CS425
Computer Systems Architecture

Fall 2018

Thread Level Parallelism (TLP)

CS425 - Vassilis Papaefstathiou

Multiple Issue

CPIl = CPlipga + Stallsgrryc + Stallsgay + Stallsyyag + Stallsyyay + Stallscontrol

« Have to maintain:

- Data Flow
- Exception Behavior

Dynamic instruction scheduling (HW) Static instruction scheduling (SW/compiler)
Scoreboard (reduce RAW stalls) Loop Unrolling

Register Renaming (reduce WAR & WAW stalls) SW pipelining

Tomasulo

 Reorder buffer

Branch Prediction (reduce control stalls) Trace Scheduling

Multiple Issue (CPI < 1)
Multithreading (CPI < 1)

CS425 - Vassilis Papaefstathiou 2

Common Way of Designing Architectures

* Networking, single/multi-core processor, virtually any design:
- Broadcasting: Use Common Data Bus or Point to point

- Asynchronous communication between “processing stages” with
different throughputs (a processing stage can be a whole system, for
example router, switch, processor, or a simple block, for example IF, ID
stages). Use Elastic Buffer & Flow Control. For example instruction
buffer, reservation stations and reorder buffer

- Faster clock: Pipelining. Split a stage in multiple stages. For example
split Issue stage (super-pipelining)

— Higher Throughput: Parallel processing. For example superscalar.

- Lower Latency: Forwarding/Bypassing

« A processor is a sophisticated design that follows the
“unwritten” design rules every architect should follow.

CS425 - Vassilis Papaefstathiou

Multithreading

« Difficult to continue to extract ILP from a single thread

« Many workloads can make use of thread-level parallelism (TLP)
— TLP from multiprogramming (run independent sequential jobs)

- TLP from multithreaded applications (run one job faster using parallel
threads)

« Multithreading uses TLP to improve utilization of a single
processor

CS425 - Vassilis Papaefstathiou

Pipeline Hazards

.10 .t1 .12 .13 .14 .15 .16 .17 .18 . 19 t10.t11.t12.t13.t14.

LW r1, 0(r2) FID[X[M{W| | : @ @ & |

LWr5,12(r1) | |F|D|D|D|D|X[MW| i & :
ADDIr5,r5,#12 | i |F|F[F|F|D|D|D[D{X|M|W
sw12(r1),r5 i i i i i i |[F|F|F|F/D(D|D|D

« Each instruction may depend on the next
* What can be done to cope with this?

CS425 - Vassilis Papaefstathiou

Solution with Multithreading

 How can we guarantee no dependencies between instructions
In a pipeline?
- One way is to interleave execution of instructions from different
program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe
.10 .11 .12 .13 .14 .t5 .16 .t7 . t8 . 19

T1: LW r1, 0(r2) FID[X|M WE« Prior instruction in a

T2:ADDr7,r1,r4 i [F|D|X|M[W} : | i thread always

T3: XORI 5. r4. #12 FIDIX completes write-back
' N A before next instruction

T4 SWO(r7), rd _ F|D in same thread reads

T1: LW r5, 12(”) : F register file

CS425 - Vassilis Papaefstathiou

Multithreaded DLX

‘\ I|I :X :\ —
1 1 ¥ —R|| epri =1 M L]U
1NC ',r AN - :Y :/ é D$ ‘
IAI > >]
+1]
] I . -
2 Thread W 2 W
select

« Have to carry thread select down to the pipeline to ensure that the correct
state bits are read/written at each pipe stage

» Appears to software (including OS) as multiple, albeit slower, CPUs

CS425 - Vassilis Papaefstathiou

Multithreading Cost

« Each thread requires its own user state. Many CPU resources are split or shared!
— PC
— GPRs & Physical/HW registers
— Prefetch & Instruction buffers
— Reorder buffer
— Load/Store buffer
— Issue buffers
» Also, needs its own system state
— virtual memory page table base register
— exception handling registers

* Other costs?
« Take care of performance when executing in Single Thread (ST) mode!

CS425 - Vassilis Papaefstathiou

Thread Scheduling Policies

* Fixed interleaving (CDC 6600 PPUs, 1964)
—each of N threads executes one instruction every N cycles
—if thread not ready to go in its slot, insert pipeline bubble

« Software-controlled interleave (TI ASC PPUs, 1971)
— OS allocates S pipeline slots amongst N threads

— hardware performs fixed interleave over S slots, executing whichever
thread is in that slot

JO0000O0OOROEDOG

« Hardware-controlled thread scheduling (HEP, 1982) (Power 5)
— hardware keeps track of which threads are ready to go

— picks next thread to execute based on hardware priority scheme
CS425 - Vassilis Papaefstathiou

HW Multithreading alternatives

* Fine-Grain Multithreading

» Fine-grain multithreading switches processor context every
thread cycle

» Context belongs to same address space

Fine-grain multithreading Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5 Cycle-6 Cycle-7 Cycle-8
Processor context IR IR IR [
Thread-2 Thread-2 Thread-2 Thread-2
Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2

CS425 - Vassilis Papaefstathiou

HW Multithreading alternatives

* Fine-Grain Multithreading
Switch every clock cycle

» Need fast HW switch between contexts

» Multiple PCs and register files
» Alternatively, thread ID attached to each GP register

» Implemented with round-robin scheduling, skipping stalled
threads

» Hides both short and long stalls
» Delays all threads, even if they have no stalls

CS425 - Vassilis Papaefstathiou

HW Multithreading alternatives

« Coarse-Grain Multithreading

» Coarse-grain multithreading switches processor context upon
long-latency event

» Context may belong to different address space

Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2
Coarse-grain multithreading
Thread-2 Thread-2 Thread-3 Thread-3 Thread-3
Syscall-2

CS425 - Vassilis Papaefstathiou

HW Multithreading alternatives

« Coarse-Grain Multithreading
Switch upon long upon long-latency events

» Can afford slower context switch than fine-grain
multithreading
» Threads are not slowed down
» Other thread runs when current thread stalls
» Pipeline startup cost upon thread switching

» Processor issues instructions from one thread (address
space)

CS425 - Vassilis Papaefstathiou

HW Multithreading alternatives

« Simultaneous Multithreading (SMT)

» Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one thread
at a time

« SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to enter
execution on same clock cycle. Gives better utilization of

machine resources.

CS425 - Vassilis Papaefstathiou

For most apps, most execution units are
idle in an 000 superscalar

For an 8-way superscalar

100 g p 1

90 |p

ﬁ memory conflict
@ long fp

X short fp

I long integer

f:;“dj;ﬁr From: Tullsen, Eggers, and Levy,

[control hazards “Simultaneous Multithreading:

o B8 brnchmisprodiction | £\ 5ximizing On-chip Parallelism,
; E deache miss

o m]icachc miss ISCA 1995

N [dub miss

[itib miss

N B processor busy
=

o
=

-1
<

o
<

'S
=

Percent of Total Issue Cycles
2

[
=

[
<

—
<

=
nasd’ G 7 A 7 77 7 7 K

E 8238 =g4¢ E 5 z 8

FIEIEETERI®EEE §

5 & EB B = s
Applications

CS425 - Vassilis Papaefstathiou

Superscalar Machine Efficiency

Issue width
< >

INnStruction iSSUE ————p

Completely idle cycle
(vertical waste)

Time

Partially filled cycle, i.e., IPC < 4

(horizontal waste)

L 666666664
1 666666664
G40 000000000

CS425 - Vassilis Papaefstathiou

Vertical Multithreading

Issue width
< >

Instruction iSSUE ————p

Second thread interleaved

cycle-by-cycle

Time

Partially filled cycle, i.e., IPC < 4
(horizontal waste)

1 66666066684
1 666666666664
G40 000000000

 What is the effect of cycle-by-cycle interleaving?

CS425 - Vassilis Papaefstathiou

Chip Multiprocessing (CMP)

Issue width
<< > <« >

Time

* What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— leaves some vertical waste, and

— puts upper limit on peak throughput of each thread — single thread execution is slower
CS425 - Vassilis Papaefstathiou

Ideal Superscalar Multithreading: SMT

[Tullsen, Eggers, Levy, UW, 1995]

Issue width

1 666666664
Al sl s

Time

 Interleave multiple threads to multiple issue slots with no restrictions

CS425 - Vassilis Papaefstathiou 19

0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

Add multiple contexts and fetch engines and allow instructions fetched
from different threads to issue simultaneously

Utilize wide out-of-order superscalar processor issue queue to find
instructions to issue from multiple threads

OOQOO instruction window already has most of the circuitry required to
schedule from multiple threads

Any single thread can utilize whole machine
Shared HW mechanisms
» Large set of virtual registers can hold register sets of independent threads
« Renaming provides unique register identifiers to different threads
» Qut-of-order completion of instructions from different threads allowed
* No cross-thread RAW, WAW, WAR hazards
» Separate re-order buffer per thread

CS425 - Vassilis Papaefstathiou

Summary: Multithreaded Categories

<+—Time (processor cycle)

Superscalar

Fine-Grained Coarse-Grained Mulhprocessmg Multithreading

Simultaneous

= = = = = = IIN% BN
L] NN] IIN% WOEE
= = = = IHN N i
= = = = = = NN II%
N R Il
.... NN N
B = N N J'
[] IIN% I% i
DEE EOS0 EES
HEPEEE I CININ
= = = NN O
= = N NN NE
|
B Thread 1 Thread 3 1 Thread 5
N Thread 2 Thread 4 dle slot

CS425 - Vassilis Papaefstathiou

IBM Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

Vs
L

B
B
HH B
HHH

B aiaia
8880

.
ETI:“EEE
H
H

CS425 - Vassilis Papaefstathiou

Power 4

Branch redirects
| Instruction fetch
:L | mp H 188 H RF H EX WB Xfer
“5| 1F H IC - BP
- -|: ~ MP 1SS I RF = EA [DC [Fmt [WB Xfer CP -
1 1
: DO H D1 H D2 (H D3 HXfer— GD HH MP [ISS < RF I EX WB | Xfer E
X group formation — MP [IS§ [RF '
1
E F6 WB I Xfer :
| Interrupts and flushes E
_ eaes POWEr S5 | Ourotorderprocessing
" B_ran_ch
e [weHissHar Hex PP s]-brer
Load/store
c -eP pipeline
- P [Hfiss (H RF [EA |—{DC [—{Fmt [—{wB [—iXfer
DO Hih1 H D2 H D3 HxierHGD HH{ MP H1ss H RF H EX Fixea-point VB [Xfer)
Group formation and pipeline 2 CommltS
h (PC) instruction decode | MP HISS - RF —‘[%_’ (arChiteCted
J
u Fé WB [—{Xfer - |
Floating-
lal decodes o e register sets
and flushes

23

Power 5 data flow ...
t(Branch prediction J

L 4 1
) | Shared Shared Dynamic Shared
L Program Branch Return Target register issue instruction execution
counter i ; -
hlsl:my stack cache mappers queues selection units
B \ LSU0
vy Alternate
¥ S — -g FXUO0
Instruction | | g8 LSU1
’ buffer 0 .- = -
Instruction (o} O 0
cac;:leo g-§ >0 —» 0 —» —>»o0—> 2 —>8—> Group |»] | Store
h= o] leti
Instruction | gg © © FPUO { compietion | 1) quene
Instruction buffer 1 g3
translation T < E FPUI1
Z
Thread - / BXU Data Data
prionity CRL translation | | cache
I:I Shared by two threads Global l;:radd \:an; *_
. share shar
[] Resource used by thread 0 > C(;::lpletlon register files e c:ci .
[] Resource used by thread 1 table

* Why only 2 threads? With 4, one of the shared resources (physical
registers, cache, memory bandwidth) would be prone to bottleneck

CS425 - Vassilis Papaefstathiou

Rename Registers and issue queue sizes

Resource type

Logical size (per thread)

Physical size

POWER4 POWERS

GPRs 32 (+4) 80 120
FPRs 32 72 120
CRs' 8 (+1) 4-bit fields 32 40
Link /count registers - 16 16
FPSCR’ 1 20 20
XER' Four fields 24 32
Fixed-point and load/store issue queue Shared by both threads 36 36
Floating-point issue queue Shared by both threads 20 24
Branch execution issue queue Shared by both threads 12 12
CR logical 1ssue queue Shared by both threads 10 10

CS425 - Vassilis Papaefstathiou 25

Changes in Power 5 to support SMT

« Two separate program counters are used, one for each thread
« Added per thread load and store queues. Added virtual entries.

* The size of the BIQ (Branch Information Queue) remains at 16 entries but
split in two, with eight entries per thread.

« Added separate instruction prefetch and buffering per thread.

« Each logical register number has a thread bit appended and mapped as
usual. Increased the number of physical registers from 152 to 240

 Increased the size of FP issue queue.

« Shared global completion table (GCT). Two linked lists to implement in
order commit from the two threads.

« The Power5 core is about 24% larger than the Power4 core because of the
addition of SMT support

CS425 - Vassilis Papaefstathiou

Power 5 thread performance

* Priority is set by SW and
enforced by HW.

 Relative priority of each
thread controllable in
hardware.

* For balanced operation,
both threads run slower
than if they “owned” the
machine.

Instructions per cycle (IPC)

Single-thread mode

=
0,7 27 47 6,7 77 76 74 72 70 11
1.6 36 56 66 65 63 6,1 0,1

25 45 55 54 5.2 1,0

14 34 44 43 41 Power

23 33 32 i

2,1 2,2 2,1 mwe

Thread 0 priority, thread 1 priority

|OThread 0 IPC ® Thread 1 IPC |

CS425 - Vassilis Papaefstathiou

Intel Hyper-Threading Technology

Reality 0S view
[N N N Eeleslesiesl |
[N N N Eelealesl N |
RAM [N N Eeslesleolmsl N | Main
N BN BN 0D 00 0E) .- Memory
[N N el iealesl N |
|
]
front end

System Bus 2
£ [| e

CPU

Hyper-Threading Technology is SMT introduced by Intel. HTT has two logical processors,
with its own processor architectural state

HTT duplicates the architectural state but not the main execution resources

Cache | Cache | 1/0

Transparent to OS: minimum requirement is symmetric multiprocessing (SMP) support

SMP involves two or more identical processors connect to a single, shared main memory,
all I/O devices, controlled by single OS

CS425 - Vassilis Papaefstathiou

http://en.wikipedia.org/wiki/Architectural_state

Pentium-4 Hyperthreading (2002)

* First commercial SMT design (2-way SMT)
- Hyperthreading == SMT

* Logical processors share nearly all resources of the physical
processor
— Caches, execution units, branch predictors

 Die area overhead of hyperthreading ~ 5%

* When one logical processor is stalled, the other can progress

— No logical processor can use all entries in queues when two threads
are active

* Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

CS425 - Vassilis Papaefstathiou

Pentium-4 Hyperthreading: Front End

L2 Cache Uop
. Access . Queue, Decode . Queue. Fill . Queue

..> Decode ..>

/

Resource divided Resource shared
between logical CPUs between logical CPUs

CS425 - Vassilis Papaefstathiou

Pentium-4 Hyperthreading: Execution Pipe

Uop Register Register

Queue Rename Queue Sched Read Execute L1Cache Write Retire

Store

'R (SR

e

|| gg | ne s
: : i Re-Order i

i Registers F D-Cache= Registers Buffer

[Intel Technology Journal, Q1 2002]
CS425 - Vassilis Papaefstathiou

Initial Performance of SMT

Multi-program workloads

» Pentium 4 Extreme SMT achieves 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate

» Pentium 4 is dual-threaded SMT

» SPECRate requires that each SPEC benchmark be run
against a vendor-selected number of copies of the same
benchmark

» Running on Pentium 4 each of 26 SPEC benchmarks paired with every
other (262 runs) speed-ups from 0.90 to 1.58; average is 1.20

» Power 5, 8 processor server 1.23 faster for SPECint_rate with SMT, 1.16
faster for SPECfp_rate

» Power 5 running 2 copies of each app speedup between 0.89 and 1.41
Most gained some FP apps had cache conflicts and least gains

CS425 - Vassilis Papaefstathiou

Comparison of multiple-issue processors

Fetch/ Clock
issue/ Func. rate Transistors
Processor Microarchitecture execute units (GHz) and die size Power
Intel Speculative dynamically 3/3/4 7 int. 3.8 125M 115W
Pentium 4 Extreme scheduled; deeply 1 FP 122 mm?
pipelined; SMT
AMD Athlon 64 Speculative dynamically 3/3/4 6 int. 2.8 114M 104 W
FX-57 scheduled 3 FP 115 mm?
IBM Power5 Speculative dynamically 8/5/8 6 int. 1.9 200M 80 W
1 processor scheduled; SMT; two CPU 2FP 300 mm? (estimated)
cores/chip (estimated)
Intel EPIC style; primarily 6/5/11 0 int. 1.6 592M 130 W
Itanium 2 statically scheduled 2 FP 423 mm?
CS425 - Vassilis Papaefstathiou 33

ILP Comparison of multiple-issue processors
SPEC INT rate OAMDAUon 64 BPowers.

o
oooo
V4

|

il kLR

g
.

CS425 - Vassilis Pp ftth 34

ILP Comparison of multiple-issue processors

000

SPEC FP rate Bitanium 2 BPentium 4 ©AMD Athlon 64 BPower 5

wupwise swim mgrid applu mesa gaigel equake facerec ammp lucas Ima3d sixtrack apsi

CS425 - Vassilis Papaefstathiou 35

Measuring processor efficiency

Area- and power-efficiency

» Processor performance gain comes at an area/power

budget cost
» Weigh performance again against power and area increase

» Area-efficiency
» Performance / transistor (e.g. SPECrate/million transistors)

» Power-efficiency
» Performance / watt (e.g. SPECrate/watt)

CS425 - Vassilis Papaefstathiou

ILP Comparison of multiple-issue processors
Power and area efficiency

35

Oltanium 2 BPentium4 OAMD Athlon 64 OPOWER 5
30

25 1

20 A

15 1

10 1

SPECInt/ M SPECFP /M SPECInt/ SPECInt / Watt
Transistors Transistors mmA”2 SPECFP / mm*"2 SPECFP / Watt

CS425 - Vassilis Papaefstathiou 37

Best ILP approach?
Results with commercial processors

» AMD Athlon most performance-efficient in INT programs
» Power5 most performance-efficient in FP programs
» Power5 most power-efficient overall

» Itanium VLIW least power-efficient and area-efficient
overall

CS425 - Vassilis Papaefstathiou

