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Multiple Issue 

Έχουμε μελετήσει  

θα μελετήσουμε σημερα 

Δυναμικές δρομολόγηση  

εντολών (hardware) Στατικές (shoftware/compiler) 

•Scoreboard  (ελάττωση RAW stalls) 

•Register Renaming 

 α)Tomasulo     

               (ελάττωση WAR και WAW stalls) 

  β)Reorder Buffer 

•Branch prediction 

 (ελάττωση Control stalls) 

•Multiple Issue (CPI < 1) 

•Multithreading (CPI < 1)  

 

•Loop Unrolling 

•Software Pipelining 

•Trace Scheduling 

Προσοχή να διατηρουνται  

1. Data flow 

2. Exception Behavior 

  

CPI = CPIideal + Stallsstructural + StallsRAW + StallsWAR +  StallsWAW + Stallscontrol 



Multithreading 

• Difficult to continue to extract ILP from a single thread 

• Many workloads can make use of thread-level parallelism (TLP) 

– TLP from multiprogramming (run independent sequential 
jobs) 

– TLP from multithreaded applications (run one job faster 
using parallel threads) 

• Multithreading uses TLP to improve utilization of a single 
processor 



Pipeline Hazards 

• Each instruction may depend on the next 

LW r1, 0(r2) 

LW r5, 12(r1) 

ADDI r5, r5, #12 

SW 12(r1), r5 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W D D D 

F D X M W D D D F F F 

F D D D D F F F 

t9 t10 t11 t12 t13 t14 

What can be done to cope with this? 



Solution with Multithreading 

How can we guarantee no dependencies between instructions in a 
pipeline? 

-- One way is to interleave execution of instructions from different 
program threads on same pipeline 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1: LW r1, 0(r2) 

T2: ADD r7, r1, r4 

T3: XORI r5, r4, #12 

T4: SW 0(r7),  r5 

T1: LW r5, 12(r1) 

t9 

F D X M W 

F D X M W 

F D X M W 

F D X M W 

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe 

Prior instruction in 
a thread always 
completes write-
back before next 
instruction in 
same thread reads 
register file 



Multithreaded DLX 

• Have to carry thread select down pipeline to ensure correct state 

bits read/written at each pipe stage 

• Appears to software (including OS) as multiple, albeit slower, CPUs 
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Multithreading Cost 

• Each thread requires its own user state 

–  PC 

–  GPRs 

 

• Also, needs its own system state 

– virtual memory page table base register 

– exception handling registers 

 

• Other costs? 

 



Thread Scheduling Policies 

• Fixed interleave (CDC 6600 PPUs, 1964) 

– each of N threads executes one instruction every N cycles 

– if thread not ready to go in its slot, insert pipeline bubble 

 

 

• Software-controlled interleave (TI ASC PPUs, 1971) 

– OS allocates S pipeline slots amongst N threads 

– hardware performs fixed interleave over S slots, executing 
whichever thread is in that slot 

 

 

• Hardware-controlled thread scheduling (HEP, 1982) 

– hardware keeps track of which threads are ready to go 

– picks next thread to execute based on hardware priority scheme 

 



HW Multithreading alternatives 

Fine-Grain Multithreading 



HW Multithreading alternatives: 
Fine-Grain Multithreading 

Fine-Grain Multithreading 



HW Multithreading alternatives: 
Fine-Grain Multithreading 

Coarse-Grain Multithreading 



HW Multithreading alternatives: 
Coarse-Grain Multithreading 

Coarse-Grain Multithreading 

 

Switch upon long upon long-latency events 



HW Multithreading alternatives: 
Simultaneous Multithreading 

 

• Techniques presented so far have all been “vertical” 
multithreading where each pipeline stage works on one thread 
at a time 

• SMT uses fine-grain control already present inside an OoO 
superscalar to allow instructions from multiple threads to enter 
execution on same clock cycle.  Gives better utilization of 
machine resources. 



For most apps, most execution units 
lie idle in an OoO superscalar 

From: Tullsen, 

Eggers, and 

Levy, 

“Simultaneous 

Multithreading: 

Maximizing On-

chip Parallelism, 

ISCA 1995. 

For an 8-way 

superscalar. 



Superscalar Machine Efficiency 

Issue width 

Time 

Completely idle cycle 

(vertical waste) 

Instruction 

issue 

Partially filled cycle, 

i.e., IPC < 4 

(horizontal waste) 



Vertical Multithreading 

• What is the effect of cycle-by-cycle interleaving? 

– removes vertical waste, but leaves some horizontal waste 

Issue width 

Time 

Second thread interleaved 

cycle-by-cycle 

Instruction 

issue 

Partially filled cycle, 

i.e., IPC < 4 

(horizontal waste) 



Chip Multiprocessing (CMP) 

• What is the effect of splitting into multiple processors? 

– reduces horizontal waste,  

– leaves some vertical waste, and  

– puts upper limit on peak throughput of each thread. 

Issue width 

Time 



Ideal Superscalar Multithreading: SMT  
[Tullsen, Eggers, Levy, UW, 1995] 

• Interleave multiple threads to multiple issue slots with no 
restrictions 

Issue width 

Time 



O-o-O Simultaneous Multithreading 
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996] 

 
• Add multiple contexts and fetch engines and allow 

instructions fetched from different threads to issue 

simultaneously 

• Utilize wide out-of-order superscalar processor issue queue 

to find instructions to issue from multiple threads 

• OOO instruction window already has most of the circuitry 

required to schedule from multiple threads 

• Any single thread can utilize whole machine 



Summary: Multithreaded Categories 
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) Superscalar Fine-Grained Coarse-Grained Multiprocessing 
Simultaneous 

Multithreading 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Thread 5 

Idle slot 



Power 4 

Single-threaded predecessor to 

Power 5.  8 execution units in 

out-of-order engine, each may 

issue an instruction each cycle. 
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Power 4 

Power 5 

2 fetch (PC), 

2 initial decodes 

2 commits 

(architected 

register sets) 



Power 5 data flow ... 

Why only 2 threads? With 4, one of the shared 

resources (physical registers, cache, memory 

bandwidth) would be prone to bottleneck  



Changes in  Power 5 to support SMT 

• Increased associativity of L1 instruction cache and the 
instruction address translation buffers  

• Added per thread load and store queues  

• Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches 

• Added separate instruction prefetch and buffering per thread 

• Increased the number of virtual registers from 152 to 240 

• Increased the size of several issue queues 

• The Power5 core is about 24% larger than the Power4 core 
because of the addition of SMT support 



Power 5 thread performance ... 

Relative priority 

of each thread 

controllable in 

hardware. 

 

For balanced 

operation, both 

threads run 

slower than if 

they “owned” 

the machine. 



Pentium-4 Hyperthreading (2002) 

• First commercial SMT design (2-way SMT) 

– Hyperthreading == SMT 

• Logical processors share nearly all resources of the physical 
processor 

– Caches, execution units, branch predictors 

• Die area overhead of hyperthreading  ~ 5% 

• When one logical processor is stalled, the other can make 
progress 

– No logical processor can use all entries in queues when two 
threads are active 

• Processor running only one active software thread runs at 
approximately same speed with or without hyperthreading 



Pentium-4 Hyperthreading 
Front End 

Resource divided 

between logical CPUs 

Resource shared 

between logical CPUs 



Pentium-4 Hyperthreading 
Execution Pipeline 

[ Intel Technology Journal, Q1 2002 ] 



SMT adaptation to parallelism type  

For regions with high thread level 
parallelism (TLP) entire machine 
width is shared by all threads 

Issue width 

Time 

Issue width 

Time 

For regions with low thread level 
parallelism (TLP) entire machine 
width is available for instruction level 
parallelism (ILP) 



Initial Performance of SMT 

• Pentium 4 Extreme SMT yields 1.01 speedup for SPECint_rate 
benchmark and 1.07 for SPECfp_rate 

– Pentium 4 is dual threaded SMT 

– SPECRate requires that each SPEC benchmark be run against 
a vendor-selected number of copies of the same benchmark 

• Running on Pentium 4 each of 26 SPEC benchmarks paired with 
every other (262 runs) speed-ups from 0.90 to 1.58; average was 
1.20 

• Power 5, 8-processor server 1.23 faster for SPECint_rate with 
SMT, 1.16 faster for SPECfp_rate 

• Power 5 running 2 copies of each app speedup between 0.89 and 
1.41 

– Most gained some 

– Fl.Pt. apps had most cache conflicts and least gains 

 



Comparison between ILP processors 



Comparison between ILP processors 
 



Comparison between ILP processors 



Measuring processor efficiency 



Comparison between ILP processors 



Best ILP approach? 
 


