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Multiple Issue
CPI = CPIIDEAL + StallsSTRUC + StallsRAW + StallsWAR + StallsWAW + StallsCONTROL

• Have to maintain:
⎻ Data Flow
⎻ Exception Behavior
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Dynamic instruction scheduling (HW) Static instruction scheduling (SW/compiler)
Scoreboard (reduce RAW stalls) Loop Unrolling
Register Renaming (reduce WAR & WAW stalls)
•Tomasulo
• Reorder buffer

SW pipelining

Branch Prediction (reduce control stalls) Trace Scheduling
Multiple Issue (CPI < 1)
Multithreading (CPI < 1)
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Common Way of Designing Architectures
• Networking, single/multi-core processor, virtually any design:

⎻ Broadcasting: Use Common Data Bus or Point to point
⎻ Asynchronous communication between “processing stages” with 

different throughputs (a processing stage can be a whole system, for 
example router, switch, processor, or a simple block, for example IF, ID 
stages). Use Elastic Buffer & Flow Control. For example instruction 
buffer, reservation stations and reorder buffer

⎻ Faster clock: Pipelining. Split a stage in multiple stages. For example 
split Issue stage (super-pipelining)

⎻ Higher Throughput: Parallel processing. For example superscalar.
⎻ Lower Latency: Forwarding/Bypassing

• A processor is a sophisticated design that follows the 
“unwritten” design rules every architect should follow. 
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Multithreading
• Difficult to continue to extract ILP from a single thread
• Many workloads can make use of thread-level parallelism (TLP)

⎻ TLP from multiprogramming (run independent sequential jobs)
⎻ TLP from multithreaded applications (run one job faster using parallel 

threads)
• Multithreading uses TLP to improve utilization of a single 

processor
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Pipeline Hazards

• Each instruction may depend on the next
• What can be done to cope with this?

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D
F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14
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Solution with Multithreading
• How can we guarantee no dependencies between instructions 

in a pipeline?
⎻ One way is to interleave execution of instructions from different 

program threads on same pipeline

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7),  r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a 
thread always 
completes write-back 
before next instruction 
in same thread reads 
register file
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Multithreaded DLX

• Have to carry thread select down to the pipeline to ensure that the correct 
state bits are read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2 Thread 
select

PC
1PC

1PC
1PC

1
I$ IR GPR1GPR1GPR1GPR1

X

Y

2

D$
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Multithreading Cost
• Each thread requires its own user state. Many CPU resources are split or shared! 

– PC
– GPRs & Physical/HW registers
– Prefetch & Instruction buffers
– Reorder buffer
– Load/Store buffer
– Issue buffers

• Also, needs its own system state
– virtual memory page table base register
– exception handling registers

• Other costs?
• Take care of performance when executing in Single Thread (ST) mode!
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Thread Scheduling Policies
• Fixed interleaving (CDC 6600 PPUs, 1964)

– each of N threads executes one instruction every N cycles
– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads
– hardware performs fixed interleave over S slots, executing whichever 

thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982) (Power 5)
– hardware keeps track of which threads are ready to go
– picks next thread to execute based on hardware priority scheme
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HW Multithreading alternatives
• Fine-Grain Multithreading
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HW Multithreading alternatives
• Fine-Grain Multithreading
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HW Multithreading alternatives
• Coarse-Grain Multithreading
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HW Multithreading alternatives
• Coarse-Grain Multithreading

Switch upon long upon long-latency events
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HW Multithreading alternatives
• Simultaneous Multithreading (SMT)
• Techniques presented so far have all been “vertical” 

multithreading where each pipeline stage works on one thread 
at a time

• SMT uses fine-grain control already present inside an OoO 
superscalar to allow instructions from multiple threads to enter 
execution on same clock cycle.  Gives better utilization of 
machine resources.
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For most apps, most execution units are 
idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism, 
ISCA 1995.

For an 8-way superscalar
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Superscalar Machine Efficiency
Issue width

Time

Completely idle cycle 
(vertical waste)

Instruction issue

Partially filled cycle, i.e., IPC < 4
(horizontal waste)
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Vertical Multithreading

• What is the effect of cycle-by-cycle interleaving?
– removes vertical waste, but leaves some horizontal waste

Issue width

Time

Second thread interleaved 
cycle-by-cycle

Instruction issue

Partially filled cycle, i.e., IPC < 4
(horizontal waste)
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Chip Multiprocessing (CMP)

• What is the effect of splitting into multiple processors?
– reduces horizontal waste, 
– leaves some vertical waste, and 
– puts upper limit on peak throughput of each thread → single thread execution is slower

Issue width

Time
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Ideal Superscalar Multithreading: SMT 
[Tullsen, Eggers, Levy, UW, 1995]

• Interleave multiple threads to multiple issue slots with no restrictions

Issue width

Time
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O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and allow instructions fetched 
from different threads to issue simultaneously

• Utilize wide out-of-order superscalar processor issue queue to find 
instructions to issue from multiple threads

• OOO instruction window already has most of the circuitry required to 
schedule from multiple threads

• Any single thread can utilize whole machine
• Shared HW mechanisms

• Large set of virtual registers can hold register sets of independent threads
• Renaming provides unique register identifiers to different threads
• Out-of-order completion of instructions from different threads allowed
• No cross-thread RAW, WAW, WAR hazards
• Separate re-order buffer per thread
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Summary: Multithreaded Categories

Ti
m

e 
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot
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IBM Power 4
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Single-threaded predecessor to 
Power 5.  8 execution units in
out-of-order engine, each may
issue an instruction each cycle.
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Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)
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Power 5 data flow ...

• Why only 2 threads? With 4, one of the shared resources (physical 
registers, cache, memory bandwidth) would be prone to bottleneck 
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Rename Registers and issue queue sizes
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Changes in Power 5 to support SMT
• Two separate program counters are used, one for each thread
• Added per thread load and store queues. Added virtual entries.
• The size of the BIQ (Branch Information Queue) remains at 16 entries but 

split in two, with eight entries per thread.
• Added separate instruction prefetch and buffering per thread.
• Each logical register number has a thread bit appended and mapped as 

usual. Increased the number of physical registers from 152 to 240
• Increased the size of FP issue queue.
• Shared global completion table (GCT). Two linked lists to implement in 

order commit from the two threads. 
• The Power5 core is about 24% larger than the Power4 core because of the 

addition of SMT support
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Power 5 thread performance
• Priority is set by SW and 

enforced by HW. 

• Relative priority of each 
thread controllable in 
hardware. 

• For balanced operation, 
both threads run slower 
than if they “owned” the 
machine.
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Intel Hyper-Threading Technology 

• Hyper-Threading Technology is SMT introduced by Intel. HTT has two logical processors, 
with its own processor architectural state

• HTT duplicates the architectural state but not the main execution resources
• Transparent to OS: minimum requirement is symmetric multiprocessing (SMP) support
• SMP involves two or more identical processors connect to a single, shared main memory, 

all I/O devices, controlled by single OS
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Pentium-4 Hyperthreading (2002)
• First commercial SMT design (2-way SMT)

⎻ Hyperthreading == SMT
• Logical processors share nearly all resources of the physical 

processor
⎻ Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~ 5%
• When one logical processor is stalled, the other can progress

⎻ No logical processor can use all entries in queues when two threads 
are active

• Processor running only one active software thread runs at 
approximately same speed with or without hyperthreading
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Pentium-4 Hyperthreading: Front End
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Resource divided 
between logical CPUs

Resource shared 
between logical CPUs



Pentium-4 Hyperthreading: Execution Pipe
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[Intel Technology Journal, Q1 2002]



Initial Performance of SMT
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Comparison of multiple-issue processors
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SPEC INT rate

ILP Comparison of multiple-issue processors
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SPEC FP rate

ILP Comparison of multiple-issue processors



Measuring processor efficiency
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ILP Comparison of multiple-issue processors
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Best ILP approach?
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