
Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

HY425 Lecture 16: Shared-Memory
Multiprocessors

Dimitrios S. Nikolopoulos

University of Crete and FORTH-ICS

December 5, 2011

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors 1 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Why do we need multiprocessors?

Uniprocessor performance

I 25% annual improvement rate from 1978 to 1986
I 52% annual improvement rate from 1986 to 2002

I Profound impact of RISC, x86
I 20% annual improvement rate from 2002 to present

I Power wall: solutions for higher ILP are power-inefficient
I ILP wall: hard to exploit more ILP
I Memory wall: ever-increasing memory latency relative to

processor speed

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors 3 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Has this been attempted before?

Flashback in the 70s

I In the 70s, many thought that uniprocessors will reach their
limits, so replicating processors would be the only way to
achieve higher performance

I Predictions proved wrong because of Moore’s law,
architecture innovation (RISC), and inability to build,
program, and maintain easily scalable multiprocessors (too
expensive, too hard to program, too slow to build)

I What has changed now?

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors 4 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Parallelism at the chip-level

Vendor-Year AMD (05) Intel (06) IBM (04) Sun (05) NVIDIA (07)
Processors/chip 2 2 2 8 128+
Threads/processor 1 2 2 4 2+
Threads/chip 2 4 4 32 768 (active)

2 billion+ (resident)

Technology trends

I Power-capped processor design motivates use of
parallelism for performance

I Design by replication: leverage one design many times

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors 5 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Parallelism in applications

Data parallelism

I Databases, file servers
I Graphics, games
I Scientific computing
I More recently: clients, browsers

Request-level parallelism

I Servers, planetary-scale services

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors 6 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Flynn’s Taxonomy
Classification based on data and control streams

I Jason Flynn, Very High-Speed Computers, Proceedings of
the IEEE, Vol. 54, pp. 1900–1909, Dec. 1966

I SISD: Single-instruction, single-data
I MISD: Multiple-instruction, single-data (impractical)
I SIMD: Single-instruction, multiple-data

I Data-level parallelism, vector instructions
I Variation: SIMT, Single-instruction, multiple-threads

enables divergence in instructions via conditionals (NVIDIA
GPUs)

I MIMD: Multiple-instruction, multiple-data
I Most common form of multi-processing
I Flexible (used via multi-programming, or multi-threading)

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors 7 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Definitions

I A multiprocessor is a collection of processing elements
that co-operate to solve a single problem faster.

I Multiprocessor architecture includes processor
architecture and communication architecture

I Modern multiprocessors are layered architectures :
I Multiple cores per chip
I Multiple chips per board
I Network-on-chip, network-on-board

I Scalable topologies (clusters) built with basic building
blocks (cores, processors, networks).

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors 9 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Memory-centric classification of multiprocessors
P1 Pn … 

$ $ 

Interconnection network 

DRAM DRAM … 

P1 Pn … 

$ $ 

Interconnection network 

DRAM DRAM 

I Though hardware classification based on physical placement of
memory relative to processors, multiprocessors are classified
also based on the abstraction of memory provided to users.
Abstraction of memory is typically decoupled from the actual
implementation.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors10 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Shared memory multiprocessors

I Processors share single memory address space
I Memory address space can be implemented over single

centralized memory or physically distributed memory
I Centralized memory systems are usually scalable only to

few (e.g. tens) processors or cores per processor
I Shared-memory multiprocessors based on a bus

interconnect are limited by bus bandwidth (late 80’s, early
90’s)

I Bus-based multiprocessors are still low-cost commodity
component (8-way multiprocessor available at e1,500)

I Concept of symmetric memory still alive: modern
multi-cores have large caches, each shared between few
cores for fast communication

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors11 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Distributed memory multiprocessors

I Cost-effective scaling of memory bandwidth via distribution
of memory between processors (or cores)

I Dependent on effective data distribution so that local
memory accesses are maximized

I Local accesses cheap, remote accesses expensive, due to
the need for explicit communication between processors

I Communication delay includes delays of software
(communication libraries, operating system, application
overhead for preparing messages), memory, network
interfaces (at communication endpoints)

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors12 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Classification based on communication medium
I Message-passing multiprocessors: Communication occurs

by explicitly passing messages between processors
I Remote DMA multiprocessors: Communication occurs by

explicitly reading or writing data from remote memories
belonging to other processors. Data replication/migration
does not imply coherence or consistency

I Shared-memory multiprocessors: Communication occurs
through loads and stores to shared memory. Processors
need to synchronize (e.g. via locks and barriers) to avoid
lost updates, or violation of dependencies.

I UMA: Uniform memory access time, typically through
shared bus.

I NUMA: Non-uniform memory access time, physically
distributed coherent memories, accessed via local or
remote load-stores

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors13 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Amdahl’s Law

I What percentage of program execution time is inherently
sequential?

I What is the maximum speedup if the following fractions of
program execution time are sequential?

1. 10%
2. 5%
3. 1%

Speedupoverall =
1

(1 − fractionenhanced) +
fractionparallel

Speedupparallel

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors15 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Memory latency

I Processor speed improving at a rate of 50% per year (20%
in last 4 years), memory latency improving at a rate of 7%
per year.

I Local memory access latencies of 60 ns versus remote
memory access latency of over 100 ns

I Data placement important for avoiding remote memory
accesses

I Complicates parallel programming
I Contradicts assumption of flat shared address space

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors16 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Example

I Impact of remote memory accesses
I Assumptions:

I 0.2% remote memory access rate
I Base CPI = 0.5 (e.g. superscalar)
I 200ns remote memory access latency

CPI = Base CPI + Remote Request Rate × Remote Request Cost
CPI = 0.5 + 0.2%× 200 = 0.9

Remote memory accesses almost halve performance

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors17 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

The role of software in parallelism

Algorithms

I Sequential algorithms may include parallel components
I New algorithms that provide more parallelism, better

scalability, lower communication/synchronization costs etc.
may be needed

I Example: FFT straightforward parallelization versus
Cooley-Tuckey algorithm.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors18 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

The role of software in parallelism

Languages, compiler, runtime systems

I Language constructs and runtime libraries are used for
communication, synchronization, data distribution, in
parallel programs.

I Performance and scalability depend on the efficiency of the
language/library mechanisms that implement parallelism

I How fast can processor A provide processor B with work to
do?

I How fast can I send data from the memory of processor A
to the memory of processor B?

I How fast can I coordinate processors to provide mutual
exclusion or implement a global barrier?

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors19 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Shared-memory multiprocessor architecture

History

I Multiple processor on a single board, communicating over
a shared bus, using loads/stores and a cache coherence
protocol (80’s–90’s)

I Multiple processors on multiple boards in a single cabinet,
communicating over a shared bus (on-board) and a
scalable switch-based interconnection network (late 90’s)

I Multiple processors on a single chip, communicating over a
shared bus (2004–onwards) or a scalable switch-based
interconnection network (2008–onwards)

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors21 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Shared-memory multiprocessor architecture

Technology trends

I Bus is a centralized bottleneck and its BW is not adequate
to support more than a few (e.g. 10) processors).
Replaced by switch-based interconnect

I Cache coherence desirable due to programmability
I Processors communicate through loads and stores, with a

model which is more familiar to sequential programmers.
I Communication between producers and consumers done

by producer storing data in local cache and consumer
requesting data from remote cache

I Coherence protocol maintains consistency between
replicas of data potentially written by one or more
processors.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors22 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Cache coherence

Shared data

I Private cache per processor (or processor core) on SMPs
I Cache stores both

I Private data used only by owner processor
I Shared data accessed by multiple processors

I Caches reduce latency to access shared data, memory
bandwidth consumption, interconnect bandwidth
consumption

I Cache coherence problem

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors23 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Cache coherence problem

P1 P3 

u=5 $ 

Interconnection network 

DRAM 
u=5 DRAM … 

1 

P2 

$ 

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors24 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Cache coherence problem

P1 P3 

u=5 u=5 

Interconnection network 

DRAM 
u=5 DRAM … 

1 

P2 

$ 

2 

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors25 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Cache coherence problem

P1 P3 

u=5 u=7 

Interconnection network 

DRAM 
u=5 DRAM … 

1 

P2 

$ 

3 

Processor 3 writes new value of u. Processor 1 and processor
3 have different views of the same memory location. If
processors use write-back caches then new value of u is not
propagated to memory, therefore memory also has an “old”
copy of u

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors26 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Cache coherence problem

P1 P2
Assume initial values A=0, flag=0

A = 1; while (flag==0); /* busy-wait */
flag = 1; print A;

P1 expects that A=1 after exiting the while. Intuition not
guaranteed by coherence. If memory writes from P0 commit in
order then intuition is verified. If not, then P1 may see A = 0!
The memory system is typically expected to preserve ordering
of memory accesses by a single processor but not across
processors.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors27 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Coherence versus consistency

What is the value of a memory location?

I Every read of a memory location should return the last
value written to the memory location

I In uniprocessors this is easy to implement and guaranteed
except from when the processor performs I/O (DMAs)

I Coherence defines the values returned by a read
I Consistency defines when a write from a processor

becomes visible to other processors
I Coherence defines the behavior of a single processor

while consistency defines the behavior across processors

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors28 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Coherent memory system

Preserving program order
A read by processor P to location X that follows a write by P to
X, with no writes to X made by other processors between the
write and the read by P will always return the value written by P.

Coherent view of memory
A read by a processor to location X that follows a write by
another processor to X, returns the value of the write of the two
accesses are separated sufficiently apart in time and no other
writes to X occur between the two accesses.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors29 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Coherent memory system

Write serialization
2 writes to the same location by any 2 processors are seen in the same order
by all processors

I Assume that writes are not serialized: Two processors may proceed
assuming different last values of the same location

Write consistency
A write does not complete and does not allow the next write to occur until all
processors have “seen” the effect of that write. The processor does not
change the order of any write with respect to other reads or writes

I If a processor writes location A then location B, any processor that sees
the new value of B must also see the new value of A

I Reads can be reordered (module dependencies) but writes must
happen in program order

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors30 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Schemes for enforcing coherence

I Multiple processors may have copies of same data
(common in parallel programs)

I SMPs typically use a cache coherence protocol
implemented in hardware, although slower software
solutions are also available

I Key operations: replication and migration of data:
I Migration: data can be moved to the cache of a single

processor and used for reading or writing transparently.
Reduces latency and demand for bandwidth.

I Replication: Data can be simultaneously read by multiple
processors, by having processors make copies of data in
their local caches. Reduces latency, demand for bandwidth
and contention for accessing shared data.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors31 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Classes of cache coherence protocols
I Directory based: Sharing status of a cache block (i.e. what

processors have a copy of the block in the cache and
whether this copy has been updated) is kept in one
location (in memory, or on-chip in recent multi-core
processors) called the directory

I Snooping: Every cache with a copy of a block also has
information on the sharing status of the block, but no
centralized state is kept.

I All caches are accessible via a centralized broadcasting
mechanism (typically a bus, nowadays a switch).

I All cache controllers monitor (or snoop) the centralized
medium to determine whether they have or not a copy of
the block requested by another processor, and update
sharing state.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors32 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Snoopy cache coherence

P1 Pn 
… 

$ $ 

Interconnection network 

DRAM DRAM … 

Cache to 
memory 
transaction 
(e.g. writeback, 
or writethrough) 

snoop 
transaction 

I Cache controller snoops all
transactions on the shared
interconnect.

I A transaction is relevant if it
involves a block stored in the
cache of the snooping processor.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors33 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Snoopy cache coherence

P1 Pn 
… 

$ $ 

Interconnection network 

DRAM DRAM … 

Cache to 
memory 
transaction 
(e.g. writeback, 
or writethrough) 

snoop 
transaction 

I If transaction is on relevant
block, controller takes action to
ensure coherence.

I Action may be invalidate (block
written by other processor),
update (block written by another
processor and new value stored
in the cache of the snooping
processor), pr supply new value
(requested by other processor).

I Processor that needs to write
either gets exclusive access to
block by invalidating other
copies, or writes and updates
other copies.

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors34 / 36



Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Example: write-through, write-invalidate

P1 P3 

u=5 u=7 

Interconnection network 

DRAM 
u=7 DRAM … 

1 

P2 

$ 

3 

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors35 / 36

Motivation
Multiprocessors

Challenges
Bus-based shared-memory multiprocessors

Example: write-through, write-update

P1 P3 

u=7 u=7 

Interconnection network 

DRAM 
u=7 DRAM … 

1 

P2 

$ 

3 

Dimitrios S. Nikolopoulos HY425 Lecture 16: Shared-Memory Multiprocessors36 / 36


