Lecture 10:
Thread Level Parallelism (TLP)

lakovos Mavroidis

Computer Science Department
University of Crete

Multiple Issue

CPIl = CPliyeq + Stallsgycrura + Stallsgay + Stallsyag + Stallsyyay + Stalls gy

[Mpoooxn va diarnpouvTal
1. Dataflow

2. Exception Behavior , .
Exoupue yeAetnoel

Ba pyeAeTAcOUNE oNUEPQ

— T

AuvapikEc dpouoAoynon 5 e (shof | !
evioAwv (hardware) TaTIKEC (shoftware/compiler)

*Scoreboard (eAdrTwon RAW stalls)
*Register Renaming
a)Tomasulo
(eAdTTwon WAR ka1 WAW stalls)
B)Reorder Buffer
*Branch prediction
(eAdTTwon Control stalls)
*Multiple Issue (CPI < 1)
*Multithreading (CPI < 1)

Loop Unrolling
«Software Pipelining
*Trace Scheduling

Multithreading

Difficult to continue to extract ILP from a single thread
Many workloads can make use of thread-level parallelism (TLP)

— TLP from multiprogramming (run independent sequential
jobs)

— TLP from multithreaded applications (run one job faster
using parallel threads)

Multithreading uses TLP to improve utilization of a single
processor

Pipeline Hazards

.10 .11 .t2 .t3 .t4 .15 .16 .t7 .18 . 19 .110.111.t12.t13.t14,

LW r1, O(r2) FID[X|M[W| :
LWr5,12(r1) i |E|D|D|D|D|X
ADDI 5,15, #12 ¢ ¢ |F|F|F|F[D
SW12(r1),r5 ¢ ¢ i i i i |F

W
D
=

JRIEIES

« Each instruction may depend on the next

What can be done to cope with this?

Solution with Multithreading

How can we guarantee no dependencies between instructions in a
pipeline?

-- One way is to interleave execution of instructions from different
program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 t1 t2 13 t4 {5 {6 {7 .t8 . t9

T1: LW rl, 0(r2) F{D[X[M WE_= Prior instruction in
T2:ADD (7,11, r4 i [EIDIXIMIW: & | : @ thread always
T3:XORIT5, r4,#12 . | [E[DIXIMIWE | p2dk before next
T4: SW O(r7), r5 i i i |FID|X[M|W[| instruction in

. : ;| same thread reads
T1-LWr5, 12(rd) .F D—’X—M—W register file

Multithreaded DLX

~ .'I | X :\ —
1 —{ '$ RH{| gpRra = (I \»
:l.BIAl ',r N :Y :/ é D$
YaN
+ <
1 I . -
2 Thread N 2 W
select

» Have to carry thread select down pipeline to ensure correct state
bits read/written at each pipe stage

» Appears to software (including OS) as multiple, albeit slower, CPUs

Multithreading Cost

« Each thread requires its own user state
— PC
— GPRs

» Also, needs its own system state
— virtual memory page table base register

— exception handling registers

 QOther costs?

Thread Scheduling Policies

* Fixed interleave (CDC 6600 PPUs, 1964)
— each of N threads executes one instruction every N cycles
— if thread not ready to go in its slot, insert pipeline bubble

« Software-controlled interleave (TI ASC PPUs, 1971)
— OS allocates S pipeline slots amongst N threads

— hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

« Hardware-controlled thread scheduling (HEP, 1982)
— hardware keeps track of which threads are ready to go
— picks next thread to execute based on hardware priority scheme

HW Multithreading alternatives

Fine-Grain Multithreading

» Fine-grain multithreading switches processor context every
thread cycle

» Context belongs to same address space

Fine-grain multithreading Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5 Cycle-6 Cycle-7 Cycle-8

Processor context

Thread-2 Thread-2 Thread-2 Thread-2
Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2

HW Multithreading alternatives:
Fine-Grain Multithreading

Fine-Grain Multithreading

Switch every clock cycle

» Need fast HW switch between contexis

» Multiple PCs and register files
» Alternatively, thread ID attached to each GP register

» Implemented with round-robin scheduling, skipping stalled
threads

» Hides both short and long stalls
» Delays all threads, even if they have no stalls

HW Multithreading alternatives:
Fine-Grain Multithreading

Coarse-Grain Multithreading

» Coarse-grain multithreading switches processor context upon
long-latency event

» Context may belong to different address space

Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2 Cycle-1 Cycle-2
Coarse-grain multithreading

Thread-2 Thread-2 Thread-3 Thread-3 Thread-3

Syscall-2

HW Multithreading alternatives:
Coarse-Grain Multithreading

Coarse-Grain Multithreading

Switch upon long upon long-latency events

» Can afford slower context switch than fine-grain
multithreading
» Threads are not slowed down
» Other thread runs when current thread stalls
» Pipeline startup cost upon thread switching

» Processor issues instructions from one thread (address
space)

HW Multithreading alternatives:
Simultaneous Multithreading

» Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one thread
at a time

« SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to enter
execution on same clock cycle. Gives better utilization of
machine resources.

For most apps, most execution units
lie idle In an Oo0O superscalar

For an 8-way
superscalar.

100 jem e

g9g |

NN

so [

I
=

Percent of Total Issue Cycles
2

nasa? [l 2

Applications

tomeaty

e S |

composite

B memory conflict
E long fp
4 |E shortfp
long integer
B shont integer
load delays
8 | control hazards
"1 | B8 branch misprediction
. E deache miss

[III icache miss

N |E aub miss
N [iub miss

N B processor busy
=

From: Tullsen,
Eggers, and
Levy,
“Simultaneous
Multithreading:
Maximizing On-
chip Parallelism,
ISCA 1995.

Superscalar Machine Efficiency

Issue width
Instruction _ '
issue (1981194
- Completely idle cycle
(vertical waste)
Bt il
i L i d
Time
Partially filled cycle,
— i.e,IPC<4
(horizontal waste)

Vertical Multithreading

Issue width

Instruction
Issue

Second thread interleaved
cycle-by-cycle

ry
*oe

Time

Partially filled cycle,
— i.e,IPC<4
(horizontal waste)

« What is the effect of cycle-by-cycle interleaving?
— removes vertical waste, but leaves some horizontal waste

Chip Multiprocessing (CMP)

Issue width

$3328¢
222222

Time

* What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.

ldeal Superscalar Multithreading: SMT

[Tullsen, Eggers, Levy, UW, 1995]

Issue width

338 158 b58

*
o

b
L d

Time

 Interleave multiple threads to multiple issue slots with no
restrictions

O-0-0O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

Add multiple contexts and fetch engines and allow
Instructions fetched from different threads to issue
simultaneously

Utilize wide out-of-order superscalar processor issue queue
to find instructions to issue from multiple threads

OOQOO instruction window already has most of the circuitry
required to schedule from multiple threads

Any single thread can utilize whole machine

Shared HW mechanisms

» Large set of virtual registers can hold register sets of
iIndependent threads

» Renaming provides unique register identifiers to different
threads

» Qut-of-order completion of instructions from different
threads allowed

» No cross-thread RAW, WAW, WAR hazards
» Separate reorder buffer per thread

+— Time (processor cycle)

Summary: Multithreaded Categories

Simultaneous

Superscalar Fine-Grained Coarse-Grained Multipro|cessing Multithreadine
HE HE HE OENN OON
L] NN [] N ELEE
HE HE N
EEE " EEE DTN
AEAE NN NN EEEE
== NINN NINN N %
. . .|‘~~:'~ N . N
EEE N PN
= TINN
O 8= i DN]
== N i J:Q* Y NE
] Thread 1 Thread 3 Thread 5

N Thread 2 Thread 4 dle slot

Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
ISsue an instruction each cycle.

Branch redirects \\ﬂu.uf-mdupmmlill

i

[

i .
1 Instruction fetch

BR
: J — MP 155 (H RF H Ex H WB — Xfer
'—+| IF ~| IC BF LD/ST
- —w—xss—nf—m—nc—|1=m:—w3—xfe: CP -
1 I
:) FX !
. D0 [D1 — D2 | D3 | Xfer —{ GD 11 MP [ISS [~| RF =] EX WB [Xfer [|
]
I Instruction crack and :
: group formation —| MP 7] IS5 [RF _% FP |

1

1
! F6 WB |— K.ﬁar'— :

: Interrupts and flushes

Power 4

Branch redirects

Instruction crack and
group formation

lected
er, sets)

2 fetch (PC),
2.initial decodes

Out-of-order processing (arc h | 1
Branch reQISt‘
pipeline
—| MP 1SS |- RF H EX WB [—iXfer |
Load/store
:| \ ineli
IF C BP pipeline
~{ MP 1| ISS || RF [-{EA [—|DC —IFrnt —{WB [—{Xfer
—| D2 || D3 H{Xfer | GD | MP [|I1SS | RF [EX , — WB [Xfer[—
Fixed-point
Group formation and pipeline
instruction decode —|MP —{ISS | RF _%_‘
F& : WB [—{Xfer
Floating-
point pipeline

e e e e e e e i e e e e e e e G A S S A N S e S G et e

Power 5 data flow ...

[e Dynamic
Branch prediction] ins%ruction
{ selection Shared
Shared .
Program Branch| §| Return| | Target oG execution
counter history | B stack | | cache queues units
tables LSUO Data Data
2 Allemate FXUO Translation Cache
Instruction LSU1,
LSU1
tathisiion buffer 0 Group formation < 3
caghé Instruction decode [— $ — X
Dispatch FPUO
Instruction
translation)
| BXU |
Thread CRL Data Data
priority Shared- Read Write translation | |cache
register shared- shared- o
mappers register files register files 2
cache

| I Shared by two threads [Thread 0 resources I Thread 1 resources |

Why only 2 threads? With 4, one of the shared
resources (physical reqgisters, cache, memory
bandwidth) would be prone to bottleneck

Changes in Power 5to support SMT

Increased associativity of L1 instruction cache and the
Instruction address translation buffers

Added per thread load and store queues

Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches
Added separate instruction prefetch and buffering per thread
Increased the number of virtual registers from 152 to 240
Increased the size of several issue queues

The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

Power 5 thread performance ...

Single-thread mode

Relative priority -
of each thread L
. (]
controllable in S
hardware. S
/E
E
For balanced B
operation, both
threads run 07 27 47 67 7.7
. 16 36 56 6.6
slower than if 25 45 55
iy ’ 14 34 44
they “owned 23 33

the machine.

7,6
6,5
5,4
4,3
3,2
2,1

I =5
74 72 70 1,1
6,3 6,1 0,1
5,2 1,0
4.1 Power
save
mode

Thread O priority, thread 1 priority

|DThread 0 IPC B Thread 1 IPC |

Pentium-4 Hyperthreading (2002

First commercial SMT design (2-way SMT)
— Hyperthreading == SMT

Logical processors share nearly all resources of the physical
processor

— Caches, execution units, branch predictors
Die area overhead of hyperthreading ~ 5%

When one logical processor is stalled, the other can make
progress

— No logical processor can use all entries in queues when two
threads are active

Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

Pentium-4 Hyperthreading
Front End

L2 Cache Uop
. Access . Queue. Decode . Queue. Fill . Queue

.,... Decode .,...

/

Resource divided Resource shared
between logical CPUs between logical CPUs

Uop
Queue

Pentium-4 Hyperthreading
Execution Pipeline

Rename

Queue Sched

=

[Intel Technology Journal, Q1 2002]

{

w{{

i Registers

Register
Read

Execute L1 Cache

i Store

=

L1 D-Cache

Register

Write

Ly

: Re-Order

Registers

Retire

Bufter

SMT adaptation to parallelism type

For regions with high thread level For regions with low thread level

parallelism (TLP) entire machine parallelism (TLP) entire machine
width is shared by all threads width is available for instruction level
parallelism (ILP)
Issue width Issue width
ITTTTE T
FeereY Y
»gtizzriﬁ
>
$3
— (4
B
r==1
2 -
4444 *4
. : : =2
Time $3 Time ze
s
-4
X
IrTrTIs
eI
TI I IX
IZTTIITTITETTIETE
e Bl Bl i
ITTITXIIT]

Initial Performance of SMT

Pentium 4 Extreme SMT vyields 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate

— Pentium 4 is dual threaded SMT

— SPECRate requires that each SPEC benchmark be run against
a vendor-selected number of copies of the same benchmark

Running on Pentium 4 each of 26 SPEC benchmarks paired with
every other (262 runs) speed-ups from 0.90 to 1.58; average was
1.20

Power 5, 8-processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

Power 5 running 2 copies of each app speedup between 0.89 and
1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains

Comparison between ILP processors

Processor Micro architecture Fetch / Issue / FU Clock Transis-tors Power
Execute Rate Die size
(GHz)
Intel Pentium | Speculative dynamically 3/3/4 7 int. 1 3.8 | 1256M 115 W
4 Extreme scheduled; deeply FP 122 mm?
pipelined; SMT
AMD Athlon Speculative dynamically 3/3/4 6int. 3 | 2.8 114 M 104 W
64 FX-57 scheduled FP 115 mm?
IBM Power5 | Speculative dynamically 8/4/8 6 int. 2 1.9 200 M 80W
(1 CPU only) scheduled; SMT, FP 300 mm? (est.)
2 CPU cores/chip (est.)
Intel Itanium Statically scheduled 6/5/11 9int. 2 1.6 592 M 130 W
2 VLIW-style FP 423 mm?

Comparison between ILP processors

SPEC INT rate

O tanium 2 B Pentium 4
OAMD Athlon 64 OPower 5

3500

3000

SPEC Ratio

dizb

Comparison between ILP processors

SPEC FP rate

14000

Ojtanium 2 BFantium 4 O AMD Athlon 64 B Power 5

L i1 R e T] T T s

1 I R T B B T T

wupwise Saim mged applu mesa galgel ke facersc ammp |usas fmad3d sidreck apsi

Measuring processor efficiency

Area- and power-efficiency

» Processor performance gain comes at an area/power
budget cost
» Weigh performance again against power and area increase

» Area-efficiency
» Performance / transistor (e.g. SPECrate/million transistors)

» Power-efficiency
» Performance / watt (e.g. SPECrate/watt)

Comparison between ILP processors

Power and area efficiency

Oltanium 2 BPentium 4 OAMD Athlon 64 OPOWER 5

30 A

25 1

20 1

10 1

SPECInt/ M SPECFP /M SPECInt / SPECInt / Watt
Transistors Transistors mm*2 SPECFP / mm*2 SPECFP / Watt

Best ILP approach?

Results with commercial processors

» AMD Athlon most performance-efficient in INT programs
» Power5 most performance-efficient in FP programs
» Power5 most power-efficient overall

» ltanium VLIW least power-efficient and area-efficient
overall

