CS425
Computer Systems Architecture

Fall 2018

Multiple Issue:
Superscalar and VLIW

CS425 - Vassilis Papaefstathiou

Example: Dynamic Scheduling in
PowerPC 604 and Pentium Pro

* In-order Issue, Out-of-order execution, In-order Commit

- hstruction Cata
" Cache Cache

T ;

L 9
Brarch hatruction Que e Commit
‘ Frediction 1 Urit
Decode /Dispatch Uit

i Re crcker

Buffer
Res.
m

erarch| | Integer| | hteger| | AP | | Gomp | [toad
~ leegeJ Lme

CS425 - Vassilis Papaefstathiou

Multiple Issue

CPIl = CPlipga + Stallsgrryc + Stallsgay + Stallsyyag + Stallsyyay + Stallscontrol

« Have to maintain:

- Data Flow
- Exception Behavior

Dynamic instruction scheduling (HW) Static instruction scheduling (SW/compiler)
Scoreboard (reduce RAW stalls) Loop Unrolling

Register Renaming (reduce WAR & WAW stalls) SW pipelining

Tomasulo

 Reorder buffer

Branch Prediction (reduce control stalls) Trace Scheduling

Multiple Issue (CPI < 1)
Multithreading (CPI < 1)

CS425 - Vassilis Papaefstathiou 3

Beyond CPI = 1

* |nitial goal to achieve CPI =1
« Can we improve beyond this?

» Superscalar:

- varying no. instructions/cycle (1 to 8), i.e. 1-way, 2-way, ..., 8-way
superscalar

- scheduled by compiler (statically scheduled) or by HW (dynamically
scheduled)

- e.g. IBM PowerPC, Sun UltraSparc, DEC Alpha, HP 8000
- the successful approach (to date) for general purpose computing

 Lead to use of Instructions Per Cycle (IPC) vs. CPI

CS425 - Vassilis Papaefstathiou

Beyond CPI = 1

 Alternative approach:

* VVery Lonq Instruction Words (VLIW):

- fixed number of instructions (4-16)

- scheduled by the compiler; put ops into wide templates

— Currently found more success in DSP, Multimedia applications
- Joint HP/Intel agreement in 1999/2000

— Intel Architecture-64 (Merced/A-64) 64-bit address

- Style: “Explicitly Parallel Instruction Computer (EPIC)”

CS425 - Vassilis Papaefstathiou

Getting CPI < 1: Issuing Multiple Instr/Cycle

« Superscalar DLX: 2 instructions, 1 FP & 1 anything else
— Fetch 64-bits/clock cycle; Integer on left, FP on right
— Can only issue 2" instruction if 1stinstruction issues
— More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

« 1 cycle load delay expands to 3 instructions in SS

— instruction in right half can’t use it, nor instructions in next slot
CS425 - Vassilis Papaefstathiou

In-Order Superscalar Pipeline Commit Point

il

Inst. |2, Dual GPR Data
Mem [7 P[] Decode s |KI¢+ Xz'[Mem "'X3

PC

 Fetch two instructions per cycle; issue

both simultaneously if one is —| FPRs [X1| | —=IX2 FAdd [X3 -
integer/memory and other is floating point -

* Inexpensive way of increasing throughput,
examples include Alpha 21064 (1992) &

MIPS R5000 series (1996) ——%2 FMul X3 -
« Same idea can be extended to wider

issue by duplicating functional units (e.g. o

4-issue UltraSPARC) but regfile ports and - Unpipelingd

: . -~ Lol divid
bypassing costs grow quickly =Diix 2 X3

IlIlllllllllIlllllIlllllIll*lllllllllll;lllllll

CS425 - Vassilis Papaefstathiou

Superscalar Pipeline (PowerPC- and
enhanced Tomasulo-Scheme)

Execution

Reservation
Stations

Back

| Rename [

3 / \
3
—® Instruction [—» § Retire
Instruction | | Decode =| o and
Fetch and 5 SSUC Write
g
9]
RS

N T

* [nstructions in the instruction window are free from control
dependencies due to branch prediction, and free from name
dependences due to register renaming.

* Only (true) data dependences and structural conflicts remain to
be solved.

Execution

Reservation
Stations

CS425 - Vassilis Papaefstathiou

Superpipelined Machines

o Omclockeycle MIPS R4000
20ns & 0 MHz
R | . |
lmfm Execute | Damfine | Daisssood | Tagcheck | Wrkeback ‘ ‘,‘/§!age ‘ ‘J(/llcwe
(IF) s
9 (RF) (EX) (DF) (m'l (TC} {VB) Instruction 4| |F | IS | RF | EX| DF | DS TC|WB'

Tig Reguster Instructnon3| |F | IS | RAF | EX | DF OS| TC | WB'

- 1 Decode [‘
Insroctan cache : st | ;
Registe - o Dm‘:‘i_]_r‘ Check ile | |
H & ¥ ! nstruction 2 [IF [18 [RE[EX] DF[DS | TC [w8
dessumsla:iml ‘ .‘; |Ma:m£- Mdusmshﬁml i mstruction 1 [_1F] 1S] AF] EX] DF] DS [TC] WB]

creck

* Machine issues instructions faster than they are executed

» Advantage: increase in the number of instructions which can be in the
pipeline at one time and hence the level of parallelism.

 Disadvantage: The larger number of instructions "in flight" (i.e. in some
part of the pipeline) at any time, increases the potential for data and
control dependencies to introduce stalls. Clock frequency is high.

CS425 - Vassilis Papaefstathiou

Sequential ISA Bottleneck

Sequential
source code

a = foo(b);
for (i=0, i<

g o

Find independent
operations

Superscalar compiler

Schedule
operations

#

Check instruction
dependencies

Superscalar processor

Schedule
execution

CS425 - Vassilis Papaefstathiou

Sequential
machine code

Review: Unrolled Looping in Scalar

1 Loop: LD
2 LD
3 LD
4 LD
5 ADDD
6 ADDD
7 ADDD
8 ADDD
9 SD
10 SD
11 SD
12 SUBI
13 BNEZ
14 SD

FO,0 (R1)
F6,-8 (R1)
F10,-16 (R1)
F14,-24 (R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,Fl4,F2
0(R1) ,F4

-8 (R1) ,F8
-16 (R1) ,F12
R1,R1,#32
R1,LOOP

8 (R1) ,F16 ;

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles

8-32 = -24

14 clock cycles, or 3.5 per iteration

CS425 - Vassilis Papaefstathiou

Loop Unrolling in Superscalar

Integer instruction FP instruction Clock cycle
Loop: LD FORO(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD (F4)FQ), F2 3 Unrolled 5 times to
LD F14,-24(R1) aAppD F8,F6,F2 4 avoid delays
LD F18,-32(R1 ADDD F12,F10,F2 5
SD 0(R1) ADDD F16,F14,F2 6 12 clocks, or 2.4
SD -8(R1),F8 ADDD F20,F18,F2 7 clocks per iteration
SD -16 (R1),F12 8 (1 .5X)
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

CS425 - Vassilis Papaefstathiou

SS Advantages and Challenges

* The potential advantages of a SS processor versus a vector or
VLIW processor are their ability to extract some parallelism from
less structured code (i.e. not only loops) and their ability to
easily cache all forms of data.

* While Integer/FP split is simple for the HW, get CPI of 0.5 only
for programs with:

— Exactly 50% FP operations
- No hazards

* If more instructions issue at same time, greater difficulty of
decode and issue

- Even 2 way-scalar => examine 2 opcodes, 6 register specifiers, &
decide if 1 or 2 instructions can issue

CS425 - Vassilis Papaefstathiou

Example Desktop Processor: Intel Core 2

128 Entry 32 KB Instruction Cache |
ITLB Ll) Shared Bus
3 128 Bit Interface
32 Byte Pre-Decode, Unit
: Fetch Buffer \
lnstructlop # 6 Instructions
Fetch Unit 18 Entry
i Instruction Queue
y
Micro- | |Complex| | Simple | | Simple || Simple !
code Decoder | | Decoder| Decoder |Decoder
I_;;4 Hops Flpop -lpop - 1pop
| 7+ Entry pop Buffer Shared
‘# 4 pops L2 Cache

Register Alias Table e S u pe rp i pel i ned &

and Allocator

P e Superscalar (4-way)

96 Entry Reorder Buffer (ROB) 256 Entry

L2 DTLB
‘*‘ 4 pops b
-~ 32 Entry Reservation Station |
Port 0 Port 1 Port 5| Port 3 Port 4 Port 2
. SgE SSE ’ .
ALU SSE Store Store Load
AU s:tﬁle AU S:‘tblee Branch ALU | | Address Data | | Address
Y y !
E 128 i Memory Ordering Bufﬁl
FDIV (MOB)
* [‘ !) [Store | Load
Internal Results Bus 128 Bit |] 256
- 128 Bit \ ! Bit
32 KB Dual Ported Data Cache| 16 Entry |
(8 way) DTLB

CS425 - Vassilis Papaefstathiou 14

Example Mobile Processor: ARM A72

DEODODD OB DEaDE

N S N | | -
ARM Cortex A72 L 1 [T simple integerio
ANANDIECH .|| sam |
£ { LE:’ Simple Integer i1
]
g l{‘ sQ(8) | [| MultiCycle M
) E 1{{:’ lsa(8) | [| NEON/FPFO]
l Fatch o Decode o> ! { sQ(8) | . | NEON/FPF1 g
= | sagio) E:?* Branch B
e
EE g 150 (16) = [A6050
5 ﬂ ~ | AGUST

CS425 - Vassilis Papaefstathiou

Example Server Processor: IBM POWERS

' : LSD
32KB L1 I-Cache Pre decode Instruction
Queue Decoders A

uop
pop Cache (1536) = Queue

Branch Prediction Unit

Allocate/Rename/Retire

""""""""""""" ROB (7224) TTETmETT

Issue Queue: 97
i
256KB L2

Store Buffer (56) Load Buffer (72)

~Fill

CS425 - Vassilis Papaefstathiou

16

All in one: 2-way SS + Oo0 + Branch Prediction +

Reorder Buffer (Speculation)

Show read cycle for

clarification Write

Issues Executes Readaccess CDBat Commits
Iteration atclock atclock at clock clock at clock
number Instructions number number number number number Comment
1 LD R2,0(R1) 1 2 3 4 5 First issue
1 DADDIU R2,R2,#1 1 5 6 7 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 8 Commit in order
1 BNE R2,R3,L00P 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 7 9 No execute delay
2 DADDIU R2,R2,#1 4 8 9 10 Wait for LW
2 SD R2,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE R2,R3,L00P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW
3 SD R2,0(R1) 8 9 13 Wait for DADDIU
3 DADDIU R1,RI1,#8 8 9 10 14 Executes earlier
3 BNE R2,R3,L00P Y 13 14 Wait for DADDIU

2 issues/cycle & 2 commits/cycle otherwise reorder buffer will overflow

CS425 - Vassilis Papaefstathiou

17

Alternative Solutions

* Very Long Instruction Word (VLIW)

 Explicitly Parallel Instruction Computing (EPIC)
« Simultaneous Multithreading (SMT), next lecture
* Multi-core processors, ~last lecture

« VLIW: tradeoff instruction space for simple decoding
- The long instruction word has room for many operations

- By definition, all the operations the compiler puts in the long instruction
word are independent — execute in parallel

- E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
o 16 to 24 bits per field — 7x16 or 112 bits to 7x24 or 168 bits wide
o Intel Itanium 1 and 2 contain 6 operations per instruction packet

- Need compiling technique that schedules across several branches
CS425 - Vassilis Papaefstathiou

VLIW: Very Long Instruction Word

IntOp1 | IntOp2 | MemOp1 | MemOp2 | FPOp1 | FPOp 2

} } } } } '
]]]]] [
Two Integer Units, [1]] 1] [
Single Cycle Latency []] []
Two Load/Store Units, [1] [

Three Cycle Latency Two Floating-Point Units,
_ _ _ . ~ Four Cycle Latency
« Multiple operations packed into one instruction

« Each operation slot is for a fixed function
« Constant operation latencies are specified

 Architecture requires guarantee of:

— Parallelism within an instruction — no cross-operation RAW check

— No data use before data ready — no data interlocks
CS425 - Vassilis Papaefstathiou

VLIW Compiler Responsibilities

« Schedule operations to maximize parallel execution
« Guarantees intra-instruction parallelism

« Schedule to avoid data hazards (no interlocks)

— Typically separates operations with explicit NOPs

e InaVLIW (also called Very Large Instruction Word) processor,
several operations that can be executed in parallel are placed an
a single instruction word.

Instruction1 op, = op, @ op, op,
Instruction2 op, (%] op, op,
Instruction 3 1] op, Op, %]

e VLIW architectures rely on compile-time detection of parallelism.

- The compiler analyzes the program and detects operations to be
executed in parallel.

e After one instruction has been fetched all the corresponding
operations are issued in parallel.

- No hardware is needed for run-time detection of parallelism.

e The instruction window problem disappears: the compiler can
potentially analyze the whole program to detect parallel operations.

CS425 - Vassilis Papaefstathiou

Typical VLIW processor

M}:f:lgw Bt o Register File
F Y l F 3
h 4 y ¥ ¥
Load/ F.P.
Integer Branch
o I 3 I Al 1 G
Y

Load/Stora | FP Add | FP Muttiply | Branch e»» |integer ALU

(a) A typical VLIW processor and instruction format

| S SRR 1 1 1 RN | |

| 22PN |

ifelch Decode Executs Wie back
3 operations

oooooo

oooooo

ooooooo

L 4 | | { | | i | |] >
6 1 2 3 4 5 6 7 8 9 TmeinBaseCycles

{b) VLIW execution with degree m = 3

Figure 4.14 The architecture of a very long instruction word (VLIW) processor
and its pipeline operations. {Courtesy of Multiffow Computer, Inc., 1987)

CS425 - Vassilis Papaefstathiou

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 operation 2 branch
LD FOQ(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD Frz=24({R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD?FO,FZ ADDD F8,F6,F2 3
LD F26,-48(R1) DD F12,F10,F2 ADDD F16,F14,F2 4
ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#56 8
SD 8(R1),F28 BNEZ R1,LOOP 9

‘Unrolled 7 times to avoid delays
*Unrolling 7 times results in 9 clocks, or 1.3 clocks per iteration (1.8x vs SS)
*Average: 2.5 ops per clock, 50% efficiency
*Note: Need more registers in VLIW (15 vs. 6 in SS)
CS425 - Vassilis Papaefstathiou

Advantages of VLIW

« Compiler prepares fixed packets of multiple operations that give
the full "plan of execution"

— dependencies are determined by compiler and used to schedule
according to function unit latencies

- function units are assigned by compiler and correspond to the position
within the instruction packet ("slotting")

— compiler produces fully-scheduled, hazard-free code — hardware
doesn't have to "rediscover" dependencies or schedule

CS425 - Vassilis Papaefstathiou

Disadvantages of VLIW

» Object-code compatibility

- recompile all code for every machine, even for two machines in same generation

« Object code size
— instruction padding wastes instruction memory/cache
- loop unrolling/software pipelining replicates code

« Scheduling variable latency memory operations
— caches and/or memory bank conflicts impose statically unpredictable variability

— as the issue rate and number of memory references becomes large, this
synchronization restriction becomes unacceptable

« Knowing branch probabilities
- Profiling requires a significant extra step in build process

« Scheduling for statically unpredictable branches
— optimal schedule varies with branch path

CS425 - Vassilis Papaefstathiou

What if there are not many loops?

 Branches limit basic block
size in control-flow intensive
irregular code

Basic block

e Difficult to find ILP in
individual basic blocks

PN

—

CS425 - Vassilis Papaefstathiou

Trace Scheduling [Fisher, Ellis]

* Trace selection: Pick string of basic blocks, a
trace, that represents most frequent branch path

» Use profiling feedback or compiler heuristics to
find common branch paths

« Trace Compaction: Schedule whole “trace” at
once. Packing operations to few wide
iInstructions

« Add fixup code to cope with branches jumping
out of trace

 Effective to certain classes of programs

« Key assumption is that the trace is much more
probable than the alternatives

CS425 - Vassilis Papaefstathiou

Intel Itanium, EPIC |A-64

« EPIC is the style of architecture (cf. CISC, RISC)
— Explicitly Parallel Instruction Computing (really just VLIW)

* |A-64 (Intel ltanium architecture) is Intel’s chosen ISA (cf. x86, MIPS)
- |A-64 = Intel Architecture 64-bit
— An object-code-compatible VLIW

* Merced was first ltanium implementation (cf. 8086)

— First customer shipment expected 1997 (actually 2001)
- McKinley, second implementation shipped in 2002
- Recent version, Poulson, eight cores, 32nm, 2012

« Different instruction format than VLIW architectures using with indicators
» Support for SW speculation

CS425 - Vassilis Papaefstathiou

Eight Core Itanium “Poulson” [Intel 2012]

« 8 cores

* 1-cycle 16KB L1 I&D caches

» 9-cycle 512KB L2 |-cache

« 8-cycle 256KB L2 D-cache

« 32 MB shared L3 cache

* 544mm?in 32nm CMOS

« Over 3 billion transistors

« Cores are 2-way multithreaded

* 6 instruction/cycle fetch
— Two 128-bit bundles (3 instrs/bundle)

—Up to 12 instrs/cycle execute

CS425 - Vassilis Papaefstathiou

28

|A-64 Registers

« 128 General Purpose 64-bit Integer Registers

« 128 General Purpose 82-bit Floating Point Registers
* 64 x 1-bit Predicate Registers

» 8 X 64-bit Branch Registers

* Register stack mechanism: GPRs “rotate” to reduce code size

for software pipelined loops

— Rotation is a simple form of register renaming allowing one instruction
to address different physical registers on each procedure call

CS425 - Vassilis Papaefstathiou

Execution Units

Execution Instruction Instruction

unit slot type description Example instructions
[-unit A Integer ALU add, subtract, and, or, compare

I Non-ALU integer integer and multimedia shifts, bit tests,

moves

M-unit A Integer ALU add, subtract, and, or, compare

M Memory access Loads and stores for integer/FP registers
F-unit F Floating point Floating-point instructions
B-unit B Branches Conditional branches, calls, loop branches
L+X L+X Extended Extended immediates, stops and no-ops

CS425 - Vassilis Papaefstathiou 30

|JA-64 Instruction Format

| Instruction 2 | Instruction 1 | Instruction O Template |

N— -
—

128-bit instruction bundle (41*3+5)

« Template bits describe the types of instructions and the
grouping of these instructions with others in adjacent bundles

« Each group contains instructions that can execute in parallel
and the boundary of a group (stop) is indicated by the template

bundle -1 bundlej bundle j+1 bundle j+2
| I I Il | I I Il | I I Il | I I Il | I I Il |

\ AN '\) L J

group i-1 group | group i+1 group i+2

CS425 - Vassilis Papaefstathiou

|A-64 Template

Slot 0 Slot 1 Slot 2
M I I
M I I

Template
0
1

14
15
16

17
18
19
22
23

24
25
28

29

CS425 - Vassilis Papaefstathiou

|A-64 Basic Architecture

128 registers
for integers

Instruction | Instruction

Fetch { Decode &

Unit ~ | Control Unit 64 predicate

registers

|
|
|
e Registers (both integer and : . ! 128 registers
floating point) are 64-bit. ! . ; for FPs
s |
|

I
Predicate registers are 1-bit.
I

e 8 or more functional units. 1

CS425 - Vassilis Papaefstathiou

|A-64 Predicated Execution

Predicatio[r>
br a==b, b2 jf |~

* Problem: Mispredicted
branches limit ILP

« Solution: Eliminate hard
to predict branches with
predicated execution

- Almost all IA-64

instructions can be
executed conditionally
under predicate

- Instruction becomes
NOP if predicate
reqgister false

b0:

b1:

b2:

b3:

Inst 1

Inst 2

Inst 3 else

Inst 4
jmp b3 —

Inst 6

Inst 7
Inst 8

Four basic blocks

CS425 - Vassilis Papaefstathiou

Inst 1
Inst 2
p1= (a!=b), p2 = (a==b)

(p1)Inst3 || (p2)Inst5
(p1)Inst4 || (p2) Inst6
Inst 7
Inst 8

One basic block

Mahlke et al, ISCA95:
On average >50%
branches removed

Branch Predication

e Branch predication is an aggressive compilation technique to
generate code with higher degree of instruction level parallelism.

e It lets operations from both branches of a conditional branch to be
executed in parallel, to increase the amount of parallel operations.

e In this way, branches are eliminated and replaced by conditional
execution.

- Hardware support is needed, as implemented in the |A-64
architecture.

The idea is: let instructions from both branches go on in parallel,
before the branch condition has been evaluated. The hardware

takes care that only those corresponding to the right branch will
be finally committed.

CS425 - Vassilis Papaefstathiou

Branch Predication Example

Instruction 1
4 For a branch instruction, the
Instruction 2 compiler assigns a predicate
- / to each of the two following
Instruction 3 . :
branch) instruction paths.
SETEE o - - bo -,
i <P1> Instruction 4 <P2> Instruction 7 1 | CPU can execute
I | '_ } | : instructions from different
: <P1> Instruction 5 <P2> Instruction 8 — paths concurrently, but
- ! | ! 1 | only the correct path will
I <P1>Instruction 6 <P2> Instruction 9 : finally be committed.

For a VLIW machine, the instructions may be arranged as follows:
j Instruction 1 Instruction 2 Instruction 3
- <P;> Instruction 4 = <P>> Instruction 7 | <P;> Instruction 5

_' <P>> Instruction 8 <P;> Instruction 6 = <P»> Instruction 9

CS425 - Vassilis Papaefstathiou

