CS425
Computer Systems Architecture

Fall 2018

Metrics

CS425 - Vassilis Papaefstathiou

Previous Lecture

« CPU Evolution
* What is Computer Architecture?

CS425 - Vassilis Papaefstathiou

Outline

* Measurements and metfrics:
- Performance, Cost, Dependability, Power

» Guidelines and principles in the design of computers
 CPU Performance

CS425 - Vassilis Papaefstathiou

Major Design Challenges

* Power

« CPU time

* Memory latency/bandwidth
« Storage latency/bandwidth
* Transactions per second
 [ntercommunication

* Dependability

Everything Looks a Little Different

CS425 - Vassilis Papaefstathiou

Power Consumption

Charge external capacitance Discharge external capacitance

T Q =C.Vpp
R, =;ﬂ J_ Vb
R s lcurrent Edynamic= Q VDD = CL VDD2 | CL /
"1 current === oV
777
VDD
T/ e, thermal R 1
oV 2 E4 thermal energy on Rp V2 E gynamic Stored on C
— 72 E4 stored on C becomes thermal energy on Ry

(since E¢. = %2 C| Vpp?)

P aynamic= 72 C. Vpp? frequency

CS425 - Vassilis Papaefstathiou 5

Power Equations

Powery,..mic = 2 X Capacitive load x Voltage? x Frequency

Energy4,namic = Capacitive load x Voltage?

Power,.;. = Current.,. x Voltage

* Power due to switching more transistors increases
« Static power due to leakage current increasing

CS425 - Vassilis Papaefstathiou

Power and Energy

* Energy to complete operation (Joules)

— Corresponds approximately to battery life
— (Battery energy capacity actually depends on rate of discharge)

* Peak power dissipation (Watts = Joules/second)
— Affects packaging (power and ground pins, thermal design)

* d/d;, peak change in supply current (Amps/second)

— Affects power supply noise (power and ground pins, decoupling
capacitors)

CS425 - Vassilis Papaefstathiou

Peak Power versus Lower Energy

Peak A

Power
J/sec

Integrate power
~curve to get energy

Time

« System A has higher peak power, but lower total energy
» System B has lower peak power, but higher total energy

CS425 - Vassilis Papaefstathiou

Measuring Reliability (Dependability)
Reliability equations

MTTF = Mean Time To Failure
10°
MTTF
MTTR = Mean Time to Repair (MTBF = MTTF + MTTR)

MTTF
MTTF + MTTR

#components

FiTsystem= »_ FIT;

i=1
MTTF =1,000,000 hours 2 FIT =7

CS425 - Vassilis Papaefstathiou

FIT = Failures In Time (per billion hours) =

Module availability =

Comparing Design Alternatives

Design X is n times faster than design Y
|
Execution timeY PerformanceY Perforn'lanceX

~ Execution time y - | - Performance.,
PerformanceX

» Wall-clock time: time to complete a task
» CPU time: time CPU is busy
» Workload: Mixture of programs (including OS) on a system

» Kernels: Common, important functions in applications

» Microbenchmarks: Synthetic programs trying to:

» Isolate components and measure performance
» Imitate workloads of real world in a controlled setting

n

CS425 - Vassilis Papaefstathiou

Benchmark Suites

Desktop (SPEC = Standard Performance Evaluation Corporation, 12 INT, 17 FP, 1980)

» SPECCPU (revised every few years)
» Real programs measuring processor-memory activity

Multi-core desktop/server
» SPECOMP, SPECMPI (scientific), SPECapc (graphics)
» Focus on parallelism, synchronization, communication
Client/Server

» SPECjbb, SPECjms, SPECjvm, SPECsfs, SPECmail SPECrate, SPECWeb ...
» Measuring throughput (how many tasks per unit of time)
» Measuring latency (how quickly does client get response)

Embedded systems

» EEMBC, MiBench
» Measuring performance, throughput, latency

The weakness of one benchmark is covered by the other benchmarks
CS425 - Vassilis Papaefstathiou

11

Summarizing performance

Arithmetic mean of wall-clock time

» Biased by long-running programs

» May rank designs in non-intuitive ways:
» Machine A: Program Py — 1000 secs., P, — 1 secs.

» Machine B: Program Py — 800 secs., P> — 100 secs.

» What if machine runs P> most of the time?

Means

» Total time ignores program contribution to total workload
» Arithmetic mean biased by long programs

» Weighted arithmetic mean a better choice?

» How do we calculate weights?

CS425 - Vassilis Papaefstathiou

12

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight; x Time;

=1

Example, W(1) = W(2) =50

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 500.50 55.00 20.00

CS425 - Vassilis Papaefstathiou

13

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight; x Time;

=1

Example, W(1) = 0.909 W(2) = 0.091

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 91.91 18.19 20.00

CS425 - Vassilis Papaefstathiou

14

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight; x Time;

=1

Example, W(1) = 0.999 W(2) = 0.001

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 2.00 10.09 20.00

CS425 - Vassilis Papaefstathiou

15

Summarizing performance (cont.)

Measuring against a reference computer

__ Execution time eference __
SPECratioA - Execution time - PerformanceA/ Performancereference

Execution time
A T reference . .
SPEC a0, Execution times . Execution timeg _ Performancea

n

~ SPEC ato, Executiontimerirence — Execution time, — Performanceg
Execution timeg

Using ratios

» Ratios against reference machine are independent of
running time of programs

CS425 - Vassilis Papaefstathiou

16

Summarizing performance (cont.)

Geometric mean

i H SPECratio(i)

i=1

Geometric meany
Geometric meang

A
= Geometric mean(§)

Used by SPEC98, SPEC92, SPEC95, ..., SPEC2006

CS425 - Vassilis Papaefstathiou 17

Pros and cons of geometric means

Pros

» Consistent rankings, independent of program frequencies
» Not influenced by peculiarities of any single machine

Cons

» Geometric mean does not predict execution time

» Sensitivity to benchmark vs. machine remains
» Encourages machine tuning for specific benchmarks
» Benchmarks can not be touched, but compilers can!

» Any “averaging” metric loses information

CS425 - Vassilis Papaefstathiou

18

Qualitative principles of design

Taking advantage of parallelism

» Use pipelining to overlap instructions

» Use multiple execution units

» Use multiple cores

» Use multiple processors to increase throughput (system level: scalability)

Locality (spatial and temporal locality)

» Programs reuse instructions and data

» 90-10 rule
» 90% of execution time spent running 10% of instructions

» Programs access data in nearby addresses (spatial)

CS425 - Vassilis Papaefstathiou

19

Qualitative principles of design (cont.)

Make the common case fast

» Trade-off’s in design (e.g. performance vs. power/area)
» Provide efficient design for the common case
» Amdahl’'s Law

Example:
First optimize instruction fetch and decode unit instead of multiplier

CS425 - Vassilis Papaefstathiou

20

Amdahl’s Law

Execution time for entire task without using the enhancement

Speedup =
Execution time for entire task using the enhancement when possible
execution timenpew = execution timegig x

fr. aCtiOnenhanced)
speeduPenhanced

((1 — fractionephanced) +

execution time

speedu = ion ti B
lo; Poverall execution timenew
1

_ . fractiongnhanced
(1 fr aCtIOHenhanced) + speedU;:nh:nceoed

1
1 - fractionenhanced

Told Tnew

Upper Limit: speedupoverar —

- -

a-n N — (-0 [

CS425 - Vassilis Papaefstathiou

Amdahl’s Law example
« New CPU 10X faster

* 1/0 bound server, so 60% time waiting for 1/O

|
Sp eedup overall —

Fraction

enhanced

(1 — Fraction_,) +
Sp eedup enhanced

= : L:1.56

(1-0.4)+ &% 064
10

« Apparently, its human nature to be attracted by 10X faster,
vs. keeping in perspective its just 1.6X faster

CS425 - Vassilis Papaefstathiou

22

Processor Performance

CPU time

CPU time = CPU clock cycles x Clock cycle time
CP/ — CPU clock cycles N

instruction count
CPU time = instruction count x CPI x cycle time =

. instructions clock cycles seconds
CPU time = X — —— X
program instructions clock cycles

CS425 - Vassilis Papaefstathiou

23

Cycles Per Instruction (CPI)

“Average Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x ZCPI]. x1C,

j=!

& IC,
CPI=) CPI,xF, whereF, = —
= Instruction Count

“Instruction Frequency”

CS425 - Vassilis Papaefstathiou

24

Example: Calculating CPI bottom up

Run benchmark and collect workload characterization
(simulate, machine counters, or sampling)

Base Machine (Reg / Req)

Op Freq CPI F*CPI, (% Time)
ALU 950% 1 0.5 (33%)
Load 20% 2 0.4 (27%)
Store 10% 2 0.2 (13%)
Branch 20% 2 0.4 (27%)
e 1.5

Typical Mix of

instruction types

In program

Design guideline: Make the common case fast
MIPS 1% rule: only consider adding an instruction if it is shown to add 1% performance
improvement on reasonable benchmarks.

CS425 - Vassilis Papaefstathiou

Processor Performance

CPU time = instruction count x CPI x cycle time

How can CA help?

» Technology has been providing faster clock speeds

» Main performance factor for almost 20 years
» Trend seems to reverse
» Limitations due to power consumption, reliability

» Architecture can pack more computing power in same area
» Architecture can improve CPI
» Algorithms and compilers can reduce instruction count

CS425 - Vassilis Papaefstathiou

26

Price / Performance

benchmark for online transaction processing (OLTP) is TPC-C

TPM (Transactions Per Minute)

10,000,000
1,000,000 f
—e— TPM
—&— TPM/$1000
100,000 | price
®
10,000 -
q"bh ¥ o EF & &S
F & F @ N NN N
& ¢ F T
F & @ cgoé 6& &9 A A \\‘\
Q\X\O Q\X‘O &Q,Q Q© \‘\6 0& 08/ \>’§ \,\& \}fé\
N N Qg\ & \Q Qd‘\ QOQ\ QQ\O QQQ QQ\O
N 00\\ oS CalEe

CS425 - Vassilis Papaefstathiou

800
700
600
500
400
300
200
100
0

TPM / $1000

27

Next Lecture : Pipelining

Instruction : Instr. Decode : Execute . Memory Write
Fetch Reg. Fetch : Addr. Calc : Access : Back

[

Next SEQPC

Next SEQ PC

IR <= mem[PC];
PC <= PC + 4

WB Data

A <= Reg[IR,.];
B <= Reg[IR,]

rslt <= A Opip,, B

WB <= rslt « Data stationary control
— local decode for each instruction phase / pipeline stage

Reg[IR,. 4] <= WB

CS425 - Vassilis Papaefstathiou 28

