Lecture 11:
Caches (Basics)

lakovos Mavroidis

Computer Science Department
University of Crete

Who Cares about Memory Hierarchy?

Processor-DRAM Memory Gap (latency)

“Moore’s Law”
A

{_ uProc
60%/yr.
(2X/1.5yr)

Processor-Memory

Performance Gap:
(grows 50% / year)

»—DRAM
9%lyr.

DRAM

(2X/10 yrs)

Latency lags bandwidth

10,000

Microprocessor

1000

100

Relative bandwidth improvement

10

1 10 100
Relative latency improvement

Memory abstraction in architecture

Addressable memory

» Association between address Generic memory

and values in storage
Command (RD/WR)
>

» Addresses index bytes in storage

» Values aligned in multiples of Address (name)|
word size Data (WR)

» Accessed through sequence of y
reads and writes) Data (RD)

» Write binds value to address Done

F 3

» Read returns most recent value
stored in address

Levels of Memory Hierarchy

Capacity
Access Time
Cost

CPU Registers
100s Bytes
<10s ns

Cache

K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk

G Bytes, 10 ms

Registers

t Instr. Operands

Cache

¢ Blocks

Memory

¢ Pages

(10,000,000 ns)

Disk

5 -6
107 10 cents/bit

Tape

3 Files

Upper Level

Staging
Xfer Unit A faster

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

0s
512-4K bytes

user/operator |
Mbytes

Larger

infinite
sec-min
10

Tape

Lower Level

Definition of Cache

Definition

» First level of memory hierarchy after registers

» Any form of storage that bufferes temporarily data
» OS buffer cache, name cache, Web cache, ...

» Designed based on the principle of locality

» Temporal locality: Accessed item will be accessed again in
the near future

» Spatial locality: Consecutive memory accesses follow a
sequential pattern, references separated by unit stride

Memory Hierarchy: Apple iIMac G5

(2005)

Managed
by hardware

Managed
by compiler

Managed by OS,
hardware,

/ / \\ appllcatlon

1977+27yr Reg L1 Inst LI Data
Size in Bytes 1K 64K 32K 512K
Latency in
Cycles, 1 cyc, 3 cyc, 3 cyc, 11 cyc,
Time 0.6 ns 1.9 ns 1.9 ns 6.9 ns

DRAM D]Sk
256M 80G .)
iMac GS
88 cye, 107cye, 1.6 GHz
55 ns 12 ms 1600x (mem: 7.3x)

Apple 11

Goal: Illusion of large, fast, cheap memory

Let programs address a memory space that scales to the disk size,
at a speed that is usually nearly as fast as register access

iMac G5 1.6 GHz clock, 55 ns DRAM vs. Apple I 1 MHz, 400ns DRAM
Perform: CPU 1600 X, DRAM 7.3 X faster in 27 yrs => 2X/ 2.5y, 9.3y

iMac’s PowerPC 970 (GS5): All
caches on-chip

L1 (64K Instruction)
| e 8 [T

1/2 KB
registers

L2
512K

Sk insg AR
1 [1] [

—— —
(11Nl 111 -3
1 | | —) — — — —

1/2 KB B AR
registers w4 {81101 ;I
L EE

L1 (32K Data)

Locality

« The Principle of Locality:

— Program access a relatively small portion of the address space at
any instant of time.

« Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

« Last 15 years, HW relied on localilty for speed

Memory Hierarchy: Terminology

e Hit: data appears in some block in the upper level
o Hit Rate: the fraction of memory accesses found in the upper level

o Hit Time: Time to access the upper level which consists of

Time to determine hit/miss

e Miss: data needs to be retrieved from a block 1n the lower level
e Miss Rate =1 - (Hit Rate)
e Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block to the upper level

e Hit Time << Miss Penalty (=500 instructions on 21264!)

Lower Level
~ To Processor Upper Level Large Size
) Memory Memory

——-

Blk X

From Processor . Blk Y

Cache hit Block X

Cache Hit

To processor
€

From processor
>

upper-level
memory

Block X

lower-level
memory

Block Y

Cache Miss

Cache miss Block X

To processor
€

From processor
cy

upper-level
memory

. lower-level

memory

Block X

Block Y

Cache Measures

e Hit rate: fraction found in that level

So high that usually talk about Miss rate = 1 - Hit rate

o Miss rate fallacy: as MIPS to CPU performance, miss rate to AMAT in

memory

e AMAT = Hit time + Miss rate x Miss penalty (ns or clocks)

e Miss penalty: time to supply a missed block from lower level,
including any CPU-visible delays to save replaced write-back
data to make room in upper level cache. {"All active caches are
full”}

access time: time to lower level = f'(latency to lower level)
transfer time: time to transfer block =/ (BW between upper & lower levels)

replacement time: time to make upper-level room for new block, if all
active caches are full

An example

e Assumption on computer A
o CPI= 1.0 when all memory accesses hit
o Data accesses are only loads and stores (explain 50% of insts.)
e Miss penalty: 25 cc
o Miss rate: 2%

e Compute the speedup of computer B, for which all cache accesses
are hit

exectimey = (CPUcc + MemStallcc) x cct
=(ICxCPI+0)xcct=1Cx1.0xcct

MemStallcc = IC x MemAccess x MissRate x MissPenalty

Instruction

=ICx(1+0.5)x0.02x25=1ICx0.75
exectime, = (CPUcc + MemStallcc) x cct
=(ICxCPI+ICx0.75)x cct

4 Questions for Memory Hierarchy

For a given level of the memory hierarchy

» Q1: Where can a block be placed in the upper level?
(Block placement)

» Q2: How is a block found if it is in the upper level? (Block
identification)

» Q3: Which block should be replaced on a miss? (Block
replacement)

» Q4: What happens on a write? (Write strategy)

Q1: Where to Place Blocks?

e Jargon: Each address of a memory location 1s
partitioned into:

e block address

tag

index

e block offset

Block address

Fig. C.3

Tag

2003 Elsevier Science (USA). All rights reserved.

Index

Block
offset

Simplest Cache: Direct Mapped

Memory Address Memory

0 ~

4 Byte Direct Mapped Cache
Cache Index
0
1
2
3
* Location 0 can be occupied by
data from:
— Memory location 0, 4, 8, ... etc.

— In general: any memory location
/ whose 2 LSBs of the address are 0s

/ — Address<1:0> => cache index

« Which one should we place in
the cache?

= N T T - - N7 T N R S

* How can we tell which one is in
the cache?

1 KB Direct Mapped Cache, 32B blocks

 Fora 2™ N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size =2 ** M)

31 9 4 0
Cache Tag Example: 0x50 Cache Index Byte Select
Ex: 0x01 Ex: 0x00
Stored as part
of the cache “state”
Valid Bit Cache Tag Cache Data
Byte 31| °** |Bytel | Bytd0 |0
0x50 \ Byte 63| ** | Byte 33 Byt§32]-—
2
3

Byte 1023 . Byte 992 | 31

Direct Mapped Cache

Advantages

» Simple, low complexity, low power consumption

» Fast hit time

» Data available before cache determines hit or miss
» Hit/miss check done in parallel with data retrieval

Disadvantages

» Conflicts between blocks mapped to same block in cache

Two-way Set Associative Cache

* N-way set associative: N entries for each Cache Index

— N direct mapped caches operates in parallel (N typically 2 to 4)

« Example: Two-way set associative cache

Valid

— Cache Index selects a “set” from the cache
— The two tags in the set are compared in parallel

— Data is selected based on the tag result

Cache Index
Cache Tag Cache Data Cache Data Cache Tag

Cache Block 0 Cache Block 0

Mux

Valid

‘ Cache Block

Two-way Set Associative Cache

Advantages

» Choice of mapping memory block to different cache blocks
in a set

» LRU or other policies for good selection of victim blocks
» Reduction of conflicts

Disadvantages

» Increased complexity — comparators, multiplexor, parallel
tag comparison

» Increased power consumption
» Increased hit time, due to comparators and multiplexor
» Data available after cache determines hit or miss

Cache Mapping Example

Mapping block 12 from RAM in 8-block cache

direct mapped

Cache

fully associative

two-way associative

2

3

4

5

6

7

four-way assoc

iative

4

5

Q2: How is a block found in the cache

Cache tag array

Block Address Block
Offset

Tag Index

» Index points to line in data array — one block or set
» Offset points to byte in block

» Tag compared against tag field in address

» Valid bit ORed with output of tag comparator

Q3: Which block i1s replace on a miss

e Easy if direct-mapped (only 1 block “1 way” per set index)
e Three common choices for set-associative cache:

o Replace an eligible random block
o Replace the least recently used (LRU) block

can be hard to keep track of, so often only approximated

» Replace the oldest eligible block (First In, First Out, or FIFO)
e SPEC2000 benchmark (misses per 1000 instructions)

Set associativity

Two-way Four-way Eight-Way

Size LRU | Random | FIFO |LRU |Random |FIFO |LRU | Random | FIFO

16KB 1141 | 1173 | 1155 | 111.7 | 1151 113.3 | 109.0 | 111.8 | 1104

64KB 103.4| 1043 | 1039 | 1024 | 102.3 | 103.1 | 99.7 100.5 | 100.3

256KB | 92.2 92.1 925 | 921 92.1 925 | 92.1 92.1 92.5

(From Sussman)

Q4: What happens on a write?

Write-Through

Write-Back

Data word written to

Write new data word

writes?

cache block only to 1 cache block
Polic is also written to next Update lower level just
y |0WE""?“E| memory before a written block
Example, instr. sw to L1$ leaves cache, so not
also goes to L2% lose true value
Debugging Easier Harder
Can read misses force No Yes (used to slow some

reads; now write-buffer)

Do repeated writes
touch lower level?

Yes, memory busier

No

Additional option -- let writes to an un-cached address allocate a new
cache line (“write-allocate”), or just Write-Through.

Write Buffers for Write-Through Caches

+—J| Lower

* —| Cache
Processor | Level
Memory
/ Write Buffer

Holds (addresses&) data awaiting write-
through to lower level memory

Q. Why a write buffer ? A. So CPU doesn’t stall
Q. Why a buffer, why not A. Bursts of writes are
just one register ? common.

Q. Are Read After Write A. Yes! Drain buffer before
(RAW) hazards an issue for next read, or send read 1t after
write buffer? check write buffers.

Another Write Buffer Optimization

e Write buffer mechanics, with merging

e An entry may contain multiple words (maybe even a whole
cache block)

o If there’s an empty entry, the data and address are written to
the buffer, and the CPU 1s done with the write

e [f buffer contains other modified blocks, check to see i1f new
address matches one already in the buffer — 1f so, combine the
new data with that entry

e If buffer full and no address match, cache and CPU wait for an
empty entry to appear (meaning some entry has been written to
main memory)

e Merging improves memory efficiency, since multi-word writes
usually faster than one word at a time

Average Memory Access Time (AMAT)

AMAT components

Average memory access time = Hit time + Miss rate x Miss penalty
CPU time = (CPU execution clock cycles + Memory stall clock cycles)
x Clock cycle time

Memory stall clock cycles
Instruction

CPU time = IC x (CPIHEM,-M +) x Clock cycle time

‘ , Memory accesses 1
P — | Pl - M M I
CPU time = IC % (C execution + Miss rate x Instroction x Miss pena ty)

x Clock cycle time

Example

UltraSPARC Il

» in-order processor

> CPlexecution = 1.0

» miss penalty = 100 cycles

» miss rate = 2%

» 1.5 memory references per instruction

» 30 cache misses per 1000 instructions
CPU time = IC x (1.U—|— 109 x 30

1000

CPU time = IC x (1.& + 0.02 x 11—5 X 100) x Clock cycle time = IC x 4 x cycle time

) x Clock cycle time = IC x 4 x cycle time

Example

UltraSPARC I

» Cache miss latency increases execution time by 4x

» Higher clock rates imply more clock cycles wasted due to
miss penalty

» Higher relative impact of cache on performance

» HW/SW cache-conscious optimizations attempt reduce
AMAT

» Performance depends on both clock cycle and AMAT —
trade-off

Example

Direct-mapped vs. set-associative cache

» CP ’execuﬁnn =2.0

» 64 KB caches with 64-byte blocks

» 1.5 memory references per instruction
» Direct mapped cache miss rate = 1.4%

» Set associative cache stretches clock cycle by 1.25,
miss rate = 1.0%

» 1 GHz processor
» 75 ns miss penalty

» 1 cycle hit time
}:QMATdfrecr—mapped =1.0+(.014 x 75) = 2.05ns

Example

Direct-mapped vs. set-associative cache

Misses
Instruction
CPU timegirect—mapped = IC % (2.0 x 1.0+ 0.014 x 1.5 x 75) = 3.58 x IC

CPU timeo—way = IC x (2.0 x 1.25 + 0.01 x 1.5 x 75) = 3.63 x IC

CPU time = IC x (CPIEIEEUM” - X MIiss penalty) x clock cycle time

» Associative cache achieves lower AMAT than direct-mapped
cache

» Direct-mapped cache achieves higher performance than
associative cache

Overlapping memory latency In
OOO processors

Miss penalty in 000

» Processor can execute instructions while cache miss is
pending
» Processors can execute instructions also while cache hit is
pending
» Hard to attribute stall cycles to instructions
» Stall cycle is any cycle where at least one instruction does

not commit
» First
Memory stall cycles Misses

: : = — x (Total miss latency — overlapped miss latenc
instruction instruction (y PP y)

