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Previous Lecture
• CPU Evolution
• What is Computer Architecture?
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Outline
• Measurements and metrics: 

⎻ Performance, Cost, Dependability, Power
• Guidelines and principles in the design of computers
• CPU Performance
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Major Design Challenges
• Power
• CPU time
• Memory latency/bandwidth
• Storage latency/bandwidth
• Transactions per second
• Intercommunication
• Dependability
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Everything Looks a Little Different

Performance
Power

Communication



Power Consumption
Charge external capacitance

Q   = CL VDD

Edynamic= Q VDD = CL VDD
2

½ Ed thermal energy on RP
½ Ed stored on CL

(since ECL = ½ CL VDD
2)

CL
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current

0V
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Discharge external capacitance

½ Edynamic stored on C L
becomes thermal energy on RN

CL
Rn

current 0V

VDD

Pdynamic= ½ CL VDD
2 frequency
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Power Equations
Powerdynamic = ½ x Capacitive load x Voltage2 x Frequency

Energydynamic = Capacitive load x Voltage2

Powerstatic = Currentstatic x Voltage

• Power due to switching more transistors increases
• Static power due to leakage current increasing
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Power and Energy
• Energy to complete operation (Joules)

⎻ Corresponds approximately to battery life
⎻ (Battery energy capacity actually depends on rate of discharge)

• Peak power dissipation (Watts = Joules/second)
⎻ Affects packaging (power and ground pins, thermal design)

• di/dt, peak change in supply current (Amps/second)
⎻ Affects power supply noise (power and ground pins, decoupling 

capacitors)
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Peak Power versus Lower Energy

• System A has higher peak power, but lower total energy
• System B has lower peak power, but higher total energy

Power
J/sec

Time

Peak A

Peak B
Integrate power 

curve to get energy
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Measuring Reliability (Dependability)

109

MTTF = 1,000,000 hours à FIT = ?

(MTBF = MTTF + MTTR)
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Comparing Design Alternatives
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Benchmark Suites
(SPEC = Standard Performance Evaluation Corporation, 12 INT, 17 FP, 1980)

SPECrate, SPECWeb …

The weakness of one benchmark is covered by the other benchmarks
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Summarizing performance

CS425 - Vassilis Papaefstathiou 12

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Summarizing performance (cont.)

Example
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40

Means
I Total time ignores program contribution to total workload
I Arithmetic mean biased by long programs
I Weighted arithmetic mean a better choice?
I How do we calculate weights?
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Conclusions

Summarizing performance

Arithmetic mean of wall-clock time
I Biased by long-running programs
I May rank designs in non-intuitive ways:

I Machine A: Program P1 ! 1000 secs., P2 ! 1 secs.
I Machine B: Program P1 ! 800 secs., P2 ! 100 secs.
I What if machine runs P2 most of the time?

Measuring against a reference computer

n =
SPEC

ratio

A

SPEC

ratio

B

=

Execution time

reference

Execution time

A

Execution time

reference

Execution time

B

=
Execution time

B

Execution time

A

=
Performance

A

Performance

B
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Summarizing performance (cont.)
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Summarizing performance (cont.)

Weighted arithmetic mean

nX

i=1

Weight

i

⇥ Time

i

Example, W(1) = W(2) = 50
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 500.50 55.00 20.00
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Summarizing performance (cont.)
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Summarizing performance (cont.)

Weighted arithmetic mean

nX

i=1

Weight

i

⇥ Time

i

Example, W(1) = 0.909 W(2) = 0.091
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 91.91 18.19 20.00
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Summarizing performance (cont.)
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Summarizing performance (cont.)

Weighted arithmetic mean

nX

i=1

Weight

i

⇥ Time

i

Example, W(1) = 0.999 W(2) = 0.001
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 2.00 10.09 20.00
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Summarizing performance (cont.)

running time of programs

= PerformanceA / Performancereference
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Summarizing performance (cont.)

Used by SPEC98, SPEC92, SPEC95, …, SPEC2006

SPECratio(i)
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Pros and cons of geometric means
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Qualitative principles of design

(spatial and temporal locality)

(system level: scalability)

(spatial)
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Qualitative principles of design (cont.)

Example:
First optimize instruction fetch and decode unit instead of multiplier
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Amdahl’s Law

Upper Limit:

S
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Amdahl’s Law example
• New CPU 10X faster

• I/O bound server, so 60% time waiting for I/O

• Apparently, its human nature to be attracted by 10X faster, 
vs. keeping in perspective its just 1.6X faster
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Processor Performance 

s s
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Cycles Per Instruction (CPI)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count 
=  Cycles / Instruction Count    

“Average Cycles per Instruction”

j

n

j
j IC CPI  Time Cycle   timeCPU

1

´´= å
=

Count nInstructio
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  F     where FCPI  CPI
1

j
j

n

j
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Example: Calculating CPI bottom up

Typical Mix of 
instruction types
in program

Base Machine (Reg / Reg)
Op Freq CPIi F*CPIi (% Time)
ALU 50% 1 0.5 (33%)
Load 20% 2 0.4 (27%)
Store 10% 2 0.2 (13%)
Branch 20% 2 0.4 (27%)

1.5

Design guideline: Make the common case fast
MIPS 1% rule: only consider adding an instruction if it is shown to add 1% performance 
improvement on reasonable benchmarks.

Run benchmark and collect workload characterization 
(simulate, machine counters, or sampling)
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Processor Performance

CS425 - Vassilis Papaefstathiou 26



Price / Performance
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benchmark for online transaction processing (OLTP) is TPC-C
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Next Lecture : Pipelining
Memory
Access

Write
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Adder

Next SEQ PC Next SEQ PC
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W
B 

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

Address

RS1

RS2

Imm

M
U

X

IR <= mem[PC]; 
PC <= PC + 4

A <= Reg[IRrs]; 
B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
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