
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2017

Thread Level Parallelism (TLP)

1

Multiple Issue
CPI = CPIIDEAL + StallsSTRUC + StallsRAW + StallsWAR + StallsWAW + StallsCONTROL

• Have to maintain:
⎻ Data Flow
⎻ Exception Behavior

CS425 - Vassilis Papaefstathiou

Dynamic instruction scheduling (HW) Static instruction scheduling (SW/compiler)
Scoreboard (reduce RAW stalls) Loop Unrolling
Register Renaming (reduce WAR & WAW stalls)
•Tomasulo
• Reorder buffer

SW pipelining

Branch Prediction (reduce control stalls) Trace Scheduling
Multiple Issue (CPI < 1)
Multithreading (CPI < 1)

2

Common Way of Designing Architectures
• Networking, single/multi-core processor, virtually any design:

⎻ Broadcasting: Use Common Data Bus or Point to point
⎻ Asynchronous communication between “processing stages” with

different throughputs (a processing stage can be a whole system, for
example router, switch, processor, or a simple block, for example IF, ID
stages). Use Elastic Buffer & Flow Control. For example instruction
buffer, reservation stations and reorder buffer

⎻ Faster clock: Pipelining. Split a stage in multiple stages. For example
split Issue stage (super-pipelining)

⎻ Higher Throughput: Parallel processing. For example superscalar.
⎻ Lower Latency: Forwarding/Bypassing

• A processor is a sophisticated design that follows the
“unwritten” design rules every architect should follow.

CS425 - Vassilis Papaefstathiou 3

Multithreading
• Difficult to continue to extract ILP from a single thread
• Many workloads can make use of thread-level parallelism (TLP)

⎻ TLP from multiprogramming (run independent sequential jobs)
⎻ TLP from multithreaded applications (run one job faster using parallel

threads)
• Multithreading uses TLP to improve utilization of a single

processor

CS425 - Vassilis Papaefstathiou 4

Pipeline Hazards

• Each instruction may depend on the next
• What can be done to cope with this?

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D
F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14

CS425 - Vassilis Papaefstathiou 5

Solution with Multithreading
• How can we guarantee no dependencies between instructions

in a pipeline?
⎻ One way is to interleave execution of instructions from different

program threads on same pipeline

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a
thread always
completes write-back
before next instruction
in same thread reads
register file

CS425 - Vassilis Papaefstathiou 6

Multithreaded DLX

• Have to carry thread select down to the pipeline to ensure that the correct
state bits are read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2 Thread
select

PC
1PC

1PC
1PC

1
I$ IR GPR1GPR1GPR1GPR1

X

Y

2

D$

CS425 - Vassilis Papaefstathiou 7

Multithreading Cost
• Each thread requires its own user state. Many CPU resources are split or shared!

– PC
– GPRs & Physical/HW registers
– Prefetch & Instruction buffers
– Reorder buffer
– Load/Store buffer
– Issue buffers

• Also, needs its own system state
– virtual memory page table base register
– exception handling registers

• Other costs?
• Take care of performance when executing in Single Thread (ST) mode!

CS425 - Vassilis Papaefstathiou 8

Thread Scheduling Policies
• Fixed interleaving (CDC 6600 PPUs, 1964)

– each of N threads executes one instruction every N cycles
– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads
– hardware performs fixed interleave over S slots, executing whichever

thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982) (Power 5)
– hardware keeps track of which threads are ready to go
– picks next thread to execute based on hardware priority scheme

CS425 - Vassilis Papaefstathiou 9

HW Multithreading alternatives
• Fine-Grain Multithreading

CS425 - Vassilis Papaefstathiou 10

HW Multithreading alternatives
• Fine-Grain Multithreading

CS425 - Vassilis Papaefstathiou 11

HW Multithreading alternatives
• Coarse-Grain Multithreading

CS425 - Vassilis Papaefstathiou 12

HW Multithreading alternatives
• Coarse-Grain Multithreading

Switch upon long upon long-latency events

CS425 - Vassilis Papaefstathiou 13

HW Multithreading alternatives
• Simultaneous Multithreading (SMT)
• Techniques presented so far have all been “vertical”

multithreading where each pipeline stage works on one thread
at a time

• SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to enter
execution on same clock cycle. Gives better utilization of
machine resources.

CS425 - Vassilis Papaefstathiou 14

For most apps, most execution units are
idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading:
Maximizing On-chip Parallelism,
ISCA 1995.

For an 8-way superscalar

CS425 - Vassilis Papaefstathiou 15

Superscalar Machine Efficiency
Issue width

Time

Completely idle cycle
(vertical waste)

Instruction issue

Partially filled cycle, i.e., IPC < 4
(horizontal waste)

CS425 - Vassilis Papaefstathiou 16

Vertical Multithreading

• What is the effect of cycle-by-cycle interleaving?
– removes vertical waste, but leaves some horizontal waste

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction issue

Partially filled cycle, i.e., IPC < 4
(horizontal waste)

CS425 - Vassilis Papaefstathiou 17

Chip Multiprocessing (CMP)

• What is the effect of splitting into multiple processors?
– reduces horizontal waste,
– leaves some vertical waste, and
– puts upper limit on peak throughput of each thread → single thread execution is slower

Issue width

Time

CS425 - Vassilis Papaefstathiou 18

Ideal Superscalar Multithreading: SMT
[Tullsen, Eggers, Levy, UW, 1995]

• Interleave multiple threads to multiple issue slots with no restrictions

Issue width

Time

CS425 - Vassilis Papaefstathiou 19

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and allow instructions fetched
from different threads to issue simultaneously

• Utilize wide out-of-order superscalar processor issue queue to find
instructions to issue from multiple threads

• OOO instruction window already has most of the circuitry required to
schedule from multiple threads

• Any single thread can utilize whole machine
• Shared HW mechanisms

• Large set of virtual registers can hold register sets of independent threads
• Renaming provides unique register identifiers to different threads
• Out-of-order completion of instructions from different threads allowed
• No cross-thread RAW, WAW, WAR hazards
• Separate re-order buffer per thread

CS425 - Vassilis Papaefstathiou 20

Summary: Multithreaded Categories

Ti
m

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

CS425 - Vassilis Papaefstathiou 21

IBM Power 4

CS425 - Vassilis Papaefstathiou 22

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

CS425 - Vassilis Papaefstathiou10/30/2007 23

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

23

Power 5 data flow ...

• Why only 2 threads? With 4, one of the shared resources (physical
registers, cache, memory bandwidth) would be prone to bottleneck

CS425 - Vassilis Papaefstathiou 24

Rename Registers and issue queue sizes

CS425 - Vassilis Papaefstathiou 25

Changes in Power 5 to support SMT
• Two separate program counters are used, one for each thread
• Added per thread load and store queues. Added virtual entries.
• The size of the BIQ (Branch Information Queue) remains at 16 entries but

split in two, with eight entries per thread.
• Added separate instruction prefetch and buffering per thread.
• Each logical register number has a thread bit appended and mapped as

usual. Increased the number of physical registers from 152 to 240
• Increased the size of FP issue queue.
• Shared global completion table (GCT). Two linked lists to implement in

order commit from the two threads.
• The Power5 core is about 24% larger than the Power4 core because of the

addition of SMT support
CS425 - Vassilis Papaefstathiou 26

Power 5 thread performance
• Priority is set by SW and

enforced by HW.

• Relative priority of each
thread controllable in
hardware.

• For balanced operation,
both threads run slower
than if they “owned” the
machine.

CS425 - Vassilis Papaefstathiou 27

Intel Hyper-Threading Technology

• Hyper-Threading Technology is SMT introduced by Intel. HTT has two logical processors,
with its own processor architectural state

• HTT duplicates the architectural state but not the main execution resources
• Transparent to OS: minimum requirement is symmetric multiprocessing (SMP) support
• SMP involves two or more identical processors connect to a single, shared main memory,

all I/O devices, controlled by single OS
CS425 - Vassilis Papaefstathiou 28

OS viewReality

Pentium-4 Hyperthreading (2002)
• First commercial SMT design (2-way SMT)

⎻ Hyperthreading == SMT
• Logical processors share nearly all resources of the physical

processor
⎻ Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~ 5%
• When one logical processor is stalled, the other can progress

⎻ No logical processor can use all entries in queues when two threads
are active

• Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

CS425 - Vassilis Papaefstathiou 29

Pentium-4 Hyperthreading: Front End

CS425 - Vassilis Papaefstathiou 30

Resource divided
between logical CPUs

Resource shared
between logical CPUs

Pentium-4 Hyperthreading: Execution Pipe

CS425 - Vassilis Papaefstathiou 31

[Intel Technology Journal, Q1 2002]

Initial Performance of SMT

CS425 - Vassilis Papaefstathiou 32

Comparison of multiple-issue processors

CS425 - Vassilis Papaefstathiou 33

CS425 - Vassilis Papaefstathiou 34

SPEC INT rate

ILP Comparison of multiple-issue processors

CS425 - Vassilis Papaefstathiou 35

SPEC FP rate

ILP Comparison of multiple-issue processors

Measuring processor efficiency

CS425 - Vassilis Papaefstathiou 36

ILP Comparison of multiple-issue processors

CS425 - Vassilis Papaefstathiou 37

Best ILP approach?

CS425 - Vassilis Papaefstathiou 38

