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Previous Lecture 

CPU Evolution 

What is Computer Architecture? 
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Outline 

Measurements and metrics : Performance, Cost, 
Dependability, Power 

Guidelines and principles in the design of computers 
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Major Design Challenges 

Everything Looks a Little Different 

 Power 

 CPU time 

 Memory latency/bandwidth 

 Storage latency/bandwidth 

 Transactions per second 

 Intercommunication 

 Dependability 

Performance 

Power 

Communication 

Metrics 

Principles 
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Power Consumption 

Charge external capacitance 

CL 

Rp 

Q   = CL VDD 

 

Edynamic= Q VDD = CL VDD
2 

 

 

½ Ed thermal energy on RP  

½ Ed stored on CL 

 

(since ECL = ½ CL VDD
2) 

 

current 

0V 

VDD 

CL 
Rn 

Discharge external capacitance 

current 

½ Edynamic stored on C L 

becomes thermal energy on 

RN 

0V 

VDD 
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Pdynamic= ½ CL VDD
2 frequency 



6 Computer Architecture 

Fall 2012 – Lecture 1 

Measuring Power 

Metrics 

Principles 
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Power and Energy 

Energy to complete operation (Joules) 

 Corresponds approximately to battery life 

 (Battery energy capacity actually depends on rate of 
discharge) 

Peak power dissipation (Watts = Joules/second) 

 Affects packaging (power and ground pins, thermal design) 

di/dt, peak change in supply current (Amps/second) 

 Affects power supply noise (power and ground pins, 
decoupling capacitors) 
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Peak Power versus Lower Energy 

System A has higher peak power, but lower total energy 

System B has lower peak power, but higher total energy 

Power 

Time 

Peak A 

Peak B 

Integrate power 

curve to get energy 
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Principles 

 



9 Computer Architecture 

Fall 2012 – Lecture 1 

Measuring Reliability (Dependability) 

109 

MTTF = 1,000,000 hours  FIT = ? 

Metrics 

Principles 

 

(MTBF = MTTF + MTTR) 
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Comparing design alternatives 

Metrics 

Principles 
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Benchmark Suites 

(SPEC = Standard Performance Evaluation Corporation) 
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SPECrate, SPECWeb … 
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Summarizing performance 
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Summarizing performance (cont.) 

running time of programs 
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Summarizing performance (cont.) 

Used by SPEC98, SPEC92, SPEC95, …, SPEC2006 
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Pros and cons of geometric means 
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Qualitative principles of design 

Metrics 

Principles 

(Spatial and temporal locality) 
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Qualitative principles of design (cont.) 
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Amdahl’s Law 

Best possible: 
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fraction 

fraction 
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Amdahl’s Law example 

New CPU 10X faster 

I/O bound server, so 60% time waiting for I/O 

 

 

 

 

 

 

Apparently, its human nature to be attracted by 10X 
faster, vs. keeping in perspective its just 1.6X faster 
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Computer Performance  

Metrics 

Principles 

CPU Performance 

s s 
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Cycles Per Instruction (Throughput) 

“Instruction Frequency” 

CPI = (CPU Time * Clock Rate) / Instruction Count  
=  Cycles / Instruction Count     

“Average Cycles per Instruction” 
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Example: Calculating CPI bottom up 

Typical Mix of  
instruction types 
in program 

Base Machine (Reg / Reg) 

Op Freq CPIi F*CPIi   (% Time) 

ALU 50% 1  .5   (33%) 

Load 20% 2  .4   (27%) 

Store 10% 2  .2   (13%) 

Branch 20% 2  .4   (27%) 

    1.5 

Design guideline: Make the common case fast 
MIPS 1% rule: only consider adding an instruction if it is shown to add 1% 
performance improvement on reasonable benchmarks. 

Run benchmark and collect workload characterization  

(simulate, machine counters, or sampling) 
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CPU Performance 
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Processor Performance 
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Price/performance 

Metrics 
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What about maintenance and power? 
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Conclusion 

Metrics 
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Next Lecture : Pipelining 

Memory 
Access 

Write 
Back 

Instruction 
Fetch 

Instr. Decode 
Reg. Fetch 

Execute 
Addr. Calc 
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•  Data stationary control 
– local decode for each instruction phase  
/ pipeline stage 

Next PC 
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IR <= mem[PC];  

PC <= PC + 4 

A <= Reg[IRrs];  

B <= Reg[IRrt] 

rslt <= A opIRop B 

Reg[IRrd] <= WB 

WB <= rslt 


