
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2017

Virtual Memory

1

Outline
• Virtual Memory

⎻ Basics
⎻ Address Translation
⎻ Cache vs VM
⎻ Paging
⎻ Replacement
⎻ TLBs
⎻ Segmentation
⎻ Page Tables

CS425 - Vassilis Papaefstathiou 2

Memory Hierarchy

CS425 - Vassilis Papaefstathiou 3

Simple View of Memory

CS425 - Vassilis Papaefstathiou 4

Two Programs (Relocation): No Protection

CS425 - Vassilis Papaefstathiou 5

Virtual Memory
• Some facts of computer life…

⎻ Computers run lots of processes simultaneously
⎻ No full address space of memory for each process
⎻ Must share smaller amounts of physical memory among many

processes
• Virtual memory is the answer!

⎻ Divides physical memory into blocks (physical pages), assigns them to
different processes

⎻ Virtual memory (VM) allows main memory (DRAM) to act like a cache
for secondary storage (magnetic disk)

⎻ VM address translation provides a mapping from the virtual address of
the processor to the physical address in main memory or on disk

CS425 - Vassilis Papaefstathiou 6

Three Advantages of Virtual Memory
• Translation:

⎻ Program can be given consistent view of memory, even though physical memory is
scrambled

⎻ Makes multithreading reasonable (now used a lot!)
⎻ Only the most important part of program (“Working Set”) must be in physical memory.
⎻ Contiguous structures (like stacks) use only as much physical memory as necessary

yet still grow later.

• Protection:
⎻ Different threads (or processes) protected from each other.
⎻ Different pages can be given special behavior

o (Read Only, Invisible to user programs, etc).
⎻ Kernel data protected from User programs
⎻ Very important for protection from malicious programs

• Sharing:
⎻ Can map same physical page to multiple users (“Shared memory”)

CS425 - Vassilis Papaefstathiou 7

Protection with Virtual Memory

CS425 - Vassilis Papaefstathiou 8

Basics
• Programs reference “virtual” addresses in a non-existent memory

⎻ These are then translated into real “physical” addresses
⎻ Virtual address space may be bigger than physical address space

• Divide physical memory into blocks, called pages
⎻ Anywhere from 512B to 16MB (4k typical)

• Virtual-to-physical translation by indexed table lookup
⎻ Add another cache for recent translations (the TLB)

• Invisible to the programmer
⎻ Looks to your application like you have a lot of memory!

CS425 - Vassilis Papaefstathiou 9

A Load to Virtual Memory

CS425 - Vassilis Papaefstathiou 10

VM: Page Mapping

Process 1’s
Virtual

Address
Space

Process 2’s
Virtual

Address
Space

Physical Memory

Disk

Page Frames

CS425 - Vassilis Papaefstathiou 11

Virtual Address Translation

CS425 - Vassilis Papaefstathiou 12

Virtual Address Translation

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

CS425 - Vassilis Papaefstathiou 13

Cache terms vs. VM terms
• So, some definitions/“analogies”

⎻ A “page” or “segment” of memory is analogous to a “block” in a cache
⎻ A “page fault” or “address fault” is analogous to a cache “miss”

o so, if we go to main memory and our data isn’t there, we need to get it from disk…

CS425 - Vassilis Papaefstathiou 14

(disk map)

e.g.: demand paging loads pages into memory only as they
are needed by the process

Page Fault

CS425 - Vassilis Papaefstathiou 15

Virtual Address Translation Details

PTBR: Page Table Base Register
CS425 - Vassilis Papaefstathiou 16

Segmentation vs Paging

Hybrid solution: 1) Paged segments, segment is an integral number of pages
2) Multiple page sizes, with larger sizes being powers of 2 times

2 words: #segment, offset

CS425 - Vassilis Papaefstathiou 17

Cache vs VM

• Replacement on cache misses is primarily controlled by hardware
• The size of the processor address determines the size of virtual memory
• Secondary storage is also used for the file system

Parameter First-level cache Virtual memory

Block (page)
size

12-128 bytes 4096-65,536 bytes

Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty
(Access time)
(Transfer time)

8-100 clock cycles
(6-60 clock cycles)
(2-40 clock cycles)

700,000 – 6,000,000 clock cycles
(500,000 – 4,000,000 clock cycles)
(200,000 – 2,000,000 clock cycles)

Miss rate 0.5 – 10% 0.00001 – 0.001%

Data memory
size

0.016 – 1 MB 4MB – 4GB

CS425 - Vassilis Papaefstathiou 18

Page Table Organization

CS425 - Vassilis Papaefstathiou 19

Multi-Level Page Table

PTBR

Dir1 Dir2 Page offset

Directory
Directory

Page
Directory

Page
Table

e.g., 42-bit VA with 12-bit offset
10-bits for each of three fields

1024 4-byte entries in each table (one page)
CS425 - Vassilis Papaefstathiou 20

Translation Table Base Address/Register

ARM A9 Page Table (1MB section)

CS425 - Vassilis Papaefstathiou 21

L1+L2 Translation in A9

2KB pages

CS425 - Vassilis Papaefstathiou 22

Linear Inverted Page Tables
• Store only PTEs for pages in

physical memory
• Miss in page table implies page

is on disk
• Need KP entries for P page

frames (usually K > 2)

CS425 - Vassilis Papaefstathiou 23

Hashed Inverted Page Tables

• Chaining in order to solve collisions
• Chain is exhausted by hitting an invalid next pointer → page fault

Virtual Address
Page Offset

Hash Page Frame S

=

Frame Offset

OK

CS425 - Vassilis Papaefstathiou 24

Virtual Address Translation - TLB
• What happens during a memory access?

⎻ map virtual address into physical address using page table
⎻ If the page is in memory: access physical memory
⎻ If the page is on disk: page fault

o Suspend program
o Get operating system to load the page from disk

• Page table is in memory - this slows down access!
• Translation Lookaside Buffer (TLB) is a special cache of

translated addresses (speeds access back up)

CS425 - Vassilis Papaefstathiou 25

Translation Look-Aside Buffers
• Translation Look-Aside Buffers (TLB)

– Cache on translations (Fully Associative, Set Associative, or Direct Mapped)

• TLBs are:
– Small – typically not more than 128 – 256 entries
– Fully Associative or 2-way set Associative

– For example: A9 has 2 (instruction & data) 32-entry fully assoc. Micro TLBs and one 128-
entry 2-way associative Main TLB

CPU TLB Cache Main
Memory

VA PA miss

hit

data

Page
Table

hit

missTranslation
with a TLB

CS425 - Vassilis Papaefstathiou 26

TLB Structure

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page

number

Physical page
or disk address

Physical memory

Disk storage

CS425 - Vassilis Papaefstathiou 27

What Actually Happens on a TLB Miss?
• Hardware-traversed page tables:

⎻ On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk
multiple levels)
o If PTE valid, hardware fills TLB and processor never knows
o If PTE marked as invalid, causes Page Fault, after which kernel decides what to do

afterwards

• Software-traversed Page tables (like MIPS)
⎻ On TLB miss, processor receives TLB fault
⎻ Kernel traverses page table to find PTE

o If PTE valid, fills TLB and returns from fault
o If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
⎻ Modern OSes tend to have more TLB faults since they use translation for many things

CS425 - Vassilis Papaefstathiou 28

TLB – Cache Interaction

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

CS425 - Vassilis Papaefstathiou 29

TLB and Cache

CS425 - Vassilis Papaefstathiou 30

Virtually Indexed, Virtually Tagged Cache
• Protection bits in cache
• Cache flushing on process switch or use Process-Identifier tag

(PID) or Address Space Identifier (ASID)
• Aliasing problem: Two different virtual addresses sharing same

physical
⎻ Page coloring: Forces aliases to share same cache block (i.e. alias

addresses should have same cache index), thus aliases cannot co-
exist in the cache

CS425 - Vassilis Papaefstathiou 31

Virtually Indexed, Physically Tagged Cache
Motivation
• Fast cache hit by parallel TLB access
• No virtual cache shortcomings

How could it be correct?
• Requires #cache set * block size <= page size ⇒ physical index is from page offset
• Then virtual and physical indices are identical ⇒ works like a physically indexed cache!

Block Address Block
offsetIndexTag

Page Page offset

Frame Page offset

Translation

Unchanged

CS425 - Vassilis Papaefstathiou 32

Virtually Indexed, Physically Tagged Cache

28

CS425 - Vassilis Papaefstathiou 33

Superpages

Note that a single large page has to be contiguous and
aligned in physical memory: 128KB (17bits) page includes
16 8KB(13 bits) pages

CS425 - Vassilis Papaefstathiou 34

Superpages Implementation

CS425 - Vassilis Papaefstathiou 35

