Computer Architecture

Previous Lecture

dMeasurements and metrics : Performance, Cost,
Dependabllity, Power

Guidelines and principles in the design of computers

*Monday 8/10 - Friday 12/10
=Monday 15/10 - Friday 19/10
"\WWednesday 17/10 - TBD

Fall 2012 — Lecture 1

Computer Architecture

Outline

JProcessor review

dHazards

= Structural
= Data
= Control

dPerformance

EXxceptions

Fall 2012 — Lecture 1

Computer Architecture

Clock Cycle

Latch
or
register

OId days: 10 levels of gates

dToday: determined by numerous time-of-flight
ISsues + gate delays

= clock propagation, wire lengths, drivers

Fall 2012 — Lecture 1

Datapath vs Control

Datapath Controller

signals
J 7

—
'
”
'

Control Points

O Datapath: Storage, FU, interconnect sufficient to perform the desired
functions

» |nputs are Control Points
= Qutputs are signals

O Controller: State machine to orchestrate operation on the data path
= Based on desired function and signals

Fall 2012 — Lecture 1

Computer Architecture

“Typical” RISC ISA

132-bit fixed format instruction (3 formats)
32 32-bit GPR (RO contains zero, DP take pair)
3-address, reg-reg arithmetic instruction

Single address mode for load/store:
base + displacement

* no indirection
dSimple branch conditions
dDelayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

Fall 2012 — Lecture 1

Example: 32bit MIPS

Register-Register

31 26 25 2120 16 15 11 10 6 5 0
op | Rst | rs2 [Rd] Opx
Register-Immediate
31 26 25 2120 16 15 0
Op I Rs1 I Rd I immediate
Branch
31 26 25 2120 16 15 0
Op I Rs1 'QSZ/OIWI immediate
Jump / Call
31 25 0
Op I target
Example: lw $2, 100($5)
add $4, $5, $6

Computer Architecture

beq $3, $4, label

Fall 2012 — Lecture 1

Example Execution Steps

Obtain instruction from
program storage

Instruction
Decode

Determine required
actions and instruction
size

Locate and obtain
operand data

Compute result value or

status
Result - :
Deposit results in
Store storage for later use

Next

. Determine successor
Instruction

instruction

Computer Architecture

Memory
Processor program
regs
/—N
/
FU.s ;
',’ Data
7

von Neuman

bottleneck

5-stage execution is a bit
different (see next slides)...

Fall 2012 — Lecture 1

Pipelining: Latency vs Throughput

Start: A B CcC D

30| 40 40 40 40 20
B Tk,
B (Jolb
& ek
B iy
Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

Fall 2012 — Lecture 1

5-stage Instruction Execution - Datapath

O
Instruction Instr. Decode : Execute : Memory : Write
Fetch Reg. Fetch : Addr. Calc : Access : Back

Next PC

Next SEQ PC Next SEQPC

IR <= mem[PC];
PC <= PC + 4

WB Data

A <= Reg[IR,]’;
B <= Reg[IR,.]

rslt <= A op;p,, B

WB <= rslt - Data stationary control
- local decode for each instruction phase
Reg[IR. 4] <= WB / pipeline stage

Fall 2012 — Lecture 1

Computer Architecture

Visualizing Pipelining

Time (c/ock cyc/es)

A 4

Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5: Cycle 6: Cycle 7

Ifetch I Reg »m Reg
Ifetch I Reg »m Reg
3 Ifetch I Reg »m Reg

Fall 2012 — Lecture 1

J w0 3N

SN0 QYQ

Computer Architecture

5-stage Instruction Execution - Control

IR <= mem[PC];

PC<=PC+4

ID A <=Reg[IR,J:
B <=Reg[IR,]

WB <= Mem]r]

Pipeline Reqisters: IR, A, B, r, WB

Fall 2012 — Lecture 1

Computer Architecture

Limits in Pipelining

dLimits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle

= Structural hazards: HW cannot support this combination of
Instructions (single person to fold and put clothes away)

= Data hazards: Instruction depends on result of prior
Instruction still in the pipeline (missing sock)

= Control hazards: Caused by delay between the fetching of
Instructions and decisions about changes in control flow
(branches and jumps).

Fall 2012 — Lecture 1

Computer Architecture

Example of Structural Hazard

O
Time (clock cycles)
Cycle 1 ECycIe 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 '
I T.oad Ifetch :I: Reg Reg
S : :I:
+ Instr 1 Ifetch Reg M Reg :
Instr 2 Tetch 2 i omenm| B Reg |
o |
A I ns t r 3 Reg g‘ DMem Reg
d
r Instr 4 Ifetch % Reg

I Reg

Fall 2012 — Lecture 1

Computer Architecture

Example of Structural Hazard

Time (clock cycles)

Cycle IECycle 2 ECycle 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7 '

L oa d Ifetch :I: Reg DMem ‘—_I~
I ns t T 1 : Ifetch 1: Reg

InStr 2 Ifetch

Reg

I+ 3N

Stall

SN0 QY Q

Instr 3;

How do you “bubble” this pipe (if instr1 = load)?

Computer Architecture

Fall 2012 — Lecture 1

Speed Up Equation of Pipelining

Average instruction time unpipelined

Speedup =
P P Average instruction time pipelined

_ CPI unpipelined o Clock cycle unpipelined
~ CPI pipelined Clock cycle pipelined

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
= | + Pipeline stall clock cycles per instruction

For simple RISC pipeline, Ideal CPT = 1:

1 y Clock cycle unpipelined
1 + Pipeline stall cycles per instruction Clock cycle pipelined

1 u u
- Pipeline depth
1 + Pipeline stall cycles per instruction * PIPEHIE CEp

Speedup =

Fall 2012 — Lecture 1

Computer Architecture

Example: Dual-port vs Single-port

dMachine A: Dual read ported memory (“Harvard Architecture”)

Machine B: Single read ported memory, but its pipelined implementation
has a 1.05 times faster clock rate

Qlideal CPI = 1 for both
QSuppose that Loads are 40% of instructions executed

Average instruction time = CPI x Clock cycle time
Clock cycle ﬂmeideal
1.05

= 1.3 x Clock cycle timﬂi{leal

= (1+04x1)x

Machine A is 1.33 times faster

Fall 2012 — Lecture 1

Computer Architecture

Data Hazard

J W 3N

SN0 QY Q

Time (clock cycles)

add

sub

and

or

XOr

Computer Architecture

IF ID/RF EX MEM WB

rll r2 , r3 [fetch

rd,rl,r3

ro,rl,r’

r8,rl, r9

r10,rl,rll

I Reg

[fetch

Lfetch

Lfetch

DMdm

Reg

Reg

| rea [N >E [\ bMer
|

s

Reg

DMem

Reg

DMem

Reg

Fall 2012 — Lecture 1

Read After Write

Read After Write (RAW)
Instr; tries to read operand before Instr, writes it

<::If add rl,r2,r3
J: sub r4,rl1,r3

Caused by a “Dependence” (in compiler nomenclature).
This hazard results from an actual need for communication.

Fall 2012 — Lecture 1

19

Write After Read

dWrite After Read (WAR)
Instr; writes operand before Instr, reads it

<::IE sub r4,rl1,r3
J: add rl,r2,r3
K: mul ré6,rl,r7

dCalled an “anti-dependence” by compiler writers.
This results from reuse of the name “rl”.

dCan’t happen in MIPS 5 stage pipeline because:
= All instructions take 5 stages, and
* Reads are always in stage 2, and
= Writes are always in stage 5

Fall 2012 — Lecture 1

20

Write After Write

dWrite After Write (WAW)
Instr; writes operand before Instr, writes it.

<::I: sub rl,r4d,r3
J: add rl,r2,r3
K: mul ro,rl,r’

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

dCan’t happen in MIPS 5 stage pipeline because:
= All instructions take 5 stages, and
= Writes are always in stage 5

dWill see WAR and WAW in more complicated pipes

Fall 2012 — Lecture 1

21

Forwarding to avoid data hazards

Time (clock cycles)

I
n | add rl,r2, r3ke i |r 2 |-l bMmen 9
s
f
I | sub r4,rl, r3 Frerc i | R
o
r [fetch
J | and ro,rl, r7
e
r

or r8,rl,r9

[fetch DMem a
xor rl1l0,rl,rll

Fall 2012 — Lecture 1

Computer Architecture

HW Change for Forwarding

NextPC
2
g X
(e
NS
_|-
o
0 3 Data
S Memory
Immediate

Xnw
|

What circuit detects and resolves this hazard?
Why we need forwarding lines for both inputs of the ALU?

Fall 2012 — Lecture 1
Computer Architecture

Forwarding to Avoid LW-SW Data Hazard

Time (clock cycles)

I

n | add rl, r2, r3ffec R 2 |-l bmen g

s

f

rr 11w rd4, 0(rl) [fetch R 2 M

o

r 2 m

g | sw rd,12(rl) Ml Sl < ’

e

r ,
or r8,r6,r9 pret 3

[fetch DMem a

xor rl1l0,r9,rll

Fall 2012 — Lecture 1

Data Hazard Even with Forwarding

Time (clock cycles)
I 1w rl, O (xr2) [fetcn R % DMem 9
n
S
+ sub r4,rl,r6 Tfetch R 2 DAlem g
r.
19 and r6,rl,r7 Ifetch R 2 DMem g
r
d
i or r8,rl,r9 ?

Fall 2012 — Lecture 1

Data Hazard Even with Forwarding

J W0 3N

SN0 QYQ

Time (clock cycles)

Iw rl, 0(r2)pecf= |rﬁ

sub r4,rl, ro

and ro6,rl,r7

or

r8,rl, r9

DMem

Tfetchl .B i

Ife'tch l ‘ I

\

2]

£

B | .2 DMem

G}

Fall 2012 — Lecture 1

Ifetch IB I.ﬁ DMem

26

Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f

assuming a, b, c, d ,e, and f in memory.

Slow code: Fast code:
LW Rb,b LW Rb,b
LW Rc,c LW Rc,c
ADD Ra,Rb,Rc LW Re,e
SwW a,Ra ADD Ra,Rb,Rc
LW Re,e LW Rf f
LW Rf,f SW a,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf

SW d,Rd SW d,Rd

Fall 2012 — Lecture 1

Computer Architecture

Control Hazard on Branches
Three Stage Stal

10: beq rl,r3,36 If |I>E |

14: and r2,r3,r5 I”efc |I‘E
18: or «ro6,rl,r’ Iffe*c I'E
22: add r8,rl,r9 Iffe* IE I'E DMen

!

306: xor rl1l0,rl,rll

What do you do with the 3 instructions in between?
How do you do it?
Where is the “commit”?

pretch | .B] .E

Fall 2012 — Lecture 1

Branch Stall Impact

AIf CPI =1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

dTwo part solution:
» Determine branch taken or not sooner, AND
= Compute taken branch address earlier

AMIPS branch tests if register =0 or # 0

AMIPS Solution:

= Move Zero test to ID/RF stage
= Adder to calculate new PC in ID/RF stage
= 1 clock cycle penalty for branch versus 3

Fall 2012 — Lecture 1

Computer Architecture

Pipelined MIPS Datapath

Instruction i Instr.Decode Execute : Memory i Write
Fetch : Reg.Fetch : Addr.Calc : Access : Back

Next PC

: Next R
:_SEQPC '_

AdowaWy
D4DQ

WB Data

RD

* Interplay of instruction set design and cycle time.

Fall 2012 — Lecture 1

Computer Architecture

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

= Execute successor instructions in sequence

» “Squash” instructions in pipeline if branch actually taken
» Advantage of late pipeline state update

» 47% MIPS branches not taken on average

= PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

» 53% MIPS branches taken on average
= But haven’t calculated branch target address in MIPS

 MIPS still incurs 1 cycle branch penalty

« Other machines: branch target known before
outcome

Fall 2012 — Lecture 1

Computer Architecture

Four Branch Hazard Alternatives

#4. Delayed Branch
= Define branch to take place AFTER a following instruction

branch instruction
sequential successor;
sequential successor,

branch target i1f taken

= 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

= MIPS uses this

Fall 2012 — Lecture 1

Computer Architecture

Scheduling Branch Delay Slots

A. From before branch B. From branch target C. From fall through
add $1,$2,8$3 sub $4,55,56 < add $1,%$2,8%3
if $2=0 then __ if $1=0 then __
delay slot delay slot
add $1,%$2,53
if $1=0 then

D delay slot sub $4,955,56 <+—

becomes 1 becomes ,l becomes 1

add $1,5%2,83
if $2=0 then __ -— if $1=0 then __

add $1,$2,%$3 sub $4,$5,%$6
add $1,%2,53

if $1=0 then
— sub $4,%$5,$6

A

U A is the best choice, fills delay slot & reduces instruction count (IC)
U In B, the sub instruction may need to be copied, increasing IC

U In B and C, must be okay to execute sub when branch fails
Fall 2012 — Lecture 1 .
Computer Architecture

Delayed Branch

dCompiler effectiveness for single branch delay slot:
» Fills about 60% of branch delay slots

= About 80% of instructions executed in branch delay slots useful
In computation

= About 50% (60% x 80%) of slots usefully filled

Delayed Branch downside: As processor go to deeper
pipelines and multiple issue, the branch delay grows
and need more than one delay slot

» Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

= Growth in available transistors has made dynamic approaches
relatively cheaper

Fall 2012 — Lecture 1

Computer Architecture

Evaluating Branch Alternatives

o
s Pipeline depth
Pipeline speedup = P P
1 +Branch frequencyxBranch penalty
Unconditional branch 4% Deep pipe”ne in this example
Conditional branch, untaken 6%
Conditional branch, taken 10%
Branch scheme Penalty unconditional Penalty untaken Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted untaken 2 0 3
Unconditional Untaken conditional Taken conditional
Branch scheme branches branches branches All branches
Frequency of event 4% 6% 10% 20%
Stall pipeline 0.08 0.18 0.30 0.56
Predicted taken 0.08 0.18 0.20 0.46
Predicted untaken 0.08 0.00 0.30 0.38

Fall 2012 — Lecture 1

Computer Architecture

Problems with Pipelining

dException: An unusual event happens to an
Instruction during its execution

= Examples: divide by zero, undefined opcode

dinterrupt: Hardware signal to switch the processor to
a new instruction stream

= Example: a sound card interrupts when it needs more audio
output samples (an audio “click” happens if it is left waiting)

dProblem: It must appear that the exception or
Interrupt must appear between 2 instructions (I, and

Ii+1)
* The effect of all instructions up to and including I; is totalling
complete

= No effect of any instruction after |, can take place

dThe interrupt (exception) handler either aborts
program or restarts at instruction I,

Fall 2012 — Lecture 1

Computer Architecture

Precise Exceptions in Static Pipelines

W‘.

Commit

Point-

Inst. Datai

|PC O Mem DM Decode Mema

" L}

A A Illegal Data Addr K.-'.Hé'

Selept Opcode Except lf
Handler PC Address P P Erteback

PC Exceptions .

Kill F “I Kill D I Kill E ¢ I
Stage Stage Stage

Asynchronous
Interrupts

Key observation: architected state only

change in memory and register write stages.

Fall 2012 — Lecture 1

Summary: Pipelining

Next time: Read Appendix A

dControl VIA State Machines and Microprogramming
Just overlap tasks; easy if tasks are independent
dSpeed Up < Pipeline Depth; if ideal CPl is 1, then:

Pipeline depth CYC|C Time ipelined
1 + Pipeline stall CPI Cycle Time, jined

Speedup =

Hazards limit performance on computers:
= Structural: need more HW resources
= Data (RAW,WAR,WAW): need forwarding, compiler scheduling
= Control: delayed branch, prediction

L EXxceptions, Interrupts add complexity

Fall 2012 — Lecture 1

Computer Architecture

