Computer Architecture

Lecture 1: Introduction

Iakovos Mavroidis

Computer Science Department
University of Crete

Outline

\square Logistics
$\square C P U$ Evolution
aCourse goal (what is Computer Architecture?)

Course Administration

\square Instructors

- lakovos Mavroidis (jacob@ics.forth.gr)
- Christos Sotiriou(sotiriou@csd.uoc.gr,)
-Teaching Assistant
- Baбıлákŋs Euá́үүعлоs
-Lectures
- Monday-Wednesday, 13:00-15:00
- Friday, 13:00-15:00 on a need basis
- Monday 8/10 \rightarrow Friday 12/10
- Monday 15/10 \rightarrow Friday 19/10
- Wednesday 17/10 \rightarrow TBD

Course Administration

-Website

- http://www.csd.uoc.gr/~hy425

DProject

- TBA
-Sources
- Course textbook: Hennessy and Patterson, Computer Architecture, A Quantitative Approach.
$3^{\text {rd }}$ Edition Available in Greek (Tziolas publishers, translation by D. Pnevmatikatos, D. Serpanos and G. Stamoulis). ISBN 97896041807693

Tentative Topics

$\square 1.5$ weeks: Fundamentals, ISA, Pipelining (review)
-2 weeks: Instructional Level Parallelism
-1 weeks: Branch Prediction
$\square 2$ week: Multiple Issue, VLIW, Vector Processors
$\square 1.5$ weeks: Multithreading, Latency Tolerance
$\square 1$ week: Memory Hierarchy
$\square 1$ week: Multi-processors

10-11 weeks, 20-22 lectures

History in Computer Devices

EDSAC, University of Cambridge, UK, 1949

Computing Systems Today

-The world is a large parallel system

- Microprocessors in everything
- Vast infrastructure behind them

Fall 2012 - Lecture 1

Improvement in Computer

QRadical progress in computers due to:

- Technological improvements
- steady
- Better computer architectures
- less consistent

Technology: Transistor Revolution

Bell Labs, 1948
First Transistor

Intel 4004, 1971 (Moore, Noyce)
2,300 transistors 740 KHz operation $10 \mu \mathrm{~m}(=10000 \mathrm{~nm})$ PMOS technology

Intel Core i7, 2011
2,600,000 transistors 3.4 GHz
$32 n m$

Technology: Moore's Law

DIn 1965, Gordon Moore predicted that the number of transistors that can be integrated on a die would double every 18 months (i.e., grow exponentially with time).
-He made a prediction that semiconductor technology will double its effectiveness every 18 months.

Technology: Transistor Count

Technology constantly on the move

\square Num of transistors not limiting factor

- Currently ~ 1+ billion transistors/chip
- Problems:
- Too much Power, Heat, Latency
- Not enough Parallelism
\square 3-dimensional chip technology?
- Sandwiches of silicon
- "Through-Vias" for communication
\square On-chip optical connections?
- Power savings for large packets
\square The Intel® Core ${ }^{\text {TM }}$ i7 microprocessor ("Ivy Bridge")
- 4 cores + GPU
- 22 nm, tri-gate ("3D") transistors
- 1.4B Transistors
- Shared L3 Cache - 8MB
- L2 Cache - 1MB (256K x 4)

Fall 2012 - Lecture 1

Transistor size trends and questions

Feature sizes, higher performance?

- Transistor size went down from 10 micros to 45 nanometers
- Quadratic increase in density, linear drop in feature size
- Linear increase in transistor performance

Where is the catch?

- Lower voltage to maintain safe operation
- Higher resistance and capacitance per unit of length
- Shorter wires but with higher resistance/capacitance
- Wire delays improving poorly compared to transistors

Limiting Force: Power Density

Moore's Law Extrapolation:
 Power Density for Leading Edge Microprocessors

Source: Shekhar Borkar, Intel Corp

Technology vs microarchitecture: Intel CPU evolution

Crossroads: Uniprocessor Performance

-VAX : 25\%/year 1978 to 1986

- RISC + x86: 52\%/year 1986 to 2002
- RISC + x86: ??\%/year 2002 to present

Trends - All in one

The End of the Uniprocessor Era

Single biggest change in the history of computing systems

\square "Power wall" Power expensive, Xtors free (Can put more on chip than can afford to turn on)
-"ILP wall" law of diminishing returns on more HW for ILP
-"Memory wall" Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)
DPower Wall + ILP Wall + Memory Wall = Brick Wall

- Uniprocessor performance now 2X / 5(?) yrs

ManyCore Chips: The future is here

Intel 80-core multicore chip, 2007

- Intel Single-Chip Cloud Computer (SCC), 48-cores, 2010
- Intel Many Integrated Core
 Architecture (MIC), 50-cores, 2012
\square "ManyCore" refers to many processors/chip

- 64? 128? Hard to say exact boundary

DHow to program these?

- Use 2 CPUs for video/audio
- Use 1 for word processor, 1 for browser
- 76 for virus checking???
\square Something new is clearly needed here...

What is Computer Architecture

In its broadest definition, computer architecture is the design of the abstraction layers that allow us to implement information processing applications efficiently using available manufacturing technologies.

Abstraction Layers in Modern Systems

Original domain of the computer architect ('50s-'80s)	Application	$\xlongequal[\begin{array}{c} \text { Domain of security, } \ldots \\ \text { recent } \\ \text { computer } \\ \text { architecture } \end{array}]{\text { ('90s) }}$
	Algorithm	
	Programming Language	
	Operating System/Virtual Machine	
	Instruction Set Architecture (ISA)	
	Microarchitecture	
	Gates/Register-Transfer Level (RTL)	
	Circuits	\downarrow Reliability,
	Devices	power, ...
	Physics	\checkmark

Computer Architecture is an Integrated Approach

What really matters is the functioning of the complete system

- hardware, runtime system, compiler, operating system, and application
- In networking, this is called the "End to End argument"
-Computer architecture is not just about transistors, individual instructions, or particular implementations
- E.g., Original RISC projects replaced complex instructions with a compiler + simple instructions
DIt is very important to think across all hardware/software boundaries
- New technology \Rightarrow New Capabilities \Rightarrow New Architectures \Rightarrow New Tradeoffs
- Delicate balance between backward compatibility and efficiency

Defining Computer Architecture (ISA)

Instruction Set Architecture

- ISAs converged to a common RISC paradigm
- CISC ISAs implemented on RISC pipelines
- Load-store architectures, general-purpose registers
- Aligned memory addressing, simple addressing modes
- Byte, word, double-word operands
- Arithmetic, logic, control operations
- Fixed-length encoding

Example: MIPS R3000

Programmable storage

$2^{\wedge} 32 \times$ bytes
31×32-bit GPRs (RO=0)
32×32-bit FP regs (paired DP)
PC

Data types ?

Format?
Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
Addl, AddlU, SLTi, SLTIU', Andl, Orl, Xorl, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV
Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, 'SW,' SWL, SWR
Control
$J, J A L, ~ J R, ~ J A L R ~$
BEq, BNE, BLEZ,BGTZ, BLTZ,BGEZ,BLTZAL,BGEZAL 32-bit instructions on word boundary

ISA vs Computer Architecture

-OId definition of computer architecture
= instruction set design

- Other aspects of computer design called implementation
- Insinuates implementation is uninteresting or less challenging
aOur view is computer architecture >> ISA
\square Architect's job much more than instruction set design; technical hurdles today more challenging than those in instruction set design
\square Since instruction set design not where action is, some conclude computer architecture (using old definition) is not where action is
- We disagree on conclusion
- Agree that ISA not where action is

Rest in Computer Architecture

Implementation of a computer = Organization + Hardware

- Processor architecture
- Pipelining, hazards, ILP, HW/SW interface
- Memory hierarchies
- Interconnects
- I/O systems
- Hardware technology used (e.g. component size)
- Computer architecture focuses on organization and quantitative principles of design

Execution is not just about HW and ISA

Hardware
-The VAX fallacy

- Produce one instruction for every high-level concept
- Absurdity: Polynomial Multiply
- Single hardware instruction
- But Why? Is this really faster???
\square RISC Philosophy
- Full System Design
- Hardware mechanisms viewed in context of complete system
- Cross-boundary optimization

Modern programmer does not see assembly language

- Many do not even see "low-level" languages like "C".

Computer Architecture Topics

Input/Output and Storage
Disks,Tape RAID

Memory
Hierarchy

Addressing, Protection,

Executive Summary

Also, the technology behind chip-scale multiprocessors

Next Lecture: Major Design Challenges

- Power
- CPU time
- Memory latency/bandwidth
- Storage latency/bandwidth
- Transactions per second
- Intercommunication
- Dependability

Everything Looks a Little Different

