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Virtual Memory

« Some facts of computer life...
— Computers run lots of processes simultaneously
— No full address space of memory for each process

— Must share smaller amounts of physical memory among
many processes

* Virtual memory is the answer!

— Divides physical memory into blocks, assigns them to
different processes

— Virtual memory (VM) allows main memory (DRAM) to act like
a cache for secondary storage (magnetic disk).

— VM address translation a provides a mapping from the
virtual address of the processor to the physical address in
main memory or on disk.



PC

Simple View of Memory
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time
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fixed locations (absolute
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Stack accesses relative to
stack pointer.



Running Two Programs (Relocation)
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Three Advantages of Virtual Memory

* Translation:

— Program can be given consistent view of memory, even though
physical memory is scrambled

— Makes multithreading reasonable (now used a lot!)

— Only the most important part of program (“Working Set”) must
be in physical memory.

— Contiguous structures (like stacks) use only as much physical
memory as necessary yet still grow later.

* Protection:
— Different threads (or processes) protected from each other.

— Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).

— Kernel data protected from User programs
— Very important for protection from malicious programs
e Sharing:
— Can map same physical page to multiple users
(“Shared memory”)



Protection with Virtual Memory

» Virtual memory allows protection without the requirement
that pages be pre-allocated in contiguous chunks

* Physical pages are allocated based on program needs and
physical pages belonging to different processes may be
adjacent — efficient use of memory

» Each page has certain read/write properties for user/kernel
that is checked on every access
» a program’'s executable can not be modified
» part of kernel data cannot be modified/read by user
» page tables can be modified by kernel and read by
user



Basics

Programs reference “virtual” addresses in a non-
existent memory

— These are then translated into real “physical” addresses

— Virtual address space may be bigger than physical address
space

Divide physical memory into blocks, called pages
— Anywhere from 512B to 16MB (4k typical)

Virtual-to-physical translation by indexed table
lookup

— Add another cache for recent translations (the TLB)

Invisible to the programmer
— Looks to your application like you have alot of memory!



A Load to Virtual Memory

LW R1,0(R2)
CPU |——> | Cache | — DRAM
% 1GB
Virtual Addr. Z Physical Addr.
64 bits E 48 bits

30 bits

Translate from virtual space to physical space
- VA= PA
- May need to go to disk



VM: Page Mapping
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Virtual Address Translation
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* Main Memory =1 6B » Translation table
* Page Size = 4KB - aka "Page Table"

- VPN = 52 bits
+ PPN = 18 bits



Virtual Address Translation

Page table register
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Cache terms vs. VM terms

“real”/physical

So, some definitions/“analogies” / memory

— A “page” or “segment” of memory is analogous to a “block”
In a cache

— A “page fault” or “address fault” is analogous to a cache
miss /
so, if we go to main memory and our data
isn’t there, we need to get it from disk...

User Program Runs | | User program
Page fault | 1 resumes
OS requests page D [] OSInstalls page
Disk read | |
l, !, Disk interrupt

2nd User Program Runs | |




Virtual Address Translation Detalls

1 table per process + Contents:
Part of process's state » Flags — dirty bit, resident bit,

clock/reference bit

» Frame number
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Cache VS VM

Parameter First-level cache Virtual memory
Block (page) 12-128 bytes 4096-65,536 bytes
size
Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty 8-100 clock cycles | 700,000 - 6,000,000 clock cycles
(Access time) | (6-60 clock cycles) | (500,000 — 4,000,000 clock cycles)
(Transfer time) | (2-40 clock cycles) | (200,000 - 2,000,000 clock cycles)

Miss rate 0.5-10% 0.00001 - 0.001%
Data memory |0.016 -1 MB AMB - 4GB
size

 Replacement on cache misses is primarily controlled by hardware

« The size of the processor address determines the size of virtual
memory

 Secondary storage is also used for the file system



PTP

Page Table Organization

2“-&

Flat page table has size
proportional to size of
virtual address space
- can be very large for a
machine with 64-bit
addresses and several
processes

Three solutions
- page the page table (fixed
mapping)
* what really needs to
be locked down?

- multi-level page table
(lower levels paged - Tree)

- inverted page table (hash
table)



Multi-Level Page Table
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1024 4-byte entries in each table (one page) Table



Inverted Page Tables
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Requires a large CAM



Hashed Inverted Page Tables

Virtual Address
| Page [ Offset |

|
( Hash ) "l Page | Frame] S

\

hash

Table Index

wd_cl PID VPN Next

Ox18F1C

OxAFO013

Cox0 )

OK

| Frame | Offset |

« Chaining in order to solve collisions

\

0 Ox1 -

h-—..._‘_‘\‘\‘ : T
1 \Qxﬂﬂ3 Gﬁﬂer})

Ox18FIB

0xISFIC| 3 || 0x31AB |0x0A921

0x18F1B 0x123

i oflset

« Chain is exhausted by hitting an invalid next pointer => page fault



Virtual Address Translation -
TLB

What happens during a memory access?
— map virtual address into physical address using page table
— If the page is in memory: access physical memory

— If the page is on disk: page fault
» Suspend program
» Get operating system to load the page from disk
Page table is in memory - this slows down access!

Translation lookaside buffer (TLB) special cache of translated
addresses (speeds access back up)




Translation Look-Aside Buffers

 Translation Look-Aside Buffers (TLB)
— Cache on translations
— Fully Associative, Set Associative, or Direct Mapped
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— Small —typically not more than 128 — 256 entries

— Fully Associative




TLB Structure
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What Actually Happens on a
TLB Miss?

Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

Software traversed Page tables (like MIPS)
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since
they use translation for many things

— Examples:
» shared segments
» user-level portions of an operating system



TLB — Cache Interaction
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TLB and Cache

* |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — can we ensure that these
different virtual addresses will map to the same
location in cache? Else, there will be two different
copies of the same physical memory word

* Does the tag array store virtual or physical addresses?
» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present



Virtual Indexed, Virtually
Tagged Cache

Protection bits in cache
Cache flushing on process switch or use Process-identifier
tag (PID)
Aliasing problem: Two different virtual addresses sharing
same physical
— Page coloring: Forces aliases to share same cache block,
thus aliases cannot co-exist in the cache



Better Alternative: Virtually
Indexed, Physically Tagged Cache

What motivation?
* Fast cache hit by parallel TLB access
* No virtual cache shortcomings

Unchanged
\v-addr
_ Block Address Block
| | V-index Tag Index | Offset
TLB P-
) ek Page Page offset
P-addr Translation
— \ 4
; Frame Page offset

How could it be correct?
* Require #cache set * block size <= page size = physical index is from page offset

* Then virtual and physical indices are identical = works like a physically indexed
cache!



Virtually Indexed, Physically
Tagged Cache
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Superpages

* If a program’s working set size is 16 MB and page size is
8KB, there are 2K frequently accessed pages — a 128-entry
TLB will not suffice

* By increasing page size to 128KB, TLB misses will be
eliminated — disadvantage: memory wastage, increase in
page fault penalty

- Can we change page size at run-time?

* Note that a single page has to be contiguous in physical
memory



Superpages Implementation

» At run-time, build superpages if you find that contiguous
virtual pages are being accessed at the same time

* For example, virtual pages 64-79 may be frequently
accessed — coalesce these pages into a single superpage
of size 128KB that has a single entry in the TLB

* The physical superpage has to be in contiguous physical
memory — the 16 physical pages have to be moved so
they are contiguous

virtual physical virtual physical
I—— N

=




