Lecture 13:
Virtual Memory

lakovos Mavroidis

Computer Science Department
University of Crete

Outline

* Virtual Memory
— Basics
— Address Translation
— Cachevs VM
— Paging
— Replacement
— TLBs
— Segmentation
— Page Tables

Memory Hierarchy

Capacity
Access Time Staging Upper Level
Cost Xfer Unit 4 faster
CPU Registers :
100s Bytes Registers
<10s ns A _
Instr. Operands prolgngOTp”ef
- es
Cache A4 y
K Bytes
10-100ns
1-0.1 cents/bit cache cntl
8-128 bytes
Main Memory
M Bytes
200ns-500ns
$.0001-.00001 cents /bit oS
Disk 4K-16K bytes
G Bytes, 10 ms
(20,000,000 ns)
-5 -6
10 -10 cents/bit 4 i user/operator v
Files Mbytes
Tape A4 Larger
infinite
sec-min Tape Lower Level
-8

10

Virtual Memory

« Some facts of computer life...
— Computers run lots of processes simultaneously
— No full address space of memory for each process

— Must share smaller amounts of physical memory among
many processes

* Virtual memory is the answer!

— Divides physical memory into blocks, assigns them to
different processes

— Virtual memory (VM) allows main memory (DRAM) to act like
a cache for secondary storage (magnetic disk).

— VM address translation a provides a mapping from the
virtual address of the processor to the physical address in
main memory or on disk.

PC

Simple View of Memory

R1

—pl Code

R31

> Data

-—pl Stack

Single program runs at a
time
Code and static data are at
fixed locations
- code starts at fixed
location, e.g., 0x100

- subroutines may be at
fixed locations (absolute

jumps)
data locations may be wired
intfo code

Stack accesses relative to
stack pointer.

Running Two Programs (Relocation)

No Protection

Need to relocate /ogical

addresses to physical

Stack

—_PC__ locations
e I | S Stack is already relocatable
- all accesses relative to SP
=1 | 2% [- Code can be made relocatable
- allow only relative jumps
—>| Stack - all accesses relative to PC
Data segment
PC - can calculate all addresses
I,. Code | relative o a DP
= * expensive
»| Data e - faster with hardware support
R31 * base register

Three Advantages of Virtual Memory

* Translation:

— Program can be given consistent view of memory, even though
physical memory is scrambled

— Makes multithreading reasonable (now used a lot!)

— Only the most important part of program (“Working Set”) must
be in physical memory.

— Contiguous structures (like stacks) use only as much physical
memory as necessary yet still grow later.

* Protection:
— Different threads (or processes) protected from each other.

— Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).

— Kernel data protected from User programs
— Very important for protection from malicious programs
e Sharing:
— Can map same physical page to multiple users
(“Shared memory”)

Protection with Virtual Memory

» Virtual memory allows protection without the requirement
that pages be pre-allocated in contiguous chunks

* Physical pages are allocated based on program needs and
physical pages belonging to different processes may be
adjacent — efficient use of memory

» Each page has certain read/write properties for user/kernel
that is checked on every access
» a program’'s executable can not be modified
» part of kernel data cannot be modified/read by user
» page tables can be modified by kernel and read by
user

Basics

Programs reference “virtual” addresses in a non-
existent memory

— These are then translated into real “physical” addresses

— Virtual address space may be bigger than physical address
space

Divide physical memory into blocks, called pages
— Anywhere from 512B to 16MB (4k typical)

Virtual-to-physical translation by indexed table
lookup

— Add another cache for recent translations (the TLB)

Invisible to the programmer
— Looks to your application like you have alot of memory!

A Load to Virtual Memory

LW R1,0(R2)
CPU |——> | Cache | — DRAM
% 1GB
Virtual Addr. Z Physical Addr.
64 bits E 48 bits

30 bits

Translate from virtual space to physical space
- VA= PA
- May need to go to disk

VM: Page Mapping

Process 1’s /
Virtual

Address
Space

Process 2’s | P Disk

Virtual i , -
Address oammmms

Space ~

—

L]
. em e

Physical Memory

Virtual Address Translation

63 12 11 0
Virtual Page Number (VPN) Page Offset

b

Translation
Table

29 ‘ 12 11 v 0
Physical Page Number (PPN) Page Offset

* Main Memory =1 6B » Translation table
* Page Size = 4KB - aka "Page Table"

- VPN = 52 bits
+ PPN = 18 bits

Virtual Address Translation

Page table register

Virtual address

31 30 29 28 27 ecvececrecrececees 151413 1211109 8 ¢+« 3210

Virtual page number Page offset
2 12
\\ 0 \\
‘Valid Physical page number
] ?
Page table
18
v . \\
If 0 then page is not
present in memory
290 28 27 ceteccscccasccans | R 15 14 13 12 111098'-‘---3210
Physical page number Page offset

Phvsical address

Cache terms vs. VM terms

“real”/physical

So, some definitions/“analogies” / memory

— A “page” or “segment” of memory is analogous to a “block”
In a cache

— A “page fault” or “address fault” is analogous to a cache
miss /
so, if we go to main memory and our data
isn’t there, we need to get it from disk...

User Program Runs | | User program
Page fault | 1 resumes
OS requests page D [] OSInstalls page
Disk read | |
l, !, Disk interrupt

2nd User Program Runs | |

Virtual Address Translation Detalls

1 table per process + Contents:
Part of process's state » Flags — dirty bit, resident bit,

clock/reference bit

» Frame number

p 0 f 0
ITTTTT]
20 109 \I 16 10 ‘?J/ 1
Virtual I
Addresses ‘ Physical
Addresses
PTBR |—(+ »10]1]0

i
>

Page Table

PTBR: Page Table Base Register

Cache VS VM

Parameter First-level cache Virtual memory
Block (page) 12-128 bytes 4096-65,536 bytes
size
Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty 8-100 clock cycles | 700,000 - 6,000,000 clock cycles
(Access time) | (6-60 clock cycles) | (500,000 — 4,000,000 clock cycles)
(Transfer time) | (2-40 clock cycles) | (200,000 - 2,000,000 clock cycles)

Miss rate 0.5-10% 0.00001 - 0.001%
Data memory |0.016 -1 MB AMB - 4GB
size

 Replacement on cache misses is primarily controlled by hardware

« The size of the processor address determines the size of virtual
memory

 Secondary storage is also used for the file system

PTP

Page Table Organization

2“-&

Flat page table has size
proportional to size of
virtual address space
- can be very large for a
machine with 64-bit
addresses and several
processes

Three solutions
- page the page table (fixed
mapping)
* what really needs to
be locked down?

- multi-level page table
(lower levels paged - Tree)

- inverted page table (hash
table)

Multi-Level Page Table

LDirl | Dir2 |Page] offset |

PTBR
——
Directory
Directory
Page
e.g., 42-bit VA with 12-bit offset Directory
10-bits for each of three fields Page

1024 4-byte entries in each table (one page) Table

Inverted Page Tables

Ox0

Ox18FIB
0x18F1C

| OxAG3
b __---f'ﬂ:-al

Ox18F1B

ppm

Store only PTEs for pages in
physical memory

Miss in page table implies
page is on disk

Need KP entries for P page
frames (usually K > 2)

Requires a large CAM

Hashed Inverted Page Tables

Virtual Address
| Page [Offset |

|
(Hash) "l Page | Frame] S

\

hash

Table Index

wd_cl PID VPN Next

Ox18F1C

OxAFO013

Cox0)

OK

| Frame | Offset |

« Chaining in order to solve collisions

\

0 Ox1 -

h-—..._‘_‘\‘\‘ : T
1 \Qxﬂﬂ3 Gﬁﬂer})

Ox18FIB

0xISFIC| 3 || 0x31AB |0x0A921

0x18F1B 0x123

i oflset

« Chain is exhausted by hitting an invalid next pointer => page fault

Virtual Address Translation -
TLB

What happens during a memory access?
— map virtual address into physical address using page table
— If the page is in memory: access physical memory

— If the page is on disk: page fault
» Suspend program
» Get operating system to load the page from disk
Page table is in memory - this slows down access!

Translation lookaside buffer (TLB) special cache of translated
addresses (speeds access back up)

Translation Look-Aside Buffers

 Translation Look-Aside Buffers (TLB)
— Cache on translations
— Fully Associative, Set Associative, or Direct Mapped

hit
VA PA
CPU
Translation ;
witha TLB nussl
Page
Table
|
e TLBs are:

Cache

v
P
<

miss
—

hit

data

Main
Memory

— Small —typically not more than 128 — 256 entries

— Fully Associative

TLB Structure

Virtual pageLl "~ Physical pageD
number Valid Tag address

|

Physical memory

v

Rrlo|lr|lr]r]-

Page table
Physical page
Valid or disk address

Disk storage

s >

I

.
g

I |
U |
—

\4

T

A
\\
N

0\
N
N

rlolrlrlolr]~]olr]~]~]|~
R
R

What Actually Happens on a
TLB Miss?

Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

Software traversed Page tables (like MIPS)
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since
they use translation for many things

— Examples:
» shared segments
» user-level portions of an operating system

TLB — Cache Interaction

313029 cccreeccnennn 15141312111098- -« - 3210
Virtual page number Page offset
d 20 N 12
Valid Dirty Tag Physical page number
TLB Ok
=
TLB hit+«——fe (&
O
O
B—
O \\20
Physical page number | Page offset
Physical address
Physical address tag Cache index Bytell
offset
16 Ju +2
Valid Tag Data
Cache
==
-, \\32
Data

Cache hit

TLB and Cache

* |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — can we ensure that these
different virtual addresses will map to the same
location in cache? Else, there will be two different
copies of the same physical memory word

* Does the tag array store virtual or physical addresses?
» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

Virtual Indexed, Virtually
Tagged Cache

Protection bits in cache
Cache flushing on process switch or use Process-identifier
tag (PID)
Aliasing problem: Two different virtual addresses sharing
same physical
— Page coloring: Forces aliases to share same cache block,
thus aliases cannot co-exist in the cache

Better Alternative: Virtually
Indexed, Physically Tagged Cache

What motivation?
* Fast cache hit by parallel TLB access
* No virtual cache shortcomings

Unchanged
\v-addr
_ Block Address Block
| | V-index Tag Index | Offset
TLB P-
) ek Page Page offset
P-addr Translation
— \ 4
; Frame Page offset

How could it be correct?
* Require #cache set * block size <= page size = physical index is from page offset

* Then virtual and physical indices are identical = works like a physically indexed
cache!

Virtually Indexed, Physically
Tagged Cache

Virual Address <64

Y

| Virtual Page Number <51=

Page Offet <13= |

Y

Y

|TLB Tag compare Address =43 | TLE Index |

| L1 Cache Index <7= | Block Offet <6= |

TLE Tag =43=

TLB Data <28

L1 Tag compare Addrass {28:-|

To CPU

L1 Cache Tag <=28=

L1 Data <256

Physical Address <d1=

!

Y

Y

| L2 Tag compare Address <19= | L2 Cache Index <1 6:-|E.Inck Oiffet <6= |

To CPU

To CPU

b | 2 Cache Tag <19=

L2 Data 256>

L

To L1 Cache or CPU

Superpages

* If a program’s working set size is 16 MB and page size is
8KB, there are 2K frequently accessed pages — a 128-entry
TLB will not suffice

* By increasing page size to 128KB, TLB misses will be
eliminated — disadvantage: memory wastage, increase in
page fault penalty

- Can we change page size at run-time?

* Note that a single page has to be contiguous in physical
memory

Superpages Implementation

» At run-time, build superpages if you find that contiguous
virtual pages are being accessed at the same time

* For example, virtual pages 64-79 may be frequently
accessed — coalesce these pages into a single superpage
of size 128KB that has a single entry in the TLB

* The physical superpage has to be in contiguous physical
memory — the 16 physical pages have to be moved so
they are contiguous

virtual physical virtual physical
I—— N

=

