CS425
Computer Systems Architecture

Fall 2018

Pipelining

CS425 - Vassilis Papaefstathiou

Previous Lecture

* Measurements and metfrics:
- Performance, Cost, Dependability, Power

» Guidelines and principles in the design of computers

CS425 - Vassilis Papaefstathiou

Outline

* Processor review

 Hazards

— Structural
- Data
— Control

 Performance
* Exceptions

CS425 - Vassilis Papaefstathiou

Clock Cycle

* Old days: 10 levels of gates

» Today: determined by numerous time-of-flight issues + gate
delays
— clock propagation, wire lengths, drivers

- (@« D
Latch
or
register ‘
' A 4

CS425 - Vassilis Papaefstathiou

Datapath vs Control

« Datapath: Storage, FU, interconnect sufficient to perform the desired functions
- Inputs are Control Points
— Outputs are signals

« Controller: State machine to orchestrate operation on the data path
— Based on desired function and signals

Datapath Controller
|
-
signals _ 1 ,
_- | |
— /:
-
-
-
—
>
-’
\—/‘ Control Points \)

CS425 - Vassilis Papaefstathiou

“Typical” RISC ISA

« 32-bit fixed format instruction (3 formats)
« 32 32-bit GPR (RO contains zero)
« 3-address, reg-reg arithmetic instruction

 Single address mode for load/store:
base + displacement

- no indirection
« Simple branch conditions
* Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

CS425 - Vassilis Papaefstathiou

Example: 32bit MIPS

Register-Register

31 26 25 2120 16 15 1110 6 5
Op I Rs1 I Rs2 I Rd I Opx
Register-Immediate
31 26 25 2120 16 15
Op I Rs1 I Rd I immediate
Branch
31 26 25 2120 16 15
Op I Rs1 FSZ/OPXI immediate
Jump / Call
31 25
Op I target
Example: Iw $2, 100($5)
add $4, $5, $6

CQ?Z% %ssms Ilapae!stathlou

Example Execution Steps

v Memory
Obtain instruction from
program storage
1 . . Processor program
Determine required
actions and regs
I Instruction size LN
Ol Locate and obtain FU.s d
Fetch operand data Data
: Compute result value 7
| or status von Neuman
Result : : bottleneck
Deposit results in
Store storage for later
use L :
Next . 5-stage execution is a bit
Instruction Determlne successor different (see next slides)...
Instruction

CS425 - Vassilis Papaefstathiou

Pipelining: Latency vs Throughput
Startt: A B C D

|
30 40 40 40 40 20

B ik

® (S
©) S
D) S5

Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

CS425 - Vassilis Papaefstathiou

5-stage Instruction Execution - Datapath

Instruction : Instr. Decode Execute . Memory Write
Fetch : Reg. Fetch : Addr. Calc : Access : Back

[

Next SEQPC

Next SEQ PC

IR <= mem[PC];
PC <= PC + 4

WB Data

A <= Reg[IR,.];
B <= Reg[IR,]

rslt <= A Opip,, B

WB <= rslt « Data stationary control
— local decode for each instruction phase / pipeline stage

Reg[IR,. 4] <= WB

CS425 - Vassilis Papaefstathiou 10

Visualizing Pipelining

Time (clock cycles)

o~ N 5 -

—;CDQ_—;O

Cycle 1 Ecycle 2 ECycIe 3 Cycle 4 ECycIe 5 Cycle 6 Cycle 7

Ifetch

Reg

ALU

Ifetch

Reg

3 DMem

ALU

I Reg

{

Ifetch

Reg

DMem

Ifetch

=)
|
<

Reg

g Reg

g DMem

Reg

CS425 - Vassilis Papaefstathiou

Reg

11

5-stage Instruction Execution - Control

IR <= mem[PC];
PC<=PC+4

ID A <= Reg[IR];
B <= Reg[IR,]

i bop(A.b) r <= AOPiep IRen

PC <= PC+IR,,

WB <= Mem|[r]

Pipeline Registers: IR, A, B, r, WB

CS425 - Vassilis Papaefstathiou

Limits in Pipelining

 Limits to pipelining: Hazards prevent next instruction from
executing during its designated clock cycle

- Structural hazards: Resource conflicts, HW cannot support this
combination of instructions (single person to fold and put clothes away)

— Data hazards: Instruction depends on result of prior instruction still in
the pipeline

- Control hazards: Caused by delay between the fetching of instructions
and decisions about changes in control flow (branches and jumps).

In order: when an instruction is stalled, all instructions issued /ater than
the stalled instruction are also stalled.

CS425 - Vassilis Papaefstathiou 13

Example of Structural Hazard

Time (clock cycles)

Cycle 1: Cycle 2 Cycle 3 Cycle 4 Cycle 5: Cycle 6 Cycle 7

Load 'fetCh:E Reg :[:B n DMem
Instr 1 'fetCh:[:I: 2 3 DMem i

| g g

e - -

Reg

L

S e~ —

Instr 2 fetch Reg{ 2
Instr 3 Ifetch:[Reg

- 0 =0

Instr 4 Ifetch :[

CS425 - Vassilis Papaefstathiou

Example of Structural Hazard

Time (clock cycles)

Cycle 1 ECycIe 2 Cycle 3 Cycle 4 ECycIe 5 Cycle 6 Cycle 7

I Load Ifetch:F Reg :E:% |§| BMem - Reg
? Instr 1 Ifetch :EI: Reg :I: =
I 5 : M
Instr 2 Ifetch Reg
. . I?I

Stal L

Reg

Instr 3

- 0 a -0

How do you “bubble” this pipe (if instr1 = load)?’
CS425 - Vassilis Papaefstathiou

Example of Structural Hazard

Time (clock cycles)

Cycle 1 ECycIe 2 Cycle 3 Cycle 4 ECycIe 5 Cycle 6 Cycle 7

Load Ifetch:E Reg :[E H BMem * Reg
Instr 1 Ifetch :[_ Reg :[

Ifetch

S~ N O -

Reg

Instr 2

- 0 a -0

Instr 3

N | H
3 Iil DMem Reg

How do you “bubble” this pipe (if instr1 = load)?’
CS425 - Vassilis Papaefstathiou

Speed Up Equation of Pipelining

Average instruction time unpipelined

Speedup = — SUNT
P P Average instruction time pipelined

_ CPI unpipelined o Clock cycle unpipelined
~ CPI pipelined Clock cycle pipelined

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
I + Pipeline stall clock cycles per instruction

For simple RISC pipeline, Ideal CPI = 1:

1 » Clock cycle unpipelined
1 + Pipeline stall cycles per instruction Clock cycle pipelined

1 -
- Pipeline depth
1 + Pipeline stall cycles per instruction % Hipetine €ep

CS425 - Vassilis Papaefstathiou 17

Speedup =

Example: Dual-port vs Single-port

* Machine A: Dual read ported memory (“Harvard Architecture”)

* Machine B: Single read ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

* |deal CPI = 1 for both

« Suppose that Loads/Stores are 40% of instructions executed
Average instruction timeg= CPI x Clock cycle timeg

Clock cycle time

= (1+04x1)x 53

= 1.3 x Clock cycle timep

* Machine Ais 1.33 times faster (CPUtime = |C x Aver instr time)

Why would a designer allow structural hazards?
CS425 - Vassilis Papaefstathiou 18

Data Hazard

Time (clock cycles)

o~ N O -

ﬁCDQ_ﬁO

add

sub

and

or

XO0r

IF

ID/RF EX MEM WB

rll r2 p r3 Ifetch

Reg

r4d,rl, r3

ro,rl,r7

r8,rl, r9

r10,rl, rll

3

FAE

Ifetch

I

Ifetch

:

DMemy=—

\I

i

Ifetch

CS425 - Vassilis Papaefstathiou

1 Reg

Ifetch

Reg

-[DMem —

1 Reg

o

Reg

19

Read After Write

« Read After Write (RAW)
Instr, tries to read operand before Instr, writes it

(I: add rl,r2,r3
J: sub r4,rl,r3

« Caused by a “Dependence” (in compiler nomenclature). This hazard
results from an actual need for communication.

CS425 - Vassilis Papaefstathiou

20

Write After Read

« Write After Read (WAR)
Instr; writes operand before Instr,reads it

<::I sub r4,rl,r3
: add rl,r2,r3

K: mul ré6,rl,r7

« Called an “anti-dependence” by compiler writers.

This results from reuse of the name “r1”.

« Can’t happen in MIPS 5 stage pipeline because:

= All instructions take 5 in order stages, and
= Reads are always in stage 2, and
= Writes are always in stage 5

CS425 - Vassilis Papaefstathiou

21

Write After Write

« Write After Write (WAW)
Instr; writes operand before Instr, writes it.

<::I: sub rl,r4,r3
J: add rl,r2,r3

K: mul ro,rl,xr’7

« Called an “output dependence” by compiler writers. This also results from
the reuse of name “r1”.

« Can’t happen in MIPS 5 stage pipeline because:
= All instructions take 5 in order stages, and
= Writes are always in stage 5

* Will see WAR and WAW in more complicated pipelines

CS425 - Vassilis Papaefstathiou 22

Forwarding to avoid data hazards

~ N O —

- o a5 O

add

sub

and

or

XOr

Time (clock cycles)

ALU

r]_, r2, xr 3 |fetn R

DMem g

rd,rl, r3 eteh] | |~

r6,rl,r7 eteh
r8,rl,r9

r10,rl,rll eten

No Stall !
Ignore what you read from Register File

CS425 - Vassilis Papaefstathiou

23

HW Change for Forwarding

NextPC
E
A >
D
«Q
A
@
%) 3 Data
S Memory
Immediate

Xnw

What circuit detects and resolves this hazard?
Why we need forwarding lines for both inputs of the ALU?
CS425 - Vassilis Papaefstathiou

24

Forwarding to Avoid LW-SW Data Hazard

Time (clock cycles)

add rl, r2, r3 |reen

~ N O —

| 1w r4, 0O (xrl)

Ifetch

@)
5 sw rd,12 (rl) eteh
e
:
or r8,ro6,r9
xor rl1l0,r9,rll eten

CS425 - Vassilis Papaefstathiou

Data Hazard Even with Forwarding

Time (clock cycles)

| 1w rl, O0(xr2) |teocn R 2 DMem g
n
S
t sub r4,r1,r6 Ifetch R 2 DMem 9
I.
)
O and r6,rl,r7 fetch R < H P vem g
r
d
° | or r8,rl, r9 reen [= |.2
r ’ ’

CS425 - Vassilis Papaefstathiou

Data Hazard Even with Forwarding

Time (clock cycles)

| | 1w rl, 0(r2)[e=[J]+ |rﬁ

n

S

t SUb r4,r1,r6 Ifetch DMem 2¢

I.
O al’ld r6,r1,r7 Ifetch DMem g
r

d

DMem

c or r8,rl, r9

r

CS425 - Vassilis Papaefstathiou

Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f;

assuming a, b, ¢, d ,e, and f in memory.

Slow code: Fast code:
LW Rb,b LW Rb,b

LW Rc,

LW Rc,c\‘ C,C
ADD Ra,Rb.RC LW Re~,
SW a,Ra ADD Ra,Rb,Rc
LW Re,e LW Rf f
W Rif__ SW aRaN_
SUB Rd,Re,Rf SUB Rd,Re,Rf
SW d,Rd SW d,Rd

CS425 - Vassilis Papaefstathiou

Control Hazard on Branches: Three Stage Stall

10: beqg rl,r3,26 Ilfetch

14: and r2,r3,r5

18: or 1r6,rl,r7

22: add r8,rl,r9

|

26: xor rl1l0,rl,rll

What do you do with the 3 instructions in between?
How do you do it?
Where is the “commit”?

CS425 - Vassilis Papaefstathiou 29

Branch Stall Impact

 If CPl =1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

* Two part solution:
— Determine branch taken or not sooner, AND
— Compute taken branch address earlier

* MIPS branch tests if register =0 or =0

* MIPS Solution:

- Move Zero test to ID/RF stage
— Adder to calculate new PC in ID/RF stage

— 1 clock cycle penalty for branch versus 3

CS425 - Vassilis Papaefstathiou

30

Pipelined MIPS Datapath

Instruction Instr. Decode Execute Memory Write
Fetch : Reg.Fetch i Addr.Calc : Access i Back
—Next : : :

Next PC

oO— o

(o) =i w

Klowa|\
eleq

RD

* Interplay of instruction set design and cYcIe time.

CS425 - Vassilis Papaefstathiou

WB Data

31

Control Hazard on Branches: One Stage Stall

10: beq r},r3,36 Ilfetch

14: and r2,r3,r5

18: or «r6,rl,r7
22: add r8,rl,r9

36: Xor rfO,rl,rll

CS425 - Vassilis Papaefstathiou

32

Four Branch Hazard Alternatives

 #1: Stall until branch direction is clear (simplicity)
« #2: Predict Branch Not Taken

— Execute successor instructions in sequence

- “Squash” instructions in pipeline if branch actually taken
- Advantage of late pipeline state update

- 47% MIPS branches not taken on average

- PC+4 already calculated, so use it to get next instruction

Untaken branch instruction IF ID EX MEM WB

Instruction i + | IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB
Instruction { + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Instruction i + | IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + | IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

CS425 - Vassilis Papaefstathiou

33

Four Branch Hazard Alternatives

 #3: Predict Branch Taken

- 53% MIPS branches taken on average

- But haven't calculated branch target address in MIPS
o MIPS still incurs 1 cycle branch penalty
o Other machines: branch target known before outcome

- What happens on not-taken branches?

CS425 - Vassilis Papaefstathiou

34

Four Branch Hazard Alternatives

#4: Delayed Branch

» Define branch to take place AFTER a following instruction

branch instruction
sequential successor;
sequential successor,

-------- / Branch delay of length n
sequential successor,

branch target 1f taken
» 1 slot delay allows proper decision and branch target address in 5

stage pipeline
» MIPS uses this

CS425 - Vassilis Papaefstathiou 35

Scheduling Branch Delay Slots

A. From before branch B. From branch target C. From fall through
add $1,%$2,83 sub $4,85,%6 add $1,%$2,83
if $2=0 then __ S if $1=0 then
delay slot delay slot
add $1,$2,$3 OR $7,$8,$9
if $1=0 then
— delay slot sub $4,55,56 <+—

becomes 1 becomes ,l becomes 1

sub $4,$5, 56 add 51,52,53
-_— if $1=0 then

add $1,$2,53 OR $7,%$8,%9
add $1,%2,583

if $1=0 then __|
< sub $4,%5,%6 sub $4,5$5,56

if $2=0 then

» Ais the best choice, fills delay slot & reduces instruction count (IC)
* In B, the sub instruction may need to be copied, increasing IC

« In B/C, must be okay to execute sub/OR when branch is untaken/taken
CS425 - Vassilis Papaefstathiou

Delayed Branch

« Compiler effectiveness for single branch delay slot:
- Fills about 60% of branch delay slots

— About 80% of instructions executed in branch delay slots useful in
computation

— About 50% (60% x 80%) of slots usefully filled

* Delayed Branch downside: As processor go to deeper pipelines
and multiple issue, the branch delay grows and need more than
one delay slot

- Delayed branching has lost popularity compared to more expensive but
more flexible dynamic approaches

— Growth in available transistors has made dynamic approaches
relatively cheaper

Example: Evaluating Branch Alternatives

ST Pipeline depth
Pipeline speedup = P P
1 +Branch frequency x Branch penalty
Deep pipeline in this example :
Unconditional branch 4% ? CyCIeS fOli a?dressi (ZtSta”S)d_t.
Conditional branch, untaken 6% more cycle 1o evaluate condition
Conditional branch, taken 10%
Branch scheme Penalty unconditional Penalty untaken Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted untaken 2 0 3
Unconditional Untaken conditional Taken conditional
Branch scheme branches branches branches All branches
Frequency of event 4% 6% 10% 20%
Flush pipeline 0.08 0.18 0.30 0.56
Predicted taken 0.08 0.18 0.20 0.46
Predicted untaken 0.08 0.00 0.30 0.38

CS425 - Vassilis Papaefstathiou

38

Problems with Pipelining

* Exception: An unusual event happens to an instruction during its
execution
- Examples: divide by zero, undefined opcode

* Interrupt: Hardware signal to switch the processor to a new
Instruction stream

— Example: a sound card interrupts when it needs more audio output samples
(an audio “click” happens if it is left waiting)

* Problem (precise interrupt?): It must appear that the exception or
interrupt happens between 2 instructions (i and i+1)
— The effect of all instructions up to and including i is totaling complete
— No effect of any instruction after i can take place

* The interrupt (exception) handler either aborts program or restarts at
iInstruction i+1

CS425 - Vassilis Papaefstathiou 39

Precise Exceptions in Static Pipelines

Commit
Point:
Inst. _\ Data-
PC— Mem P Decode I HE|) + M Merm: HWH
A’ A Illegal 'A' Hl 'A' Data Addr K,.'”A'
Seleft Opcode bkl Except teback
Handler | PC Address fitebac
PG Exceptions
. Cause

EPC

’ 7
Kill F I Kill D I Kill E I Asynchronous
Stage Stage Stage Interrupts

- Key observation: architectural state changes only in memory and
register write stages.

CS425 - Vassilis Papaefstathiou 40

Summary: Pipelining

* Next time: Read Appendix A

» Control via State Machines and Microprogramming
 Just overlap tasks; easy if tasks are independent

» Speed Up < Pipeline Depth; if ideal CPl is 1, then:

Plpel ine dep1'h CYC'C Timeunpipelined

Speedup =
PeedtiP = 1+ Pipeline stall CPT g Cycle Time

pipelined

« Hazards limit performance on computers:

— Structural: need more HW resources
- Data (RAW,WAR,WAW): need forwarding, compiler scheduling
— Control: delayed branch, prediction

« Exceptions, Interrupts add complexity

CS425 - Vassilis Papaefstathiou

41

