
1

Computer Architecture

Lecture 2: Metrics

Iakovos Mavroidis

Computer Science Department

University of Crete

2 Computer Architecture

Fall 2012 – Lecture 1

Previous Lecture

CPU Evolution

What is Computer Architecture?

3 Computer Architecture

Fall 2012 – Lecture 1

Outline

Measurements and metrics : Performance, Cost,
Dependability, Power

Guidelines and principles in the design of computers

4 Computer Architecture

Fall 2012 – Lecture 1

Major Design Challenges

Everything Looks a Little Different

 Power

 CPU time

 Memory latency/bandwidth

 Storage latency/bandwidth

 Transactions per second

 Intercommunication

 Dependability

Performance

Power

Communication

Metrics

Principles

5 Computer Architecture

Fall 2012 – Lecture 1

Power Consumption

Charge external capacitance

CL

Rp

Q = CL VDD

Edynamic= Q VDD = CL VDD
2

½ Ed thermal energy on RP

½ Ed stored on CL

(since ECL = ½ CL VDD
2)

current

0V

VDD

CL
Rn

Discharge external capacitance

current

½ Edynamic stored on C L

becomes thermal energy on

RN

0V

VDD

Metrics

Principles

Pdynamic= ½ CL VDD
2 frequency

6 Computer Architecture

Fall 2012 – Lecture 1

Measuring Power

Metrics

Principles

7 Computer Architecture

Fall 2012 – Lecture 1

Power and Energy

Energy to complete operation (Joules)

 Corresponds approximately to battery life

 (Battery energy capacity actually depends on rate of
discharge)

Peak power dissipation (Watts = Joules/second)

 Affects packaging (power and ground pins, thermal design)

di/dt, peak change in supply current (Amps/second)

 Affects power supply noise (power and ground pins,
decoupling capacitors)

Metrics

Principles

8 Computer Architecture

Fall 2012 – Lecture 1

Peak Power versus Lower Energy

System A has higher peak power, but lower total energy

System B has lower peak power, but higher total energy

Power

Time

Peak A

Peak B

Integrate power

curve to get energy

Metrics

Principles

9 Computer Architecture

Fall 2012 – Lecture 1

Measuring Reliability (Dependability)

109

MTTF = 1,000,000 hours FIT = ?

Metrics

Principles

(MTBF = MTTF + MTTR)

10 Computer Architecture

Fall 2012 – Lecture 1

Comparing design alternatives

Metrics

Principles

11 Computer Architecture

Fall 2012 – Lecture 1

Benchmark Suites

(SPEC = Standard Performance Evaluation Corporation)

Metrics

Principles

SPECrate, SPECWeb …

12 Computer Architecture

Fall 2012 – Lecture 1

Summarizing performance

Metrics

Principles

13 Computer Architecture

Fall 2012 – Lecture 1

Summarizing performance (cont.)

running time of programs

Metrics

Principles

14 Computer Architecture

Fall 2012 – Lecture 1

Summarizing performance (cont.)

Used by SPEC98, SPEC92, SPEC95, …, SPEC2006

Metrics

Principles

15 Computer Architecture

Fall 2012 – Lecture 1

Pros and cons of geometric means

Metrics

Principles

16 Computer Architecture

Fall 2012 – Lecture 1

Qualitative principles of design

Metrics

Principles

(Spatial and temporal locality)

17 Computer Architecture

Fall 2012 – Lecture 1

Qualitative principles of design (cont.)

Metrics

Principles

18 Computer Architecture

Fall 2012 – Lecture 1

Amdahl’s Law

Best possible:

Metrics

Principles

fraction

fraction

19 Computer Architecture

Fall 2012 – Lecture 1

Amdahl’s Law example

New CPU 10X faster

I/O bound server, so 60% time waiting for I/O

Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall

Metrics

Principles

20 Computer Architecture

Fall 2012 – Lecture 1

Computer Performance

Metrics

Principles

CPU Performance

s s

21 Computer Architecture

Fall 2012 – Lecture 1

Cycles Per Instruction (Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

“Average Cycles per Instruction”

j

n

j
j I CPI TimeCycle time CPU

1

Count nInstructio

I
 F where F CPI CPI j

j

n

j
jj

1

Metrics

Principles

CPU Performance

22 Computer Architecture

Fall 2012 – Lecture 1

Example: Calculating CPI bottom up

Typical Mix of
instruction types
in program

Base Machine (Reg / Reg)

Op Freq CPIi F*CPIi (% Time)

ALU 50% 1 .5 (33%)

Load 20% 2 .4 (27%)

Store 10% 2 .2 (13%)

Branch 20% 2 .4 (27%)

 1.5

Design guideline: Make the common case fast
MIPS 1% rule: only consider adding an instruction if it is shown to add 1%
performance improvement on reasonable benchmarks.

Run benchmark and collect workload characterization

(simulate, machine counters, or sampling)

Metrics

Principles

CPU Performance

23 Computer Architecture

Fall 2012 – Lecture 1

Processor Performance

Metrics

Principles

24 Computer Architecture

Fall 2012 – Lecture 1

Price/performance

Metrics

Principles

T
P

M
 (

T
ra

n
s
a

c
ti

o
n

s
 P

e
r

M
in

u
te

)

T
P

M
 *

$
1

0
0

0
 /
 c

o
s
t

What about maintenance and power?

25 Computer Architecture

Fall 2012 – Lecture 1

Conclusion

Metrics

Principles

26 Computer Architecture

Fall 2012 – Lecture 1

Next Lecture : Pipelining

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
em

ory

R
e
g F

ile

M
U

X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF
/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
d
d
er

Next SEQ PC Next SEQ PC

RD RD RD

W
B

 D
at

a

• Data stationary control
– local decode for each instruction phase
/ pipeline stage

Next PC

A
d
d
ress

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

