB , (iii) 512KB

and the following associativities:

 (i) 4-way, (ii) 8-way, (iii) 16-way

For your measurements assume that the L1 configuration is the one you found before, the cache‐block

size of the L2 cache is the same with L1 and that the L2 access time is 10 clock cycles.

Implement and Measure next-K-line Prefetchers

Use the best performing L1 and L2 cache configurations that you found before, and implement a next-

K-line prefetcher only for the L2 cache. Next-line prefetchers are extremely simple hardware schemes

that attempt to exploit spatial locality beyond cache-block boundaries. Typically, when a cache

experiences a cache miss for line A, then the next-K-line prefetcher fetches the next K sequential

cache-blocks, if not already present in the cache; K is known as the prefetch degree.

An important implication of cache prefetching is the need for higher memory bandwidth. Based on

the memory traffic facility of the simulator, find the prefetching configuration that best balances

between IPC and memory traffic.

Hint: Calculate the metric Memory Traffic/IPC.

All codes will be analyzed for copying using special software!

