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Multithreading

Difficult to continue to extract ILP from a single thread
Many workloads can make use of thread-level parallelism (TLP)

— TLP from multiprogramming (run independent sequential
jobs)

— TLP from multithreaded applications (run one job faster
using parallel threads)

Multithreading uses TLP to improve utilization of a single
processor



Pipeline Hazards
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« Each instruction may depend on the next

What can be done to cope with this?



Solution with Multithreading

How can we guarantee no dependencies between instructions in a
pipeline?

-- One way is to interleave execution of instructions from different
program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe
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Multithreaded DLX
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» Have to carry thread select down pipeline to ensure correct state
bits read/written at each pipe stage

» Appears to software (including OS) as multiple, albeit slower, CPUs




Multithreading Cost

« Each thread requires its own user state
— PC
— GPRs

» Also, needs its own system state
— virtual memory page table base register

— exception handling registers

 QOther costs?



Thread Scheduling Policies

* Fixed interleave (CDC 6600 PPUs, 1964)
— each of N threads executes one instruction every N cycles
— if thread not ready to go in its slot, insert pipeline bubble

« Software-controlled interleave (TI ASC PPUs, 1971)
— OS allocates S pipeline slots amongst N threads

— hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

« Hardware-controlled thread scheduling (HEP, 1982)
— hardware keeps track of which threads are ready to go
— picks next thread to execute based on hardware priority scheme



HW Multithreading alternatives

Fine-Grain Multithreading

» Fine-grain multithreading switches processor context every
thread cycle

» Context belongs to same address space

Fine-grain multithreading  Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5 Cycle-6 Cycle-7 Cycle-8

Processor context

Thread-2 Thread-2 Thread-2 Thread-2
Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2



HW Multithreading alternatives:
Fine-Grain Multithreading

Fine-Grain Multithreading

Switch every clock cycle

» Need fast HW switch between contexis

» Multiple PCs and register files
» Alternatively, thread ID attached to each GP register

» Implemented with round-robin scheduling, skipping stalled
threads

» Hides both short and long stalls
» Delays all threads, even if they have no stalls



HW Multithreading alternatives:
Fine-Grain Multithreading

Coarse-Grain Multithreading

» Coarse-grain multithreading switches processor context upon
long-latency event

» Context may belong to different address space

Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2
Coarse-grain multithreading

Thread-2 Thread-2 Thread-3 Thread-3 Thread-3

Syscall-2



HW Multithreading alternatives:
Coarse-Grain Multithreading

Coarse-Grain Multithreading

Switch upon long upon long-latency events

» Can afford slower context switch than fine-grain
multithreading
» Threads are not slowed down
» Other thread runs when current thread stalls
» Pipeline startup cost upon thread switching

» Processor issues instructions from one thread (address
space)



HW Multithreading alternatives:
Simultaneous Multithreading

» Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one thread
at a time

« SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to enter
execution on same clock cycle. Gives better utilization of
machine resources.



For most apps, most execution units
lie idle In an Oo0O superscalar

For an 8-way
superscalar.
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Superscalar Machine Efficiency
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Vertical Multithreading

Issue width
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« What is the effect of cycle-by-cycle interleaving?
— removes vertical waste, but leaves some horizontal waste



Chip Multiprocessing (CMP)

Issue width
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* What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.



ldeal Superscalar Multithreading: SMT

[Tullsen, Eggers, Levy, UW, 1995]
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 Interleave multiple threads to multiple issue slots with no
restrictions



O-0-0O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

Add multiple contexts and fetch engines and allow
Instructions fetched from different threads to issue
simultaneously

Utilize wide out-of-order superscalar processor issue queue
to find instructions to issue from multiple threads

OOQOO instruction window already has most of the circuitry
required to schedule from multiple threads

Any single thread can utilize whole machine

Shared HW mechanisms

» Large set of virtual registers can hold register sets of
iIndependent threads

» Renaming provides unique register identifiers to different
threads

» Qut-of-order completion of instructions from different
threads allowed

» No cross-thread RAW, WAW, WAR hazards
» Separate reorder buffer per thread
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Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
ISsue an instruction each cycle.
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Power 4
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Power 5 data flow ...
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Why only 2 threads? With 4, one of the shared
resources (physical reqgisters, cache, memory
bandwidth) would be prone to bottleneck



Changes in Power 5to support SMT

Increased associativity of L1 instruction cache and the
Instruction address translation buffers

Added per thread load and store queues

Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches
Added separate instruction prefetch and buffering per thread
Increased the number of virtual registers from 152 to 240
Increased the size of several issue queues

The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support



Power 5 thread performance ...
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Pentium-4 Hyperthreading (2002

First commercial SMT design (2-way SMT)
— Hyperthreading == SMT

Logical processors share nearly all resources of the physical
processor

— Caches, execution units, branch predictors
Die area overhead of hyperthreading ~ 5%

When one logical processor is stalled, the other can make
progress

— No logical processor can use all entries in queues when two
threads are active

Processor running only one active software thread runs at
approximately same speed with or without hyperthreading



Pentium-4 Hyperthreading
Front End
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SMT adaptation to parallelism type

For regions with high thread level  For regions with low thread level

parallelism (TLP) entire machine parallelism (TLP) entire machine
width is shared by all threads width is available for instruction level
parallelism (ILP)
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Initial Performance of SMT

Pentium 4 Extreme SMT vyields 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate

— Pentium 4 is dual threaded SMT

— SPECRate requires that each SPEC benchmark be run against
a vendor-selected number of copies of the same benchmark

Running on Pentium 4 each of 26 SPEC benchmarks paired with
every other (262 runs) speed-ups from 0.90 to 1.58; average was
1.20

Power 5, 8-processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

Power 5 running 2 copies of each app speedup between 0.89 and
1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains



Comparison between ILP processors

Processor Micro architecture Fetch / Issue / FU Clock Transis-tors Power
Execute Rate Die size
(GHz)
Intel Pentium | Speculative dynamically 3/3/4 7 int. 1 3.8 | 1256M 115 W
4 Extreme scheduled; deeply FP 122 mm?
pipelined; SMT
AMD Athlon Speculative dynamically 3/3/4 6int. 3 | 2.8 114 M 104 W
64 FX-57 scheduled FP 115 mm?
IBM Power5 | Speculative dynamically 8/4/8 6 int. 2 1.9 200 M 80W
(1 CPU only) scheduled; SMT, FP 300 mm? (est.)
2 CPU cores/chip (est.)
Intel Itanium Statically scheduled 6/5/11 9int. 2 1.6 592 M 130 W
2 VLIW-style FP 423 mm?




Comparison between ILP processors
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Comparison between ILP processors
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Measuring processor efficiency

Area- and power-efficiency

» Processor performance gain comes at an area/power
budget cost
» Weigh performance again against power and area increase

» Area-efficiency
» Performance / transistor (e.g. SPECrate/million transistors)

» Power-efficiency
» Performance / watt (e.g. SPECrate/watt)



Comparison between ILP processors

Power and area efficiency
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Best ILP approach?

Results with commercial processors

» AMD Athlon most performance-efficient in INT programs
» Power5 most performance-efficient in FP programs
» Power5 most power-efficient overall

» ltanium VLIW least power-efficient and area-efficient
overall



