Lecture 15:
Multi-core Processors

lakovos Mavroidis

Computer Science Department
University of Crete

Why we need multiprocessors?

Uniprocessor performance

» 25% annual improvement rate from 1978 to 1986

» 52% annual improvement rate from 1986 to 2002
» Profound impact of RISC, x86

» 20% annual improvement rate from 2002 to present

» Power wall: solutions for higher ILP are power-inefficient

» |LP wall: hard to exploit more ILP

» Memory wall: ever-increasing memory latency relative to
processor speed

Has this been attempted before?

Flashback in the 70s

» In the 70s, many thought that uniprocessors will reach their
limits, so replicating processors would be the only way to
achieve higher performance

» Predictions proved wrong because of Moore’s law,
architecture innovation (RISC), and inability to build,
program, and maintain easily scalable multiprocessors (too
expensive, too hard to program, too slow to build)

» What has changed now?

Parallelism at the chip-level

Vendor-Year AMD (05) Intel (06) IBM (04) Sun (05) NVIDIA (07)
Processors/chip 2 2 2 8 128+
Threads/processor 1 2 2 4 2+
Threads/chip 2 4 4 32 768 (active)

2 billion+ (resident)

Technology trends

» Power-capped processor design motivates use of
parallelism for performance

» Design by replication: leverage one design many times

Example Multi-core: AMD

“Magny-Cours” Die (Node)

~ Core Core Core
1 3 4
512kB 512kB
‘ L2 L2
System Request Interface (SRI)

L3 data array

Memory
Controller
MCT/DCT

4 HyperTransport™3 Technology Ports

”‘ DRAM ", DRAM

Example Multi-core: Intel

Power

Qph glock

Core

ncore

Multi-core Questions

« Type of cores
— E.g. few OOO cores Vs many simple cores

« Memory hierarchy
— Which caching levels are shared and which are private

* On-chip interconnect
— Bus Vs Ring Vs scalable interconnect (e.g., mesh)
— Flat Vs hierarchical

Parallelism in applications

Data parallelism

» Databases, file servers

» Graphics, games

» Scientific computing

» More recently: clients, browsers

Request-level parallelism

» Servers, planetary-scale services

Flynn’s Taxonomy

Classification based on data and control streams

» Jason Flynn, Very High-Speed Computers, Proceedings of
the IEEE, Vol. 54, pp. 1900-1909, Dec. 1966

» SISD: Single-instruction, single-data
» MISD: Multiple-instruction, single-data (impractical)

» SIMD: Single-instruction, multiple-data

» Data-level parallelism, vector instructions

» Variation: SIMT, Single-instruction, multiple-threads
enables divergence in instructions via conditionals (NVIDIA
GPUs)

» MIMD: Multiple-instruction, multiple-data

» Most common form of multi-processing
» Flexible (used via multi-programming, or multi-threading)

Memory-centric classification
of multi-cores

| | DRAM

DRAM

Interconnection network | |

Interconnection network

DRAM | | DRAM

» Though hardware classification based on physical placement of
memory relative to processors, multiprocessors are classified
also based on the abstraction of memory provided to users.
Abstraction of memory is typically decoupled from the actual
Implementation.

Shared Memory Architecture

Major challenge to overcome in such architecture is the issue of
Cache Coherency (i.e. every read must reflect the latest write).

Shared Memory Architecture — UMA
or SMT

Mem | Mem | Mem | L.\«Iem |
-

/ Y J

| I I I

Bus Interconnection

| | | |
e o)\ (o 7

. ' £)
" AT A AT

« Symmetric MultiProcessor (SMP) or Uniform Memory
Architecture (UMA)

 Equal paths (access time) from any CPU to any memory

« Architectures that take care of cache coherency in
hardware level, are knows as CC-UMA (cache coherent
UMA).

Shared Memory Architecture — NUMA

Scalable Network

TR oS oy
Mem Mem | Mem
\ y, | \ J \)

® & O

A processor can access each memory with different
access time

* Such systems are often made by physically linking
SMP machines

« NUMA is more scalable than UMA

Example UMA and NUMA : Intel

CPU CPU

Cantral Central
Processor Unit Processor Unit CPU CPU
Central Cenmtral
Processor Unit Processor Unit

ICH

vOo C&r:tt:ollor —lc H
Intel's FSB based UMA Arch. T

Intel's QPI based NUMA Arch.

Distributed Memory
Multiprocessors

Explicit communication for remote memory accesses

No concept of global address space or cache
coherency

More scalable solution?
Use SMP instead of a single CPU instead of

Amdahl’s Law

» What percentage of program execution time is inherently
sequential?

» What is the maximum speedup if the following fractions of
program execution time are sequential?

1. 10%
2. 5%
3. 1%

1
(1 — fraCﬁO”enhanced) +

Speedupyyerar = fractionparael

Speedupparaliel

Memory Latency

» Processor speed improving at a rate of 50% per year (20%
In last 4 years), memory latency improving at a rate of 7%
per year.

» Local memory access latencies of 60 ns versus remote
memory access latency of over 100 ns

» Data placement important for avoiding remote memory
accesses

» Complicates parallel programming
» Contradicts assumption of flat shared address space

Example

» Impact of remote memory accesses
» Assumptions:

» 0.2% remote memory access rate
» Base CPI = 0.5 (e.g. superscalar)
» 200ns remote memory access latency

CPI = Base CPI + Remote Request Rate x Remote Request Cost
CPl =0.5+0.2% x 200 = 0.9

Remote memory accesses almost halve performance

The role of software in parallelism

Algorithms

» Sequential algorithms may include parallel components

» New algorithms that provide more parallelism, better
scalability, lower communication/synchronization costs etc.
may be needed

» Example: FFT straightforward parallelization versus
Cooley-Tuckey algorithm.

The role of software in parallelism

Languages, compiler, runtime systems

» Language constructs and runtime libraries are used for
communication, synchronization, data distribution, in
parallel programs.

» Performance and scalability depend on the efficiency of the
language/library mechanisms that implement parallelism

» How fast can processor A provide processor B with work to
do?

» How fast can | send data from the memory of processor A
to the memory of processor B?

» How fast can | coordinate processors to provide mutual
exclusion or implement a global barrier?

We will focus only on SMT
(this Is last lessons)

History

» Multiple processor on a single board, communicating over
a shared bus, using loads/stores and a cache coherence
protocol (80's—90’s)

» Multiple processors on multiple boards in a single cabinet,
communicating over a shared bus (on-board) and a
scalable switch-based interconnection network (late 90°s)

» Multiple processors on a single chip, communicating over a
shared bus (2004—onwards) or a scalable switch-based
interconnection network (2008—onwards)

SMT

Processor Processor e Processor
Cache Cache . Cache

! ! !

Interconnection Network

i I

Memory 1/O

« Caches are (equally) helpful with multi-core

— Reduce access latency, reduce bandwidth requirements
— For both private and shared data across cores

« But caches introduce the problems of coherence & consistency

Cache Coherence Problem

ol0C

u=5 $ $

@ Interconnection network

DRAM
u=5

DRAM

Cache Coherence Problem

OOE

u=5

]
&)
=

u

@ Interconnection network

DRAM
u=5

DRAM

Cache Coherence Problem

5 $ u=7

O,

u

@ Interconnection network

DRAM
u=5

DRAM

Processor 3 writes new value of u. Processor 1 and processor

Cache Coherence Problem

P, P
Assume initial values A=0, flag=0
A= 1; while (flag==0); /% busy-wait =/
flag = 1; print A;

P; expects that A=1 after exiting the while. Intuition not
guaranteed by coherence. If memory writes from Py commit in
order then intuition is verified. If not, then P; may see A = 0!
The memory system is typically expected to preserve ordering
of memory accesses by a single processor but not across

Processors.

Coherence versus Consistency

« Coherence assures that values written by one processor
are read by other processors.

« However, coherence says nothing about when writes will
become visible.

Another way of looking at it:
« Coherence insures that writes to a particular location will
be seen in order.

« Consistency insures that writes to different locations will be
seen in an order that makes sense, given the source code.

Did we have a coherence of a consistency problem ?

Schemes for enforcing coherence

» Multiple processors may have copies of same data
(common in parallel programs)

» SMPs typically use a cache coherence protocol
implemented in hardware, although slower software
solutions are also available

» Key operations: replication and migration of data:

» Migration: data can be moved to the cache of a single
processor and used for reading or writing transparently.
Reduces latency and demand for bandwidth.

» Replication: Data can be simultaneously read by multiple
processors, by having processors make copies of data in
their local caches. Reduces latency, demand for bandwidth
and contention for accessing shared data.

Classes of cache coherence protocols

» Directory based: Sharing status of a cache block (i.e. what
processors have a copy of the block in the cache and
whether this copy has been updated) is kept in one
location (in memory, or on-chip in recent multi-core
processors) called the directory

» Snooping: Every cache with a copy of a block also has
Information on the sharing status of the block, but no
centralized state is kept.

» All caches are accessible via a centralized broadcasting
mechanism (typically a bus, nowadays a switch).

» All cache controllers monitor (or snoop) the centralized
medium to determine whether they have or not a copy of
the block requested by another processor, and update
sharing state.

Snoopy cache coherence

snoop

transaction

$

—

Interconnection network

DRAM

DRAM

Cache to » Cache controller snoops all
oo transactions on the shared
(e.g. writeback, interconnect.

or writethrough . . vp
ohy A transaction is relevant if it
involves a block stored in the
cache of the snooping processor.

$

Snoopy cache coherence

snoop
transaction

—

Interconnection network

DRAM

DRAM

» |f transaction is on relevant

Cache to
memory
transaction
(e.g. writeback,
or writethrough)

block, controller takes action to
ensure coherence.

Action may be invalidate (block
written by other processor),
update (block written by another
processor and new value stored
in the cache of the snooping
processor), pr supply new value
(requested by other processor).

Processor that needs to write
either gets exclusive access to
block by invalidating other
copies, or writes and updates
other copies.

Example: write-through, write-
iInvalidate

oloc

y—/S $ u=7
N A

U

@ Interconnection network

DRAM
u=7

O,

DRAM

Example: write-through, write-
update

ololc

u=7 $ u=7

N /]

u

@ Interconnection network

DRAM
u=7

O,

DRAM

