Lecture 13:
Virtual Memory

Vassilis Papaefstathiou
lakovos Mavroidis

Computer Science Department
University of Crete

Outline

* Virtual Memory
— Basics
— Address Translation
— Cache vs VM
— Paging
— Replacement
— TLBs
— Segmentation
— Page Tables

Memory Hierarchy

Capacity
Access Time Staging Upper Level
Cost Xfer Unit 4 faster
CPU Registers .
100s Bytes Registers
<10 A .
=ne Instr. Operands Prqlg-slcbOTP"er
Cache v -0 bytes
K Bytes
10-100 ns
1-0.1 cents/bit cache cntl
Blocks 8-128 bytes
Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit (01
Disk 4K-16K bytes
G Bytes, 10 ms
(10,000,000 ns)
-5 -6
10 -10 cents/bit t user/operator |
Files Mbytes
Tape y Larger
infinite
sec-min Tape Lower Level
-8

10

Simple View of Memory

PC
—pl Code

R1
»] Data

R31

-—pl Stack

Single program runs at a
time
Code and static data are at
fixed locations
- code starts at fixed
location, e.g., 0x100

- subroutines may be at
fixed locations (absolute

jumps)
data locations may be wired
into code

Stack accesses relative to
stack pointer.

Running Two Programs (Relocation)

No Protection

Need to relocate /ogical

addresses to physical

PC locations
m— | Code Stack is already relocatable
- all accesses relative to SP
=1 | P |~ - Code can be made relocatable
- allow only relative jumps
—>| Stack - all accesses relative to PC
Data segment
. PC - can calculate all addresses
__l— | Code relative to a DP
R1 * expensive
Data je— - faster with hardware support
R31 - base register

Stack

Virtual Memory

 Some facts of computer life...
— Computers run lots of processes simultaneously
— No full address space of memory for each process

— Must share smaller amounts of physical memory among
many processes

* Virtual memory is the answer!

— Divides physical memory into blocks (physical pages),
assigns them to different processes

— Virtual memory (VM) allows main memory (DRAM) to act like
a cache for secondary storage (magnetic disk).

— VM address translation provides a mapping from the virtual
address of the processor to the physical address in main
memory or on disk.

Three Advantages of Virtual Memory

* Translation:

— Program can be given consistent view of memory, even though
physical memory is scrambled

— Makes multithreading reasonable (now used a lot!)
— Only the most important part of program (“Working Set”’) must
be in physical memory.
— Contiguous structures (like stacks) use only as much physical
memory as necessary yet still grow later.
* Protection:
— Different threads (or processes) protected from each other.

— Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).

— Kernel data protected from User programs
— Very important for protection from malicious programs
« Sharing:
— Can map same physical page to multiple users
(“Shared memory”)

Protection with Virtual Memory

* Virtual memory allows protection without the requirement
that pages be pre-allocated in contiguous chunks

* Physical pages are allocated based on program needs and
physical pages belonging to different processes may be
adjacent — efficient use of memory

» Each page has certain read/write properties for user/kernel
that is checked on every access
» a program’s executable can not be modified
» part of kernel data cannot be modified/read by user
» page tables can be modified by kernel and read by
user

Basics

Programs reference “virtual” addresses in a non-
existent memory

— These are then translated into real “physical” addresses

— Virtual address space may be bigger than physical address
space

Divide physical memory into blocks, called pages
— Anywhere from 512B to 16MB (4k typical)

Virtual-to-physical translation by indexed table
lookup

— Add another cache for recent translations (the TLB)

Invisible to the programmer
— Looks to your application like you have a lot of memory!

A Load to Virtual Memory

LW R1,0(R2)
CPU | —
Virtual Addr.
64 bits

Cache

Physical Addr.

48 bits

DRAM
1GB

30 bits

* Translate from virtual space to physical space
- VA= PA
- May need to go to disk

VM: Page Mapping

7’ ~ ~
Process 1’s /
Virtual
Address
Space \
Page Frames
Process 2’s _- - Disk
Virtual i , -
Address ommmmms [
Space T ~<)

—y
--——_

Physical Memory

Virtual Address Translation

63 12 11 0
Virtual Page Number (VPN) Page Offset

'

Translation
Table

29 # 12 11 v 0
Physical Page Number (PPN) Page Offset

* Main Memory = 168 * Translation table
* Page Size = 4KB - aka "Page Table"

+ VPN = 52 bits
+ PPN =18 bits

Virtual Address

Translation

Page table register

Virtual address
31 30 29 28 27 «cceccececveneceecs 15141312 11 10 9 8 ¢ vv e 3210
Virtual page number Page offset
‘Valid Physical page number
(] ?
Page table
v \\18
If 0 then page is not
present in memory
29 28 27 cecectenoiananenns - 15141312111098-:]--- 3210
Physical page number Page offset

Phvsiral address

Cache terms vs. VM terms

“real”/physical

So, some definitions/“analogies” / memory
— A “page” or “segment” of memory is analogous to a “block”

in a cache

— A “page fault’ or “address fault’ is analogous to a cache

miss /

so, if we go to main memory and our data
isn’t there, we need to get it from disk...

User Program Runs

Page fault‘

OS requests page

Disk read

2nd User Program Runs

}

User program
r resumes

OS Installs page

!

A\

Disk interrupt

Page Fault

« What happens when a process references a virtual
address in a page that has been evicted (or never

loaded)?

— when the page was evicted, the OS set the PTE as invalid
and noted the disk location of the page in a data structure
(that looks like a page table but holds disk addresses)

— when a process tries to access the page, the invalid PTE will
cause an exception (page fault) to be thrown
« OK, it's actually an interrupt!
— the OS will run the page fault handler in response

* handler uses the “like a page table” data structure to locate the
page on disk(disk map)

« handler reads page into a physical frame, updates PTE to point
to it and to be valid

» OS restarts the faulting process

* there are a million and one details ...
for example: demand paging loads pages into memory only
as they are needed by the process

Virtual Address Translation Details

1 table per process + Contents:
Part of process's state » Flags — dirty bit, resident bit,

clock/reference bit

» Frame number

p 0 f 0
I
20 | 109 1 16 109 1
Virtual I
Addresses ‘ Physical

Addresses

PTBR [—(+

Page Table

PTBR: Page Table Base Register

Segmentaion VS Paging

Code Data
Paging
2 words: #segment, offset
Segmentation
Page Segment
Words per address One Two (segment and offset)
Programmer visible? Invisible to application May be visible to application
programmer programmer
Replacing a block Trivial (all blocks are the Hard (must find contiguous,
same size) variable-size, unused portion of
main memory)
Memory use inefficiency Internal fragmentation External fragmentation (unused
(unused portion of page) pieces of main memory)
Efficient disk traffic Yes (adjust page size to Not always (small segments may

balance access time and transfer just a few bytes)
transfer time)

Hybrid solution: 1) Paged segments, segment is an integral number of pages
2) Multiple page sizes, with larger sizes being powers of 2 times

Cache VS VM

Parameter First-level cache Virtual memory
Block (page) 12-128 bytes 4096-65,536 bytes
size
Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty 8-100 clock cycles |700,000 - 6,000,000 clock cycles
(Access time) | (6-60 clock cycles) |(500,000 — 4,000,000 clock cycles)
(Transfer time) | (2-40 clock cycles) |(200,000 — 2,000,000 clock cycles)

Miss rate 0.5-10% 0.00001 — 0.001%
Data memory |[0.016-1 MB 4MB - 4GB
size

Replacement on cache misses is primarily controlled by hardware

The size of the processor address determines the size of virtual
memory

Secondary storage is also used for the file system

Page Table Organization

PTP

2n-o

Flat page table has size
proportional to size of
virtual address space
- can be very large for a
machine with 64-bit
addresses and several
processes

Three solutions
- page the page table (fixed
mapping)
* what really needs to
be locked down?

- multi-level page table
(lower levels paged - Tree)

- inverted page table (hash
table)

Multi-Level Page Table

Each of these is actually
one page (4K) in size!

LDir1 | Dir2 |Paﬁe| offset | /

PTBR
——
Directory —
Directory
Page
Only this table needs to Directory Page
stay in memory at all times. Table

e.g., 42-bit VA with 12-bit offset
10-bits for each of three fields
1024 4-byte entries in each table (one page)

Translation Table Base
Address/Register

Translation Table Base Address
A

31 14 13 0

Virtual Address
AL

31 20 19 0

31 14 13 2

™~
= |

'
First Level Descriptor Address

\\1 (i [4

31 20 1918 17 2 10

Y
Section Base Address Descriptor

31 20 19 0

~
Physical Address

ARM A9 Page Table (1MB section)

L1+L2 Translation in A9

Translation Table Base Address
A

' hY
3N 14 13 0
Virtual Address
A
' A
3N | 20 19 12 1 0
| ' | 1
31 14 13 2 10
Level 1 - Y
Table Level 1 Descriptor Address
b
AN 10 9 2 10
- > J
Level 2 Table Base Address
‘ 1
/ 31 10 9 2 10
Level 2
Table b v 4
Level 2 Descriptor Address
‘ AN 121" 2 10
- J
s
Small Page Base Address
' '
2KB pages
31 12 11 0
- J
Y

Physical Address

Linear Inverted Page Tables

pid vpo offiset « Store only PTEs for pages in

— hysical
0 ox1) | (o0x123) plysizar memory -
—— * Miss in page table implies
page is on disk

Index | PID | VPN _ - Need KP entries for P page

0x0 1 | 0xA63 \\ frames (usually K > 2)

—

0Ox18FI1B 0x123
ppn offset

0x18F1B}—0— 0xI

0x18FIC| 3 | 0x31AB

Requires a large CAM

http://www.cs.berkeley.edu/~kamil/teaching
/sp04/040104.pdf

Hashed Inverted Page Tables

Virtual Address
| Page | Offset |

pid vpn ofTset
\ R 0 0x1) 0x123
Hash " Page | Frame] S Ju —

b | Table Index [N Index (PID)| VPN cht\
0x18F1C l\\()xA(ﬁ ()xIS@)
0xAFOI3 | /(OxISFIB} 0 || OxI

gA]| [
C0x0> 0xISFIC| 3 || 0x31AB |0x0A921
T | x
0x18F1B 0x123
OK ppn ofTsct

| Frame| Offset |

« Chaining in order to solve collisions
« Chain is exhausted by hitting an invalid next pointer => page fault

Virtual Address Translation -
TLB

What happens during a memory access?
— map virtual address into physical address using page table
— If the page is in memory: access physical memory
— If the page is on disk: page fault
» Suspend program
» Get operating system to load the page from disk
Page table is in memory - this slows down access!

Translation lookaside buffer (TLB) special cache of translated
addresses (speeds access back up)

Translation Look-Aside Buffers

« Translation Look-Aside Buffers (TLB)
— Cache on translations
— Fully Associative, Set Associative, or Direct Mapped

hit .
VA PA miss
CPU Cache Main
Memory

Translation ‘ iss hit
with a TLB m l |

Page

Table

—] data
 TLBs are:)

— Small - typically not more than 128 — 256 entries
— Fully Associative or 2-way set Associative

— For example: A9 has 2 (instruction & data) 32-entry fully assoc.
Micro TLBs and one 128-entry 2-way associative Main TLB

Virtual page
number

Valid

TLB Structure

o Physical page

Tag

address

v

PRV N}l SNy RSNy QEENY QU

Page table
Physical page

Valid or disk address

VAN

{
N

Physical memory

Disk storage

>

>

p
N

NAY

PEN Nl E=N RSN en) SN REENY ool IES NN NS\ QEENY QRN

AR
N

A

What Actually Happens on a
TLB Miss?

Hardware-traversed page tables:

— On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

Software-traversed Page tables (like MIPS)
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since
they use translation for many things

— Examples:
» shared segments
» user-level portions of an operating system

TLB — Cache Interaction

313029 «ccvvecvcnnnn 15141312111098- -« - 3210
Virtual page number Page offset
\\20 N 12
Valid Dirty Tag Physical page number

TLB =
O

TLB hit+«——fe (&
O

@

O

J20
Physical page number | Page offset
Physical address
Physical address tag | Cache index Byte
offset
16 d04 13
Valid Tag Data
Cache
=0
- \\32

Cache hit Data

TLB and Cache

* Is the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — can we ensure that these
different virtual addresses will map to the same
location in cache? Else, there will be two different
copies of the same physical memory word

* Does the tag array store virtual or physical addresses?
» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

C-36 in textbook

Virtual Indexed, Virtually
Tagged Cache

Protection bits in cache

Cache flushing on process switch or use Process-
identifier tag (PID) (or Address Space ldentifier=ASID)

Aliasing problem: Two different virtual addresses
sharing same physical
— Page coloring: Forces aliases to share same cache

block (i.e. alias addresses should have same cache
index), thus aliases cannot co-exist in the cache

Better Alternative: Virtually
Indexed, Physically Tagged Cache

What motivation?
» Fast cache hit by parallel TLB access
* No virtual cache shortcomings

Unchanged
}v-addr
Page Page offset
‘ V-index Translation
TLB P-tag| data Frame Page offset
P-addr Block Address Block
; Tag Index | ©Offset

How could it be correct?
» Require #cache set * block size <= page size = physical index is from page offset
» Then virtual and physical indices are identical = works like a physically indexed

cache!

Virtually Indexed, Physically
Tagged Cache

Virtual Address <64>

Y

| Virtual Page Number <51>

Page Offet <13> |

y

Y

|TLB Tag compare Address <43> | TLB Index <8> |

| L1 Cache Index <7> | Block Offet <6> I

TLB Tag <43>

TLB Data <28>

L1 Tag compare Address <28>|

ToCPU

L1 Cache Tag <28>

L1 Data <256>

L

" To CPU
L o
Y A
| Physical Address <41>
| L2 Tag compare Address <19> | L2 Cache Index <16>|Block Offet <6> |
To CPU
L [2 Cache Tag <19> L2 Data <256>

-

L,

To L1 Cache or CPU

Superpages

* If a program’s working set size is 16 MB and page size is
8KB, there are 2K frequently accessed pages — a 128-entry
TLB will not suffice

By increasing page size to 128KB, TLB misses will be
eliminated — disadvantage: memory wastage, increase in
page fault penalty

« Can we change page size at run-time?

« Note that a single large page has to be contiguous and
aligned in physical memory: 128KB (17bits) page includes
16 8KB(13 bits) pages

Superpages Implementation

* At run-time, build superpages if you find that contiguous
virtual pages are being accessed at the same time

* For example, virtual pages 64-79 may be frequently
accessed — coalesce these pages into a single superpage
of size 128KB that has a single entry in the TLB

* The physical superpage has to be in contiguous physical
memory — the 16 physical pages have to be moved so
they are contiguous

virtual physical virtual physical
— N

=

