
Lecture 10:
Thread Level Parallelism (TLP)

Iakovos Mavroidis

Computer Science Department

University of Crete

Multiple Issue

Έχουμε μελετήσει

θα μελετήσουμε σημερα

Δυναμικές δρομολόγηση

εντολών (hardware) Στατικές (shoftware/compiler)

•Scoreboard (ελάττωση RAW stalls)

•Register Renaming

 α)Tomasulo

 (ελάττωση WAR και WAW stalls)

 β)Reorder Buffer

•Branch prediction

 (ελάττωση Control stalls)

•Multiple Issue (CPI < 1)

•Multithreading (CPI < 1)

•Loop Unrolling

•Software Pipelining

•Trace Scheduling

Προσοχή να διατηρουνται

1. Data flow

2. Exception Behavior

CPI = CPIideal + Stallsstructural + StallsRAW + StallsWAR + StallsWAW + Stallscontrol

Multithreading

• Difficult to continue to extract ILP from a single thread

• Many workloads can make use of thread-level parallelism (TLP)

– TLP from multiprogramming (run independent sequential
jobs)

– TLP from multithreaded applications (run one job faster
using parallel threads)

• Multithreading uses TLP to improve utilization of a single
processor

Pipeline Hazards

• Each instruction may depend on the next

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D

F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

What can be done to cope with this?

Solution with Multithreading

How can we guarantee no dependencies between instructions in a
pipeline?

-- One way is to interleave execution of instructions from different
program threads on same pipeline

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW 0(r7), r5

T1: LW r5, 12(r1)

t9

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

Multithreaded DLX

• Have to carry thread select down pipeline to ensure correct state

bits read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2 Thread

select

PC

1
PC

1
PC

1
PC

1

I$ IR
GPR1 GPR1 GPR1 GPR1

X

Y

2

D$

Multithreading Cost

• Each thread requires its own user state

– PC

– GPRs

• Also, needs its own system state

– virtual memory page table base register

– exception handling registers

• Other costs?

Thread Scheduling Policies

• Fixed interleave (CDC 6600 PPUs, 1964)

– each of N threads executes one instruction every N cycles

– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)

– OS allocates S pipeline slots amongst N threads

– hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982)

– hardware keeps track of which threads are ready to go

– picks next thread to execute based on hardware priority scheme

HW Multithreading alternatives

Fine-Grain Multithreading

HW Multithreading alternatives:
Fine-Grain Multithreading

Fine-Grain Multithreading

HW Multithreading alternatives:
Fine-Grain Multithreading

Coarse-Grain Multithreading

HW Multithreading alternatives:
Coarse-Grain Multithreading

Coarse-Grain Multithreading

Switch upon long upon long-latency events

HW Multithreading alternatives:
Simultaneous Multithreading

• Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one thread
at a time

• SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to enter
execution on same clock cycle. Gives better utilization of
machine resources.

For most apps, most execution units
lie idle in an OoO superscalar

From: Tullsen,

Eggers, and

Levy,

“Simultaneous

Multithreading:

Maximizing On-

chip Parallelism,

ISCA 1995.

For an 8-way

superscalar.

Superscalar Machine Efficiency

Issue width

Time

Completely idle cycle

(vertical waste)

Instruction

issue

Partially filled cycle,

i.e., IPC < 4

(horizontal waste)

Vertical Multithreading

• What is the effect of cycle-by-cycle interleaving?

– removes vertical waste, but leaves some horizontal waste

Issue width

Time

Second thread interleaved

cycle-by-cycle

Instruction

issue

Partially filled cycle,

i.e., IPC < 4

(horizontal waste)

Chip Multiprocessing (CMP)

• What is the effect of splitting into multiple processors?

– reduces horizontal waste,

– leaves some vertical waste, and

– puts upper limit on peak throughput of each thread.

Issue width

Time

Ideal Superscalar Multithreading: SMT
[Tullsen, Eggers, Levy, UW, 1995]

• Interleave multiple threads to multiple issue slots with no
restrictions

Issue width

Time

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and allow

instructions fetched from different threads to issue

simultaneously

• Utilize wide out-of-order superscalar processor issue queue

to find instructions to issue from multiple threads

• OOO instruction window already has most of the circuitry

required to schedule from multiple threads

• Any single thread can utilize whole machine

Summary: Multithreaded Categories
T

im
e

(p
ro

ce
ss

or
 c

yc
le

) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

Power 4

Single-threaded predecessor to

Power 5. 8 execution units in

out-of-order engine, each may

issue an instruction each cycle.

10/30/2007 22

Power 4

Power 5

2 fetch (PC),

2 initial decodes

2 commits

(architected

register sets)

Power 5 data flow ...

Why only 2 threads? With 4, one of the shared

resources (physical registers, cache, memory

bandwidth) would be prone to bottleneck

Changes in Power 5 to support SMT

• Increased associativity of L1 instruction cache and the
instruction address translation buffers

• Added per thread load and store queues

• Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches

• Added separate instruction prefetch and buffering per thread

• Increased the number of virtual registers from 152 to 240

• Increased the size of several issue queues

• The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

Power 5 thread performance ...

Relative priority

of each thread

controllable in

hardware.

For balanced

operation, both

threads run

slower than if

they “owned”

the machine.

Pentium-4 Hyperthreading (2002)

• First commercial SMT design (2-way SMT)

– Hyperthreading == SMT

• Logical processors share nearly all resources of the physical
processor

– Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~ 5%

• When one logical processor is stalled, the other can make
progress

– No logical processor can use all entries in queues when two
threads are active

• Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

Pentium-4 Hyperthreading
Front End

Resource divided

between logical CPUs

Resource shared

between logical CPUs

Pentium-4 Hyperthreading
Execution Pipeline

[Intel Technology Journal, Q1 2002]

SMT adaptation to parallelism type

For regions with high thread level
parallelism (TLP) entire machine
width is shared by all threads

Issue width

Time

Issue width

Time

For regions with low thread level
parallelism (TLP) entire machine
width is available for instruction level
parallelism (ILP)

Initial Performance of SMT

• Pentium 4 Extreme SMT yields 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate

– Pentium 4 is dual threaded SMT

– SPECRate requires that each SPEC benchmark be run against
a vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC benchmarks paired with
every other (262 runs) speed-ups from 0.90 to 1.58; average was
1.20

• Power 5, 8-processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup between 0.89 and
1.41

– Most gained some

– Fl.Pt. apps had most cache conflicts and least gains

Comparison between ILP processors

Comparison between ILP processors

Comparison between ILP processors

Measuring processor efficiency

Comparison between ILP processors

Best ILP approach?

