Lecture 16: Main Memory

Vassilis Papaefstathiou lakovos Mavroidis

Computer Science Department University of Crete

Memory Hierarchy

Computer System Overview

Typical Chipset Layout

Main Memory Overview

SRAM vs. DRAM

Static Random Access Mem.

Dynamic Random Access Mem.

- 6T vs. 1T1C
 - Large (~6-10x)
- Bitlines driven by transistors
 - Fast (~10x)

- Bits stored as charges on node capacitance (non-restorative)
 - Bit cell loses charge when read
 - Bit cell loses charge over time
- Must periodically refresh
 - Once every 10s of ms

Memory Bank Organization

Read access sequence

- Decode row address & drive word-lines
- Selected bits drive bit-lines
 - Entire row read
- Amplify row data
- Decode column address & select subset of row
- Send to output
- Precharge bit-lines for next access

Memory Terminology

- Access time (latency)
 - Time from issuing and address to data out
- Cycle time
 - Minimum time between two request (repeat rate)
- Bandwidth
 - Bytes/unit of time we can extract from the memory
 - Peak: ignore initial latency
 - Sustained: include initial latency
- Concurrency
 - Number of accesses executing in parallel or overlapped manner
 - Can help increase bandwidth or improve latency

DRAM Basic Operation

DRAM ORGANIZATION

Basic DRAM operation (1)

BUS TRANSMISSION

Basic DRAM Operation (2)

[PRECHARGE and] ROW ACCESS

Basic DRAM Operation (3)

COLUMN ACCESS

Basic DRAM Operation (4)

DATA TRANSFER

Not shown: precharge time, refresh time

DRAM: Basic Operation

DRAM: Basic Operation

- Access to an "open row"
 - No need for ACTIVATE command
 - READ/WRITE to access row buffer

- Access to a "closed row"
 - If another row already active, must first issue PRECHARGE
 - ACTIVATE to open new row
 - READ/WRITE to access row buffer
 - Optional: PRECHARGE after READ/WRITEs finished

DRAM: Burst

- Each READ/WRITE command can transfer multiple words (8 in DDR3)
- DRAM channel clocked faster than DRAM core

Critical word first?

DRAM: Banks

- Banks are independent arrays WITHIN a chip
 - DRAMs today have 4 to 32 banks
 - SDR/DDR SDRAM system: 4 banks
 - RDRAM system: 16-32 banks
- Advantages
 - Lower latency
 - Higher bandwidth by overlapping
 - Finer-grain power management
- Disadvantages
 - Bank area overhead
 - More complicated control

How Do Banks Help?

Before: No Overlapping
Assuming accesses to different DRAM rows

2Gb x 8 DDR3 Chip (Micron)

Observe: bank organization

2Gb x 8 DDR3 Chip (Micron)

Observe: row width, 64 → 8 bit datapath

DDR3 SDRAM: Current Standard

- Introduced in 2007
- SDRAM = Synchronous DRAM = Clocked
- DDR = Double Data Rate
 - Data transferred on both clock edges
 - 400 MHz = 800 MT/s
- x4, x8, x16 datapath widths
- Minimum burst length of 8
- 8 banks
- 1Gb, 2Gb, 4Gb capacity common
- Relative to SDR/DDR/DDR2: + bandwidth, ~ latency

DRAM DIMM

DRAM Modules

- DRAM chips have narrow interface (typically x4, x8, x16)
- Multiple chips are put together to form a wide interface
 - DIMM: Dual Inline Memory Module
 - To get a 64-bit DIMM, we need to access 8 chips with 8-bit interfaces
 - Share command/address lines, but not data

Advantages

- Acts like a high-capacity DRAM chip with a wide interface
 - 8x capacity, 8x bandwidth, same latency

Disadvantages

- Granularity: Accesses cannot be smaller than the interface width
 - 8x power

DRAM DIMMs

- Dual Inline Memory Module (DIMM)
 - A PCB with 8 to 16 DRAM chips
 - All chips receive identical control and addresses
 - Data pins from all chips are directly connected to PCB pins
- Advantages:
 - A DIMM acts like a high-capacity DRAM chip with a wide interface
 - E.g. use 8 chips with 8-bit interfaces to connect to a 64-bit memory bus
 - Easier to replace/add memory in a system
 - No need to solder/remove individual chips
- Disadvantage: memory granularity problem

64-bit Wide DIMM

Multiple DIMMs on a Channel

Advantages:

Enables even higher capacity

Disadvantages:

- Interconnect latency, complexity, and energy get higher
- Addr/Cmd signal integrity is a challenge

DRAM Ranks

- A DIMM may include multiple Ranks
 - A 64-bit DIMM using 8 chips with x16 interfaces has 2 ranks

- Each 64-bit group of chips is called a rank
 - All chips in a rank respond to a single command
 - Different ranks share command/address/data lines
 - Select between ranks with "Chip Select" signal
 - Ranks provide more "banks" across multiple chips (but don't confuse rank and bank!)

Traditional Memory Hierarchy

State of the art

DDR3

- Transfer data at rising and falling edge
- Regular DRAM 200MHz (or 800MHz IO bus), 8byte width,6.4GBytes/sec
- Double data rate 12.8GBytes/sec
- 8-burst-deep prefetch buffer
- GDDR5 (Graphics Double Data Rate)
 - High performance designed for high bandwidth.
 - Based on DDR3 double data lines
 - GDDR5 has 8-bit wide prefetch buffers
- RAMBUS (RDRAM)
 - Split transaction bus, byte wide
 - More complicated electrical interface on DRAM and CPU
 - 800 MHz, 18 bits, 1.6GB/sec per chip
- DDR4
 - (1600-3200MHz IO bus), 8 byte width, 17-25GBytes/sec
 - 16 banks
- Hybrid Memory Cube (HMC)

DDR vs Rambus

Figure 8. Bank counts: a 32-Mbyte, 64M SDRAM system with four large banks (a) versus a 32-Mbyte, 64M Direct RDRAM system with 32 small banks (b).

DIMM Modules

RIMM Modules

- Many banks/chip (4-32)
- Narrow fast interconnect (pipelined)
- High bandwidth
- Latency & area penalty

Fully Buffered DIMM (FB-DIMM)

- The DDR problem
 - Higher capacity ▼ more DIMMs ▼ lower data-rate (multidrop bus)
- FBDIMM approach: use point-to-point links
 - While still using commodity DRAM chips
 - Network with 12-beat packages, separate up/downstream wires

3D-Stacked DRAM

- Place wafers on top of one another
- Vias complete paths between different wafers through small pads on the wafers

3D IC Structure

Micron HMC "Hybrid Memory Cube"

- 3D-stacked device with memory+logic
- High capacity, low power, high bandwidth
- Can move functionalities to the memory package

HMC Details

Vertical

Slice

32 banks per die x 8 dies = 256 banks per package

2 banks x 8 dies form 1 vertical slice (shared data bus)

High internal data bandwidth (TSVs) → entire cache line

from a single array (2 banks) that is 256 bytes wide

 Future generations: eight links that can connect to the processor or other HMCs – each link (40 GBps) has 16 up and 16 down lanes (each lane has 2 differential wires)

 1866 TSVs at 60 um pitch and 2 Gb/s (50 nm 1Gb DRAMs)

 3.7 pJ/bit for DRAM layers and 6.78 pJ/bit for logic layer (existing DDR3 modules are 65 pJ/bit)