
Lecture 13:
Virtual Memory

Iakovos Mavroidis

Computer Science Department

University of Crete

Outline

• Virtual Memory

– Basics

– Address Translation

– Cache vs VM

– Paging

– Replacement

– TLBs

– Segmentation

– Page Tables

Memory Hierarchy

CPU Registers
100s Bytes

<10s ns

Cache
K Bytes

10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes

200ns- 500ns
$.0001-.00001 cents /bit

Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit

-5 -6

Capacity
Access Time

Cost

Tape
infinite
sec-min

10

-8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Virtual Memory

• Some facts of computer life…

– Computers run lots of processes simultaneously

– No full address space of memory for each process

– Must share smaller amounts of physical memory among
many processes

• Virtual memory is the answer!

– Divides physical memory into blocks, assigns them to
different processes

– Virtual memory (VM) allows main memory (DRAM) to act like
a cache for secondary storage (magnetic disk).

– VM address translation a provides a mapping from the
virtual address of the processor to the physical address in
main memory or on disk.

Simple View of Memory

Running Two Programs (Relocation)
No Protection

Three Advantages of Virtual Memory

• Translation:

– Program can be given consistent view of memory, even though
physical memory is scrambled

– Makes multithreading reasonable (now used a lot!)

– Only the most important part of program (“Working Set”) must
be in physical memory.

– Contiguous structures (like stacks) use only as much physical
memory as necessary yet still grow later.

• Protection:

– Different threads (or processes) protected from each other.

– Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).

– Kernel data protected from User programs

– Very important for protection from malicious programs

• Sharing:

– Can map same physical page to multiple users
(“Shared memory”)

Protection with Virtual Memory

Basics

• Programs reference “virtual” addresses in a non-
existent memory

– These are then translated into real “physical” addresses

– Virtual address space may be bigger than physical address
space

• Divide physical memory into blocks, called pages

– Anywhere from 512B to 16MB (4k typical)

• Virtual-to-physical translation by indexed table
lookup

– Add another cache for recent translations (the TLB)

• Invisible to the programmer

– Looks to your application like you have a lot of memory!

A Load to Virtual Memory

VM: Page Mapping

Process 1’s

Virtual

Address

Space

Process 2’s

Virtual

Address

Space

Physical Memory

Disk

Page Frames

Virtual Address Translation

Virtual Address Translation

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Cache terms vs. VM terms

So, some definitions/“analogies”

– A “page” or “segment” of memory is analogous to a “block”
in a cache

– A “page fault” or “address fault” is analogous to a cache
miss

“real”/physical

memory

so, if we go to main memory and our data

isn’t there, we need to get it from disk…

Virtual Address Translation Details

PTBR: Page Table Base Register

Cache VS VM
Parameter First-level cache Virtual memory

Block (page)

size

12-128 bytes 4096-65,536 bytes

Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty

(Access time)

(Transfer time)

8-100 clock cycles

(6-60 clock cycles)

(2-40 clock cycles)

700,000 – 6,000,000 clock cycles

(500,000 – 4,000,000 clock cycles)

(200,000 – 2,000,000 clock cycles)

Miss rate 0.5 – 10% 0.00001 – 0.001%

Data memory

size

0.016 – 1 MB 4MB – 4GB

• Replacement on cache misses is primarily controlled by hardware

• The size of the processor address determines the size of virtual
memory

• Secondary storage is also used for the file system

Page Table Organization

Multi-Level Page Table

PTBR

Dir1 Dir2 Page offset

Directory

Directory
Page

Directory
Page

Table

e.g., 42-bit VA with 12-bit offset

10-bits for each of three fields

1024 4-byte entries in each table (one page)

Inverted Page Tables

• Store only PTEs for pages in
physical memory

• Miss in page table implies
page is on disk

• Need KP entries for P page
frames (usually K > 2)

Requires a large CAM

Hashed Inverted Page Tables
Virtual Address

Page Offset

Hash Page Frame S

=

Frame Offset

OK

• Chaining in order to solve collisions

• Chain is exhausted by hitting an invalid next pointer => page fault

Virtual Address Translation -
TLB

• What happens during a memory access?

– map virtual address into physical address using page table

– If the page is in memory: access physical memory

– If the page is on disk: page fault

» Suspend program

» Get operating system to load the page from disk

• Page table is in memory - this slows down access!

• Translation lookaside buffer (TLB) special cache of translated
addresses (speeds access back up)

Translation Look-Aside Buffers

• Translation Look-Aside Buffers (TLB)

– Cache on translations

– Fully Associative, Set Associative, or Direct Mapped

• TLBs are:

– Small – typically not more than 128 – 256 entries

– Fully Associative

CPU TLB Cache Main
Memory

VA PA miss

hit

data

Page
Table

hit

miss Translation
with a TLB

TLB Structure

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Physical page

addressValid

TLB

1

1

1

1

0

1

Tag

Virtual page

number

Physical page

or disk address

Physical memory

Disk storage

What Actually Happens on a
TLB Miss?

• Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault

– Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault

» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal

– Modern operating systems tend to have more TLB faults since
they use translation for many things

– Examples:
» shared segments

» user-level portions of an operating system

TLB – Cache Interaction

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

TLB and Cache

Virtual Indexed, Virtually
Tagged Cache

• Protection bits in cache

• Cache flushing on process switch or use Process-identifier
tag (PID)

• Aliasing problem: Two different virtual addresses sharing
same physical

– Page coloring: Forces aliases to share same cache block,
thus aliases cannot co-exist in the cache

Better Alternative: Virtually
Indexed, Physically Tagged Cache

What motivation?
• Fast cache hit by parallel TLB access

• No virtual cache shortcomings

How could it be correct?
• Require #cache set * block size <= page size ⇒ physical index is from page offset

• Then virtual and physical indices are identical ⇒ works like a physically indexed

cache!

Block Address Block

offset Index Tag

Page Page offset

Frame Page offset

Translation

Unchanged

Virtually Indexed, Physically
Tagged Cache

28

Superpages

Superpages Implementation

