
CS425 - Vassilis Papaefstathiou 1

CS425
Computer Systems Architecture

Fall 2018

Pipelining

Previous Lecture
• Measurements and metrics:

⎻ Performance, Cost, Dependability, Power
• Guidelines and principles in the design of computers

CS425 - Vassilis Papaefstathiou 2

Outline
• Processor review
• Hazards

⎻ Structural
⎻ Data
⎻ Control

• Performance
• Exceptions

CS425 - Vassilis Papaefstathiou 3

Clock Cycle
• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight issues + gate

delays
⎻ clock propagation, wire lengths, drivers

Latch
or

register

Combinational
Logic

CS425 - Vassilis Papaefstathiou 4

Datapath vs Control
• Datapath: Storage, FU, interconnect sufficient to perform the desired functions

⎻ Inputs are Control Points
⎻ Outputs are signals

• Controller: State machine to orchestrate operation on the data path
⎻ Based on desired function and signals

Datapath Controller

Control Points

signals

CS425 - Vassilis Papaefstathiou 5

“Typical” RISC ISA
• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store:

base + displacement
⎻ no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

CS425 - Vassilis Papaefstathiou 6

Example: 32bit MIPS

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Example: lw $2, 100($5)
add $4, $5, $6
beq $3, $4, labelCS425 - Vassilis Papaefstathiou 7

Example Execution Steps
Instruction

Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from
program storage

Determine required
actions and

instruction size

Locate and obtain
operand data

Compute result value
or status

Deposit results in
storage for later

use
Determine successor

instruction

5-stage execution is a bit
different (see next slides)…

Processor

regs

F.U.s

Memory

program

Data

von Neuman
bottleneck

CS425 - Vassilis Papaefstathiou 8

Pipelining: Latency vs Throughput

Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

A

B

C

D

30 40 40 40 40 20
A BStart: C D

CS425 - Vassilis Papaefstathiou 9

5-stage Instruction Execution - Datapath
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

ALU

M
em

ory

R
eg

File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX/M
EM

4

Adder

Next SEQ PC Next SEQ PC

RD RD RD

W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

Address

RS1

RS2

Imm

M
U

X

IR <= mem[PC];
PC <= PC + 4

A <= Reg[IRrs];
B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

CS425 - Vassilis Papaefstathiou 10

Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

CS425 - Vassilis Papaefstathiou 11

5-stage Instruction Execution - Control

Pipeline Registers: IR, A, B, r, WB
CS425 - Vassilis Papaefstathiou 12

Limits in Pipelining
• Limits to pipelining: Hazards prevent next instruction from

executing during its designated clock cycle
⎻ Structural hazards: Resource conflicts, HW cannot support this

combination of instructions (single person to fold and put clothes away)

⎻ Data hazards: Instruction depends on result of prior instruction still in
the pipeline

⎻ Control hazards: Caused by delay between the fetching of instructions
and decisions about changes in control flow (branches and jumps).

In order: when an instruction is stalled, all instructions issued later than
the stalled instruction are also stalled.

CS425 - Vassilis Papaefstathiou 13

Example of Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg AL
U

DMemIfetch Reg

CS425 - Vassilis Papaefstathiou 14

Example of Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg AL
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” this pipe (if instr1 = load)?
CS425 - Vassilis Papaefstathiou 15

Example of Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch RegBubble

How do you “bubble” this pipe (if instr1 = load)?
CS425 - Vassilis Papaefstathiou 16

Speed Up Equation of Pipelining

For simple RISC pipeline, Ideal CPI = 1:

CS425 - Vassilis Papaefstathiou 17

Example: Dual-port vs Single-port
• Machine A: Dual read ported memory (“Harvard Architecture”)
• Machine B: Single read ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Suppose that Loads/Stores are 40% of instructions executed

• Machine A is 1.33 times faster (CPUtime = IC x Aver instr time)

A

A

B BB

Why would a designer allow structural hazards?
CS425 - Vassilis Papaefstathiou 18

Data Hazard

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

CS425 - Vassilis Papaefstathiou 19

Read After Write

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature). This hazard
results from an actual need for communication.

I: add r1,r2,r3
J: sub r4,r1,r3

CS425 - Vassilis Papaefstathiou 20

Write After Read
• Write After Read (WAR)

InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
§ All instructions take 5 in order stages, and
§ Reads are always in stage 2, and
§ Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

CS425 - Vassilis Papaefstathiou 21

Write After Write
• Write After Write (WAW)

InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers. This also results from
the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

§ All instructions take 5 in order stages, and
§ Writes are always in stage 5

• Will see WAR and WAW in more complicated pipelines

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

CS425 - Vassilis Papaefstathiou 22

Forwarding to avoid data hazards
Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

No Stall !
Ignore what you read from Register File

CS425 - Vassilis Papaefstathiou 23

HW Change for Forwarding

M
EM

/W
R

ID
/EX

EX/M
EM

 Data
Memory

ALU

m
ux

m
ux

R
egisters

NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?
Why we need forwarding lines for both inputs of the ALU?

CS425 - Vassilis Papaefstathiou 24

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

CS425 - Vassilis Papaefstathiou 25

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

CS425 - Vassilis Papaefstathiou 26

Data Hazard Even with Forwarding

or r8,r1,r9

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg AL
U

DMemIfetch Reg

RegIfetch AL
U

DMem RegBubble

Ifetch AL
U

DMem RegBubble Reg

Ifetch AL
U

DMemBubble Reg

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

CS425 - Vassilis Papaefstathiou 27

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

CS425 - Vassilis Papaefstathiou 28

Control Hazard on Branches: Three Stage Stall

10: beq r1,r3,26

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

26: xor r10,r1,r11

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

What do you do with the 3 instructions in between?
How do you do it?
Where is the “commit”?

CS425 - Vassilis Papaefstathiou 29

Branch Stall Impact
• If CPI = 1, 30% branch,

Stall 3 cycles => new CPI = 1.9!
• Two part solution:

⎻ Determine branch taken or not sooner, AND
⎻ Compute taken branch address earlier

• MIPS branch tests if register = 0 or ¹ 0
• MIPS Solution:

⎻ Move Zero test to ID/RF stage
⎻ Adder to calculate new PC in ID/RF stage
⎻ 1 clock cycle penalty for branch versus 3

CS425 - Vassilis Papaefstathiou 30

Adder

IF/ID

Pipelined MIPS Datapath
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

ALU

M
em

ory

R
eg

File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?
M

EM
/W

B

EX/M
EM

4

Adder

Next
SEQ
PC

RD RD RD

W
B

D
at

a

• Interplay of instruction set design and cycle time.

Next PC

Address

RS1

RS2

Imm

M
U

X

ID
/EX

CS425 - Vassilis Papaefstathiou 31

Control Hazard on Branches: One Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

36: xor r10,r1,r11 Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

18: or r6,r1,r7
22: add r8,r1,r9

CS425 - Vassilis Papaefstathiou 32

Four Branch Hazard Alternatives
• #1: Stall until branch direction is clear (simplicity)
• #2: Predict Branch Not Taken

⎻ Execute successor instructions in sequence
⎻ “Squash” instructions in pipeline if branch actually taken
⎻ Advantage of late pipeline state update
⎻ 47% MIPS branches not taken on average
⎻ PC+4 already calculated, so use it to get next instruction

CS425 - Vassilis Papaefstathiou 33

Four Branch Hazard Alternatives
• #3: Predict Branch Taken

⎻ 53% MIPS branches taken on average

⎻ But haven’t calculated branch target address in MIPS

o MIPS still incurs 1 cycle branch penalty

o Other machines: branch target known before outcome

⎻ What happens on not-taken branches?

CS425 - Vassilis Papaefstathiou 34

Four Branch Hazard Alternatives
#4: Delayed Branch

§ Define branch to take place AFTER a following instruction
branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

§ 1 slot delay allows proper decision and branch target address in 5
stage pipeline

§ MIPS uses this

Branch delay of length n

CS425 - Vassilis Papaefstathiou 35

Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC

• In B/C, must be okay to execute sub/OR when branch is untaken/taken

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

OR $7,$8,$9

sub $4,$5,$6

OR $7,$8,$9

sub $4,$5,$6

CS425 - Vassilis Papaefstathiou 36

Delayed Branch
• Compiler effectiveness for single branch delay slot:

⎻ Fills about 60% of branch delay slots
⎻ About 80% of instructions executed in branch delay slots useful in

computation
⎻ About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to deeper pipelines
and multiple issue, the branch delay grows and need more than
one delay slot

⎻ Delayed branching has lost popularity compared to more expensive but
more flexible dynamic approaches

⎻ Growth in available transistors has made dynamic approaches
relatively cheaper

CS425 - Vassilis Papaefstathiou 37

Example: Evaluating Branch Alternatives
Pipeline speedup = Pipeline depth

1 +Branch frequency´Branch penalty

Deep pipeline in this example :
2 cycles for address (2 stalls)
1 more cycle to evaluate condition

Flush pipeline

CS425 - Vassilis Papaefstathiou 38

Problems with Pipelining
• Exception: An unusual event happens to an instruction during its

execution
⎻ Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the processor to a new
instruction stream

⎻ Example: a sound card interrupts when it needs more audio output samples
(an audio “click” happens if it is left waiting)

• Problem (precise interrupt?): It must appear that the exception or
interrupt happens between 2 instructions (i and i+1)

⎻ The effect of all instructions up to and including i is totaling complete
⎻ No effect of any instruction after i can take place

• The interrupt (exception) handler either aborts program or restarts at
instruction i+1

CS425 - Vassilis Papaefstathiou 39

Precise Exceptions in Static Pipelines

• Key observation: architectural state changes only in memory and
register write stages.

CS425 - Vassilis Papaefstathiou 40

Summary: Pipelining
• Next time: Read Appendix A
• Control via State Machines and Microprogramming
• Just overlap tasks; easy if tasks are independent
• Speed Up £ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
⎻ Structural: need more HW resources
⎻ Data (RAW,WAR,WAW): need forwarding, compiler scheduling
⎻ Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ´
+

=

CS425 - Vassilis Papaefstathiou 41

