
Lecture 9:
 Multiple Issue (Superscalar and VLIW)

Iakovos Mavroidis

Computer Science Department

University of Crete

Example: Dynamic Scheduling in
PowerPC 604 and Pentium Pro

• In-order Issue, Out-of-order execution, In-order Commit

Multiple Issue

Έχουμε μελετήσει

θα μελετήσουμε σημερα

Θα μελετήσουμε σε επόμενα μαθήματα

Δυναμικές δρομολόγηση

εντολών (hardware) Στατικές (shoftware/compiler)

•Scoreboard (ελάττωση RAW stalls)

•Register Renaming

 α)Tomasulo

 (ελάττωση WAR και WAW stalls)

 β)Reorder Buffer

•Branch prediction

 (ελάττωση Control stalls)

•Multiple Issue (CPI < 1)

•Multithreading (CPI < 1)

•Loop Unrolling

•Software Pipelining

•Trace Scheduling

Προσοχή να διατηρουνται

1. Data flow

2. Exception Behavior

CPI = CPIideal + Stallsstructural + StallsRAW + StallsWAR + StallsWAW + Stallscontrol

Beyond CPI = 1

• Initial goal to achieve CPI = 1

• Can we improve beyond this?

• Two approaches

• Superscalar:

– varying no. instructions/cycle (1 to 8), i.e. 1-way, 2-way, …,
8-way superscalar

– scheduled by compiler (statically scheduled) or by HW
(dynamically scheduled)

– e.g. IBM PowerPC, Sun UltraSparc, DEC Alpha, HP 8000

– The successful approach (to date) for general purpose
computing

• Anticipated success lead to use of
Instructions Per Clock cycle (IPC) vs. CPI

Beyond CPI = 1

• Alternative approach

• (Very) Long Instruction Words (V)LIW:

– fixed number of instructions (4-16)

– scheduled by the compiler; put ops into wide templates

– Currently found more success in DSP, Multimedia
applications

– Joint HP/Intel agreement in 1999/2000

– Intel Architecture-64 (Merced/A-64) 64-bit address

– Style: “Explicitly Parallel Instruction Computer (EPIC)”

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else

– Fetch 64-bits/clock cycle; Int on left, FP on right

– Can only issue 2nd instruction if 1st instruction issues

– More ports for FP registers to do FP load & FP op in a pair

 Type Pipe Stages

 Int. instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Int. instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Int. instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS

– instruction in right half can’t use it, nor instructions in next slot

In-Order Superscalar Pipeline

• Fetch two instructions per cycle;

issue both simultaneously if one

is integer/memory and other is

floating point

• Inexpensive way of increasing

throughput, examples include

Alpha 21064 (1992) & MIPS R5000

series (1996)

• Same idea can be extended to

wider issue by duplicating

functional units (e.g. 4-issue

UltraSPARC) but regfile ports and

bypassing costs grow quickly

Commit

Point

2
PC

Inst.

Mem D
Dual

Decode X1 X2
Data

Mem W +
GPR

s

X2 W FAdd X3

X3

FPRs X1

X2 FMul X3

X2 FDiv X3

Unpipelined

divider

Superscalar Pipeline
(PowerPC- and enhanced

Tomasulo-Scheme)

Instructions in the instruction window are free from control
dependencies due to branch prediction, and free from name
dependences due to register renaming.

So, only (true) data dependences and structural conflicts
remain to be solved.

Instruction

Fetch

. . .
Instruction

Decode

and

Rename

. . .

In
st

ru
ct

io
n

 W
in

d
o

w

Issue

R
es

er
v

at
io

n

S
ta

ti
o

n
s

Execution

R
es

er
v

at
io

n

S
ta

ti
o

n
s

Execution

. . .
Retire

and

Write

Back

Similar Technique:
Superpipelined Machines

• Machine issues instructions faster than they are executed

• Advantage: increase in the number of instructions which can be in
the pipeline at one time and hence the level of parallelism.

• Disadvantage: The larger number of instructions "in flight" (ie in
some part of the pipeline) at any time, increases the potential for
data dependencies to introduce stalls

MIPS R4000

Sequential ISA Bottleneck

Check instruction
dependencies

Superscalar processor

a = foo(b);
for (i=0, i<

Sequential
source code

Superscalar compiler

Find independent
operations

Schedule
operations

Sequential
machine code

Schedule
execution

Review: Unrolled Loop that
Minimizes Stalls for Scalar

1 Loop: LD F0,0(R1)

2 LD F6,-8(R1)

3 LD F10,-16(R1)

4 LD F14,-24(R1)

5 ADDD F4,F0,F2

6 ADDD F8,F6,F2

7 ADDD F12,F10,F2

8 ADDD F16,F14,F2

9 SD 0(R1),F4

10 SD -8(R1),F8

11 SD -16(R1),F12

12 SUBI R1,R1,#32

13 BNEZ R1,LOOP

14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle

ADDD to SD: 2 Cycles

Loop Unrolling in Superscalar
 Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1

 LD F6,-8(R1) 2

 LD F10,-16(R1) ADDD F4,F0,F2 3

 LD F14,-24(R1) ADDD F8,F6,F2 4

 LD F18,-32(R1) ADDD F12,F10,F2 5

 SD 0(R1),F4 ADDD F16,F14,F2 6

 SD -8(R1),F8 ADDD F20,F18,F2 7

 SD -16(R1),F12 8

 SD -24(R1),F16 9

 SUBI R1,R1,#40 10

 BNEZ R1,LOOP 11

 SD -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)

• 12 clocks, or 2.4 clocks per iteration (1.5X)

SS Advantages and Challenges

• The potential advantages of a SS processor versus a vector or
VLIW processor are their ability to extract some parallelism from
less structured code (i.e. no loops) and their ability to easily
cache all forms of data.

• While Integer/FP split is simple for the HW, get CPI of 0.5 only for
programs with:

– Exactly 50% FP operations

– No hazards

• If more instructions issue at same time, greater difficulty of decode
and issue

– Even 2 way-scalar => examine 2 opcodes, 6 register specifiers, &
decide if 1 or 2 instructions can issue

Example Processor: Intel Core2

Superpipelined &

Superscalar (4-way)

All in one: 2-way SS +OoO+Branch
Prediction+Reorder Buffer(Speculation)

Alternative Solutions
• Very Long Instruction Word (VLIW)

• Explicitly Parallel Instruction Computing (EPIC)

• Simultaneous Multithreading (SMT), next lecture

• Multi-core processors, ~last lecture

• VLIW: tradeoff instruction space for simple decoding

– The long instruction word has room for many operations

– By definition, all the operations the compiler puts in the
long instruction word are independent => execute in
parallel

– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1
branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168
bits wide

» Intel Itanium 1 and 2 contain 6 operations per instruction
packet

– Need compiling technique that schedules across
several branches

VLIW: Very Long Instruction Word

• Multiple operations packed into one instruction

• Each operation slot is for a fixed function

• Constant operation latencies are specified

• Architecture requires guarantee of:

– Parallelism within an instruction => no cross-operation RAW check

– No data use before data ready => no data interlocks

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

VLIW Compiler Responsibilities

• Schedule operations to maximize parallel execution

• Guarantees intra-instruction parallelism

• Schedule to avoid data hazards (no interlocks)

– Typically separates operations with explicit NOPs

Typical VLIW processor

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

 ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 7

SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8

SD -0(R1),F28 BNEZ R1,LOOP 9

 Unrolled 7 times to avoid delays

 7 results in 9 clocks, or 1.3 clocks per iteration (1.8X vs SS)

 Average: 2.5 ops per clock, 50% efficiency

 Note: Need more registers in VLIW (15 vs. 6 in SS)

Advantages of VLIW

Compiler prepares fixed packets of multiple
operations that give the full "plan of
execution"

 dependencies are determined by compiler and
used to schedule according to function unit
latencies

 function units are assigned by compiler and
correspond to the position within the instruction
packet ("slotting")

 compiler produces fully-scheduled, hazard-free
code => hardware doesn't have to "rediscover"
dependencies or schedule

Disadvantages of VLIW
• Object-code compatibility

– have to recompile all code for every machine, even for two
machines in same generation

• Object code size

– instruction padding wastes instruction memory/cache

– loop unrolling/software pipelining replicates code

• Scheduling variable latency memory operations

– caches and/or memory bank conflicts impose statically
unpredictable variability

– As the issue rate and number of memory references
becomes large, this synchronization restriction becomes
unacceptable

• Knowing branch probabilities

– Profiling requires an significant extra step in build process

• Scheduling for statically unpredictable branches

– optimal schedule varies with branch path

What if there are no loops?

• Branches limit basic block size in
control-flow intensive irregular
code

• Difficult to find ILP in individual
basic blocks

Basic block

Trace Scheduling [Fisher,Ellis]

• Trace selection: Pick string of basic blocks,
a trace, that represents most frequent
branch path

• Use profiling feedback or compiler heuristics
to find common branch paths

• Trace Compaction: Schedule whole “trace”
at once. Packing operations to few wide
instructions.

• Add fixup code to cope with branches
jumping out of trace

• Effective to certain classes of programs

• Key assumption is that the trace is much
more probable than the alternatives

Intel Itanium, EPIC IA-64

• EPIC is the style of architecture (cf. CISC, RISC)

– Explicitly Parallel Instruction Computing (really just VLIW)

• IA-64 is Intel’s chosen ISA (cf. x86, MIPS)

– IA-64 = Intel Architecture 64-bit

– An object-code-compatible VLIW

• Merced was first Itanium implementation (cf. 8086)

– First customer shipment expected 1997 (actually 2001)

– McKinley, second implementation shipped in 2002

– Recent version, Poulson, eight cores, 32nm, announced 2011

• Different instruction format than VLIW architectures using with
indicators

• Support for SW speculation

Eight Core Itanium “Poulson” [Intel 2011]

• 8 cores

• 1-cycle 16KB L1 I&D caches

• 9-cycle 512KB L2 I-cache

• 8-cycle 256KB L2 D-cache

• 32 MB shared L3 cache

• 544mm2 in 32nm CMOS

• Over 3 billion transistors

• Cores are 2-way multithreaded

• 6 instruction/cycle fetch

– Two 128-bit bundles

• Up to 12 insts/cycle execute

IA-64 Registers

• 128 General Purpose 64-bit Integer Registers

• 128 General Purpose 64/80-bit Floating Point Registers

• 64 1-bit Predicate Registers

• 8 64-bit Branch Registers

• Register stack mechanism: GPRs “rotate” to reduce code
size for software pipelined loops

– Rotation is a simple form of register renaming allowing
one instruction to address different physical registers on
each procedure call

IA-64 Instruction Format

• Template bits describe grouping of these instructions
with others in adjacent bundles

• Each group contains instructions that can execute in
parallel

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle (41*3+5)

group i group i+1 group i+2 group i-1

bundle j bundle j+1 bundle j+2 bundle j-1

IA-64 Template

IA-64 Basic Architecture

IA-64 Predicated Execution
Problem: Mispredicted branches limit ILP

Solution: Eliminate hard to predict branches with predicated execution

– Almost all IA-64 instructions can be executed conditionally under predicate

– Instruction becomes NOP if predicate register false

Inst 1
Inst 2
br a==b, b2

Inst 3
Inst 4
br b3

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1

Inst 2

p1= a!=b,p2 = a==b

(p1) Inst 3 || (p2) Inst 5

(p1) Inst 4 || (p2) Inst 6

Inst 7

Inst 8

Predication

One basic block

Mahlke et al, ISCA95: On average
>50% branches removed

Branch Predication

Branch Predication Example

