
HY425: Computer Systems Architecture

Programming Assignment 2
Assignment: Wednesday 10/12/2014

Due: Wednesday 07/01/2015 23:59:59

Instructions: Solve all problems and send them via e mail to Vaggelis Vasilakis‐
(vvasil@csd.uoc.gr). Use the subject: HY425 – Programming Assignment 2

Cache Simulation

The purpose of  this assignment is to f amiliarize you with the details of  caches. You have to
implement caches yourself  and measure their quantitative properties. You will also see the impact of 
alternative design choices in the miss rate and IPC. For the simulation of  caches you will use our
custom simulator that is based on the PIN  dynamic binary instrumentation tool (www.pintool.org).

Simulator

You can get the simulator f rom the home directory of  the course:

/home/misc/courses/hy425/HW/2013f/PA/PA2_CacheSimulation/

The directory contains: (i) the instrumentation tool (CacheSimulation.cpp), (ii) a generic cache
model (CacheModel.H), (iii) a cache controller that perf orms the appropriate steps to implement the
cache f unctionality (CacheController.H), (iv) a conf iguration class that keeps the current settings of 
the cache(s) (CacheConf iguraton.H), (v) a prof iler class that keeps statistics and implements an
extremely simple timing model (CacheProf iler.H) and (vi) a directory with 7  benchmarks (4 Integer
and 3 Floating point) to exercise the caches and measure their perf ormance.

Copy the simulator in your home directory and study caref ully the sources to f amiliarize with the
simulator. To compile the simulator just type: make. To run a benchmark with the simulator (e.g.f f t)
use the f ollowing command:

make SIM_ARGS=”­l1a 4” SIM_APP=”./benchmarks/6.fft/fft” run

SIM_ARGS sets the command line arguments that you can pass to the simulator (check the
CacheSimulation.cpp KNOBs to see the available switches) and SIM_APP sets the
application/benchmark that will run on the simulator.
The timing model of  the simulator assumes an in order processor that executes every instruction in‐
1  clock cycle, it has a perf ect instruction cache, a perf ect branch predictor and a main memory with
inf inite bandwidth, but with a latency of  1 00 clock cycles. All the above assumptions allow us to
remove the implications of  other components and f ocus on the data caches alone. An L1  hit costs 1 
clock cycle while an L1  miss costs 1 01  clock cycles (f etch data f rom main memory). N ote:
simulating each of  the given benchmarks takes about 5  minutes to complete (they contain a f ew
billion instructions) and you will have to collect several data points so start early!

HY425  Programming Assignment set 2 1 

http://www.pintool.org/

Measure L1 Miss Rate and IPC

Your f irst task is to explore the ef f ects of  cache block size and associativity in an L1  data cache.‐
Assume that your L1  data cache budget is 32 KB. Run experiments with varying block sizes and
set associativity f or all the given benchmarks, draw miss rate and IPC graphs similar to those‐ ‐
presented in class and f ind the conf iguration that gives the highest average IPC. Explore the
f ollowing block sizes: (i) 32bytes, (ii) 64 bytes and (iii) 1 28 bytes and the f ollowing associativities:
(i) direct mapped, ‐ (ii) 2 way and ‐ (iii) 4 way. Hint: prepare scripts and use the command line‐
switches, you can run the experiments overnight!

Implement and Measure an L2 Cache

Implement in the simulator a strictly inclusive write back L2 cache, i.e. every cache block that is ‐ ‐ ‐
present in L1  should always be present in L2 and if  by chance you need to evict a cache block f rom ‐
L2 then you should also evict it f rom L1  if  present.
The provided Cache Model is generic enough to be used f or L2, so you need only to modif y the
CacheController, however you are f ree to change the code at will. Add command line switces
(knobs) to parameterize the L2, implement the appropriate f unctions f or conf iguration and prof iling
of  the L2 and modif y the timing model to take into account the L2 cache.
Run experiments with varying L2 cache sizes and associativity f or all the given benchmarks draw
global miss rate and IPC graphs similar to those presented in class and f ind the L2 conf iguration‐
that gives the highest average IPC. Explore the f ollowing L2 cache sizes: (i) 1 28KB, (ii) 25 6KB
and (iii) 5 1 2KB and the f ollowing associativities: (i) 4 way, ‐ (ii) 8 way and ‐ (iii) 1 6 way. For your‐
measurements assume that the L1  conf iguration is the one you f ound bef ore, the cache block size of ‐
the L2 cache is the same with L1  and that the L2 access time is 1 0 clock cycles.

Implement and Measure next k line Prefetchers‐ ‐

Use the best perf orming L1  and L2 cache conf igurations that you f ound bef ore, and implement a
next k line pref etcher only f or the L2 cache. N ext line pref etchers are extremely simple hardware‐ ‐ ‐
schemes that attempt to exploit spatial locality beyond cache block boundaries. Typically, when a‐
cache experiences a cache miss f or line A, then the next k line pref etcher f etches the next k‐ ‐
sequential cache blocks, if  not already present in the cache; ‐ k is known as the pref etch degree.
An important implication of  cache pref etching is the need f or higher memory bandwidth. Based on
the memory traf f ic f acility of  the simulator, f ind the pref etching conf iguration that best balances
between IPC and memory traf f ic. Hint: calculate the metric Memory Traf f ic/IPC.

IMPORTANT: Make your code and report easy to read. Include all the results you have taken
from the various simulations you have tried for all configurations of all caches and for all
benchmarks in tables with comments on the results and a short description of the table's
contents, along with your insight and conclusions for the results.
Send Only your code, a single .pdf report and a README file to vvasil@csd.uoc.gr.

We analyze all codes with MOSS!

HY425  Programming Assignment set 2 2

mailto:vvasil@csd.uoc.gr

