Computer Architecture

Previous Lecture

dCPU Evolution
dWhat is Computer Architecture?

Fall 2012 — Lecture 1

Outline

dMeasurements and metrics : Performance, Cost,
Dependabllity, Power

Guidelines and principles in the design of computers

Fall 2012 — Lecture 1

Metrics
Principles

Major Design Challenges

= Power

= CPU time

= Memory latency/bandwidth
» Storage latency/bandwidth
» Transactions per second

» |[ntercommunication

= Dependability

Everything Looks a Little Different

Fall 2012 — Lecture 1

Computer Architecture

Metrics

Principles
Power Consumption
O

Charge external capacitance Discharge external capacitance

T- Q =C.Vpp
R, 3 ﬂ Voo
R, 3 lcurrent Eaynamic= Q Voo = € Vop®
P current
777

72 E4 thermal energy on Rp

DD “E . stored on C
——C, / V2 E4 stored on C, ® ~dynamic .

becomes thermal energy on
0)Y
— (since E¢ =% C Vpp?) Ry

P dynamic= Y2 C, Vpp? frequency

Fall 2012 — Lecture 1

Computer Architecture

Metrics

Measuring Power

1 "
PoWer gynamic = - x Capacitive load x Voltage? x frequency

Energy gynamic = Capacitive load x Voltage®

Power gaiic = Currentgic < Voltage

» Power due to switching more transistors increases
» Static power due to leakage current increasing

Fall 2012 — Lecture 1

Metrics
Principles

Power and Energy

Energy to complete operation (Joules)
= Corresponds approximately to battery life

= (Battery energy capacity actually depends on rate of
discharge)

dPeak power dissipation (Watts = Joules/second)
» Affects packaging (power and ground pins, thermal design)

ddi/dt, peak change in supply current (Amps/second)

= Affects power supply noise (power and ground pins,
decoupling capacitors)

Fall 2012 — Lecture 1

Computer Architecture

Metrics
Principles

Peak Power versus Lower Energy

Peak A

Power

Integrate power
—“curve to get energy

Time

dSystem A has higher peak power, but lower total energy
System B has lower peak power, but higher total energy

Fall 2012 — Lecture 1

Computer Architecture

Metrics

Measuring Reliability (Dependability)

Reliability equations

MTTF = Mean Time To Failure
10°
MTTF
MTTR = Mean Time to Repair (MTBF = MTTF + MTTR)

MTTF
MTTF +~ MTTR

#components

FiTgsem= ». FIT,

i=1

FIT = Failures In Time (per billion hours) =

Module availability =

MTTF = 1,000,000 hours =2 FIT =?

Fall 2012 — Lecture 1

Metrics

Comparing design alternatives

Design X is n times faster than design Y
|
Execution timeY PerformanceY Performan-:ex

n= , , — —
Execution tlmeX | PerformanceY
F'erfa::ﬂrmam:eX

» Wall-clock time: time to complete a task
» CPU time: time CPU is busy
» Workload: Mixture of programs (including OS) on a system

» Kernels: Common, important functions in applications
» Microbenchmarks: Synthetic programs trying to:

» Isolate components and measure performance
» Imitate workloads of real world in a controlled setting

Fall 2012 — Lecture 1

Computer Architecture

Metrics

Benchmark Suites

Desktop (SPEC = Standard Performance Evaluation Corporation)

» SPECCPU (revised every few years)
» Real programs measuring processor-memory activity

Multi-core desktop/server

» SPECOMP, SPECMPI (scientific), SPECapc (graphics)
» Focus on parallelism, synchronization, communication

Client/Server
» SPECjbb, SPECjms, SPECjvm, SPECsfs, SPECmail, SPECrate, SPECWeb ...
» Measuring throughput (how many tasks per unit of time)
» Measuring latency (how quickly does client get response)

Embedded systems

» EEMBC, MiBench
» Measuring performance, throughput, latency

Fall 2012 — Lecture 1

Computer Architecture

Metrics

Summarizing performance

Arithmetic mean of wall-clock time

» Biased by long-running programs

» May rank designs in non-intuitive ways:

» Machine A: Program P; — 1000 secs., P, — 1 secs.
» Machine B: Program P; — 800 secs., P> — 100 secs.
» What if machine runs P, most of the time?

Example
Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Means

» Total time ignores program contribution to total workload
» Arithmetic mean biased by long programs

Fall 2012 — Lecture 1

Computer Architecture

Metrics
Principles

Summarizing performance (cont.)

Measuring against a reference computer

__ Execution time ejarance
SPE Crar-'ag - Execution timea

Execution time

reference o
- SPEC a0, ~ — Execuontime, _ Execution timeg Performance,
"~ SPEC atoy Executiontimerirence — Execution time, — Performanceg

Execution timeg

Using ratios

» Ratios against reference machine are independent of
running time of programs

Fall 2012 — Lecture 1

Computer Architecture

Summarizing performance (cont.)

Metrics
Principles

Geometric mean

n
d | | Execution time ratio;
i—1

Geometric meany
Geometlric meang

= Geometric mean(

)

@ >

Used by SPEC98, SPEC92, SPEC95, ..., SPEC2006

Fall 2012 — Lecture 1

Computer Architecture

Metrics

Pros and cons of geometric means

Pros

» Consistent rankings, independent of program frequencies
» Not influenced by peculiarities of any single machine

Cons

» Geometric mean does not predict execution time

» Sensitivity to benchmark vs. machine remains
» Encourages machine tuning for specific benchmarks
» Benchmarks can not be touched, but compilers can!

» Any “averaging” metric loses information

Fall 2012 — Lecture 1

Principles

Qualitative principles of design

Taking advantage of parallelism

» Use pipelining to overlap instructions
» Use multiple execution units
» Use multiple cores

» Use multiple processors to increase throughput

Locality (Spatial and temporal locality)

» Programs reuse instructions and data

» 90-10 rule
» 90% of execution time spent running 10% of instructions

» Programs access data in nearby addresses

Fall 2012 — Lecture 1

Computer Architecture

Metrics
Principles

Qualitative principles of design (cont.)

Make the common case fast

» Trade-off’s in design (e.g. performance vs. power/area)
» Provide efficient design for the common case
» Amdahl’'s Law

Fall 2012 — Lecture 1

Metrics
Principles

Amdahl’s Law

Execution time for entire task without using the enhancement

Speedup =
Execution time for entire task using the enhancement when possible
execution timeney = execution timegy x

speedup fraction

((1 — fractionenhanced) +

speedup - execution time g -
overall — E.'xecuﬁﬂn ﬁme,new N
1

_ . fractiongnhanced
(1 fr&CHﬂngnham:ed) T speedupfraction

1
— .

Tolg) Tn ew

G-n_ I — d-n 1l

Fall 2012 — Lecture 1

Best possible: speedupoverai

Computer Architecture

Metrics
Principles

Amdahl’'s Law example

(UNew CPU 10X faster

1/0 bound server, so 60% time waiting for 1/O

1
Speedupovera” — _ Fraction nhanced
(l— FraCtlonenhanced)+ T
Speedupenhanced
-1 - L
(1-0.4)+ - 0.64
10

dApparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

Fall 2012 — Lecture 1

Metrics
Principles
CPU Performance

Computer Performance

CPU time

CPU time = CPU clock cycles x Clock cycle time

CPU time = CPI x cycle time
CP/ — CPU clock cycles

instruction count
CPU time = instruction count x CPI x cycle time =

. instructions clock cycles seconds
CPU time = X — —— X
program instructions clock cycles

Fall 2012 — Lecture 1

CPU Performance

Cycles Per Instruction (Throughput)

"Average Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x ¥ CPI; x I,
j=1

n I
CPI = YCPI, xF, where F, = ’
El i WHEre 15 = Instruction Count

“Instruction Frequency”

Fall 2012 — Lecture 1

Computer Architecture

Metrics
Principles
CPU Performance

Example: Calculating CPI bottom up

Run benchmark and collect workload characterization
(simulate, machine counters, or sampling)

Base Machine (Reg / Reg)

Op Freq CPT. F*CPI. (% Time)
ALU 50%| 1 D (33%)
Load 20%| 2 L (27 %)
Store 10% | 2 2 (13%)
Branch 20%| 2 4 (27%)

‘ 15

/
Typical Mix of
Instruction types
In program

Design guideline: Make the common case fast
MIPS 1% rule: only consider adding an instruction if it is shown to add 1%
performance improvement on reasonable benchmarks.

Fall 2012 — Lecture 1

Principles

Processor Performance

CPU time = instruction count x CPI x cycle time

How can CA help?

» Technology has been providing faster clock speeds

» Main performance factor for almost 20 years
» Trend seems to reverse
» Limitations due to power consumption, reliability

» Architecture can pack more computing power in same area
» Architecture can improve CPI
» Algorithms and compilers can reduce instruction count

Fall 2012 — Lecture 1

Computer Architecture

Metrics
Principles

Price/performance

‘U 10,000,000 [- 80D
>S5
.‘EE 4 700
. »
1,000,000 | — ©
o 4500 3
2 e TFM S
= 4400 S
© —&— TPM/$1000 il
S 100,000 | price 4 300 E
E - 1200 F
p= _
= .Lk"“o——i o 110
I{],{]EID 1 1 L 1 1 1 {]
T e 5 1] ¥ W M
CHER P g g . Sl s
&F & F @ o

What about maintenance and power?

Fall 2012 — Lecture 1

Computer Architecture

Principles

Conclusion

Fallacies and pitfalls

» Ignoring Amdahl’s law

» Reliability is as good as that of the most faulty component
» Cost of processor dominates system cost?

» Currently, on servers and laptops storage dominates cost!
» Benchmarks remain valid for long

» Workloads evolve (Internet, laptops, handheld computers,
sensors, controllers, actuators, .. .)
» Tuning for depreciated benchmarks undesirable

» Reliability metrics ignoring lifetime of component

» Peak performance is expected performance
» Detecting but not correcting faults
» Many components in the architecture non-critical for correct
operation
» Important to protect, check and duplicate critical
components

Fall 2012 — Lecture 1

Computer Architecture

Next Lecture : Pipelining

O
Instruction : Instr. Decode : Execute : Memory : Write
Fetch : Reg. Fetch Addr. Calc : Access : Back

Next PC

Next SEQ PC Next SEQPC

IR <= mem[PC];
PC <= PC + 4

WB Data

A <= Reg[IR,]’;
B <= Reg[IR,.]

rslt <= A op;p,, B

- Data stationary control
- local decode for each instruction phase

Reg[IR. 4] <= WB / pipeline stage

WB <= rslt

Fall 2012 — Lecture 1

Computer Architecture

