

HY425 Homework set 3 1

HY425: Computer Systems Architecture

Homework Problem Set 3

Assignment: Monday 30/11/2015

Due: Wednesday 9/12/2015 23:59:59

Instructions: Solve all problems in a .pdf file and send them via e-mail to Dimitris Giannopoulos

(dgiannop@csd.uoc.gr). Use the subject: HY425 - Homework 3

Problem 1 (100 points)

The following code is known as the DAXPY loop (Double‐precision AX Plus Y) from the BLAS

package (Basic Linear Algebra Subprograms), where x and y are arrays of doubles and a is a

double:

for (i=0 ; i<N ; i++){

 y[i] = a * x[i] + y[i];
}

 Assume that our compiler has generated the following RISC assembly code:

[note: R1 keeps x[] index , R2 keeps y[] index, R4 keeps x[N‐1] index, F0 keeps a]

 Instruction Notes

Loop: LD  F2,   0(R1) Load x[i] into F2 

 MULTD   F4,   F2,   F0  Put a*x[i] into F4

 LD  F6,   0(R2)  Load y[i] into F6 

 ADDD  F6,   F4,   F6  Put a*x[i] + y[i] into F6 

 SD  F6,  0(R2)  Store F6 into y[i] 

 ADDI  R1,  R1,   8  Increment x index (R1) 

 ADDI  R2,  R2,  8  Increment y index  (R2) 

 SGT  R3,   R1,   R4  Test if loop done 

 BEQZ  R3,   Loop  Loop if not done 

 NOP Branch delay slot

Further assume the following latencies of a typical 5‐stage in‐order pipelined RISC processor (IF,

ID, EX, MEM, WB) and that bypassing is applied whenever possible:

HY425 Homework set 3 2

Operation(s) Stage Latency (cycles)

All Integer EX 1

LD MEM 2

SD MEM 1

ADDD EX 3

MULTD EX 5

i) Show how the RISC processor would execute each loop iteration (indicate stalls) and calculate

the total number of cycles required to run 120 iterations of the loop.

ii) Try to rearrange the instructions in order to reduce the number of stalls and then calculate the total

number of cycles required to run 120 iterations of the loop. Compare the performance now with (i).

 

iii) Loop‐unroll as many iterations needed, in order to reduce the number of stalls and then calculate the

total number of cycles required to run 120 iterations of the loop. Compare the performance now with (i)

and (ii).

iv) Apply the technique of software pipelining and then calculate the total number of cycles required to

run 120 iterations of the loop. Compare the performance now with (i), (ii) and (iii). Do not forget the

startup and cleanup code!

Now assume a VLIW processor that can issue two memory references, two FP operations, and one

integer operation or branch in every clock cycle. Further assume the same operation latencies

with the RISC processor above and that you have infinite registers.

v) Show how the code that you generated in (iii) would run in the VLIW processor and then calculate

the total number of cycles required to run 120 iterations of the loop. Compare the performance now with

(iii) and (iv).

vi) Show how the code that you generated in (iv) would run in the VLIW processor then calculate the

total number of cycles required to run 120 iterations of the loop. Compare the performance now with

(iii), (iv) and (v).

vii) Loop‐unroll as many iterations needed, in order to reduce the number of stalls and keep the VLIW

pipeline utilized, then calculate the total number of cycles required to run 120 iterations of the loop.

Compare the performance now with (iii), (iv), (v) and (vi).

