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Reducing miss penalty or miss rate

Parallelism

Overlapping memory latency with instructions

I Allow processor to work while memory serves requests
I Overlap memory latency with other instructions
I Essential in out-of-order processors

Hide memory latency with prefetching

I Allow processor to prefetch extra data
I If data useful and fetched in time, reduces memory latency
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Reducing miss penalty or miss rate

Non-blocking caches

Hit under miss

I Processor continues execution while miss pending
I Cache serves hits while miss pending
I Need check for dependence violations

I Logic for memory RAW, WAW, WAR, hazards
I Dynamic issue processor

I Can overlap multiple misses
I Requires suitable multi-bank, pipelined memory system

I Hard to measure miss penalty due to overlap of hits and
misses
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Reducing miss penalty or miss rate

Hit under miss performance impact

Integer Floating Point 
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Reducing miss penalty or miss rate

Prefetching

Reduce memory latency

I Processor requests data in advance
I Processor speculates that requested data will be accessed

in the future
I Need a guess for what data will be needed in the future
I Guess easy in linear memory access pattern

I Fixed stride between data accesses
I Strided prefetching

I Need prefetch triggers, e.g. two consecutive misses
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Prefetching

Performance implications

I Prefetched data may displace other useful data from cache
I Prefetched data may come too early and be evicted before

used
I Prefetched data may come too late and not be there when

needed
I Prefetched data may be useless, i.e. not accessed at all
I Prefetched data wastes memory bandwidth, if useless
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Online Prefetching Heuristics

I Prefetching helps codes with non-perfect spatial locality
I Can be initiated at any level of the memory hierarchy
I Prefetched data can be stored at any level of the memory

hierarchy
I Branch prediction is a form of prefetching

I Prefetching instructions ahead of their execution
I Simple lookahead prefetching

I Prefetch block i+1 (or i+2, or i+3,...) upon demand fetching
block i

I Prefetch i+1 called next-line prefetching
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Lookahead prefetching

I Three ways to prefetch:
I Upon every memory access

I Excessive memory traffic
I Upon a cache miss

I Catches contiguous streams of data non-present in the
cache

I Requires a miss before prefetching is initiated
I Tagged prefetch

I One bit per cache block indicates if block was referenced
I Bit set to zero if block was prefetched
I Zero-to-one transition indicates access that would have been

a miss if block were not prefetched and triggers lookahead
prefetching
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Stream Buffers

Chapter 3 MANAGEMENT OF CACHE CONTENTS 131

the problem, a mechanism similar to the sliding win-
dow used in networking protocols [Jacobsen et al. 
1992]. 

A stream buffer is a FIFO buffer. Each of its entries 
contains a cache block, the block’s tag, and an avail-
able bit. Figure 3.9 illustrates the organization and 
operation of three stream buffers. Multiple buf-
fers support the prefetching of multiple streams 
in parallel, where each buffer prefetches from one 
stream. On a cache access, the cache and the head 
entries of the stream buffers are checked for a match 
(Jouppi’s original mechanism uses a single tag com-
parator per stream; one can envision more complex 
mechanisms). If the requested block is found in the 
cache, no action on the stream buffers is performed. 
If the block is not found in the cache, but is found 
at the head of a stream buffer, the block is moved 
into the cache. The head pointer of the stream buf-
fer moves to the next entry, and the buffer prefetches 
the last entry’s successor into the freed entry, i.e., if 
the last entry’s block address is L, then block L!1 is 
prefetched. If the block is found in neither cache nor 
stream buffer, a new stream buffer is allocated, and 
the block’s successors are prefetched to fi ll the stream 
buffers. While a prefetch is in fl ight, the available bit 

is set to ‘0’ and is set to ‘1’ only when the prefetch has 
completed. 

A simple mechanism that detects sequential 
streaming (i.e., indicates when to allocate a new 
stream buffer) is described by Palacharla and Kessler 
[1994]. The idea is to start streaming when a cache 
sees misses to blocks A and A!1 in succession, sug-
gesting that a miss to block A!2 cannot be far off. The 
scheme maintains a history buffer of miss addresses 
and places into the buffer address A!1 whenever 
block A misses the cache. A reference (e.g., to A!1) 
that misses the cache but hits the history buffer indi-
cates sequential streaming behavior (at least poten-
tially). A reference that misses both the cache and the 
history buffer should not allocate a new stream buf-
fer, as it indicates either (a) no locality or (b) non-unit 
strides. The issue of non-unit strides brings us to the 
next section.

Baer’s Reference Prediction Table: Stride Prefetching
Figure 3.9 illustrates a problem in simple sequen-

tial prefetching, a scenario in which the block-address 
 reference stream is A, B, A!2, B!1, A!4, B!2, … . The 
access to block A results in a cache miss, which results 
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FIGURE 3.9: Stream buffer organization and operation. Each stream is maintained in a FIFO order, and each has a comparator 
associated with the head entry’s tag.

I Each buffer fetches data from one contiguous stream
I Cache and head entries of stream buffers checked upon

access
I Cache miss may be served by head of stream buffer
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dow used in networking protocols [Jacobsen et al. 
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stream buffer, a new stream buffer is allocated, and 
the block’s successors are prefetched to fi ll the stream 
buffers. While a prefetch is in fl ight, the available bit 

is set to ‘0’ and is set to ‘1’ only when the prefetch has 
completed. 

A simple mechanism that detects sequential 
streaming (i.e., indicates when to allocate a new 
stream buffer) is described by Palacharla and Kessler 
[1994]. The idea is to start streaming when a cache 
sees misses to blocks A and A!1 in succession, sug-
gesting that a miss to block A!2 cannot be far off. The 
scheme maintains a history buffer of miss addresses 
and places into the buffer address A!1 whenever 
block A misses the cache. A reference (e.g., to A!1) 
that misses the cache but hits the history buffer indi-
cates sequential streaming behavior (at least poten-
tially). A reference that misses both the cache and the 
history buffer should not allocate a new stream buf-
fer, as it indicates either (a) no locality or (b) non-unit 
strides. The issue of non-unit strides brings us to the 
next section.

Baer’s Reference Prediction Table: Stride Prefetching
Figure 3.9 illustrates a problem in simple sequen-

tial prefetching, a scenario in which the block-address 
 reference stream is A, B, A!2, B!1, A!4, B!2, … . The 
access to block A results in a cache miss, which results 
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FIGURE 3.9: Stream buffer organization and operation. Each stream is maintained in a FIFO order, and each has a comparator 
associated with the head entry’s tag.

I If cache miss hits on stream buffer, head pointer moves
down and prefetching is triggered

I Available bit per entry indicates if prefetching is in flight
I Buffer allocated when a stream of misses (e.g. address A,

A+1,...) is detected
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Strided Prefetching Motivation

I Assume the reference pattern: A, B, A+2, B+1, A+4, B+2,...
I Stream buffer space wasted in this case
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the problem, a mechanism similar to the sliding win-
dow used in networking protocols [Jacobsen et al. 
1992]. 

A stream buffer is a FIFO buffer. Each of its entries 
contains a cache block, the block’s tag, and an avail-
able bit. Figure 3.9 illustrates the organization and 
operation of three stream buffers. Multiple buf-
fers support the prefetching of multiple streams 
in parallel, where each buffer prefetches from one 
stream. On a cache access, the cache and the head 
entries of the stream buffers are checked for a match 
(Jouppi’s original mechanism uses a single tag com-
parator per stream; one can envision more complex 
mechanisms). If the requested block is found in the 
cache, no action on the stream buffers is performed. 
If the block is not found in the cache, but is found 
at the head of a stream buffer, the block is moved 
into the cache. The head pointer of the stream buf-
fer moves to the next entry, and the buffer prefetches 
the last entry’s successor into the freed entry, i.e., if 
the last entry’s block address is L, then block L!1 is 
prefetched. If the block is found in neither cache nor 
stream buffer, a new stream buffer is allocated, and 
the block’s successors are prefetched to fi ll the stream 
buffers. While a prefetch is in fl ight, the available bit 

is set to ‘0’ and is set to ‘1’ only when the prefetch has 
completed. 

A simple mechanism that detects sequential 
streaming (i.e., indicates when to allocate a new 
stream buffer) is described by Palacharla and Kessler 
[1994]. The idea is to start streaming when a cache 
sees misses to blocks A and A!1 in succession, sug-
gesting that a miss to block A!2 cannot be far off. The 
scheme maintains a history buffer of miss addresses 
and places into the buffer address A!1 whenever 
block A misses the cache. A reference (e.g., to A!1) 
that misses the cache but hits the history buffer indi-
cates sequential streaming behavior (at least poten-
tially). A reference that misses both the cache and the 
history buffer should not allocate a new stream buf-
fer, as it indicates either (a) no locality or (b) non-unit 
strides. The issue of non-unit strides brings us to the 
next section.

Baer’s Reference Prediction Table: Stride Prefetching
Figure 3.9 illustrates a problem in simple sequen-

tial prefetching, a scenario in which the block-address 
 reference stream is A, B, A!2, B!1, A!4, B!2, … . The 
access to block A results in a cache miss, which results 
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FIGURE 3.9: Stream buffer organization and operation. Each stream is maintained in a FIFO order, and each has a comparator 
associated with the head entry’s tag.
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Strided Prefetching

132 Memory Systems: Cache, DRAM, Disk

in allocating a stream buffer for A’s successors: A ! 1, 
A ! 2, A ! 3, A ! 4. Similarly, the access to block 
B results in a cache miss, which results in allocat-
ing a stream buffer and initiates prefetches for B ! 1, 
B ! 2, B ! 3, B ! 4. On the next access, to block A ! 2, the 
cache and the head entries of the stream buffers both 
yield a miss; consequently, a new stream buffer is allo-
cated for A ! 2’s successors: A ! 3, A ! 4, A ! 5, A ! 6.

At this point, two separate stream buffers are allo-
cated for A’s successors and A ! 2’s successors, and 
some entries overlap (A ! 3 and A ! 4). This is due to 
two factors: the single comparator per stream buffer 
and the mechanism’s inability to identify the non-unit 
stride of A’s stream. Note that simply increasing the 
number of comparators is not a complete solution. 
While it would eliminate the allocation of multiple 
buffers to a logically single stream and the resultant 
duplication of blocks across stream buffers, it would 
not eliminate the useless prefetches (those for blocks 
A ! 1, A ! 3, …) that increase memory traffi c and 
reduce the effective capacity of the stream  buffers. 

A better solution is a mechanism2 that handles 
non-unit strides.

Baer and Chen describe such a mechanism: a 
hardware prefetching scheme that detects and 
adapts to non-sequential access [1991]. It detects and 
prefetches non-unit strides, and it detects and avoids 
prefetches for non-repeating accesses. As shown in 
Figure 3.10, the program counter probes the Refer-
ence Prediction Table, a cache in which each entry 
identifi es its corresponding load/store instruction, 
the previous address used, the most recently observed 
stride, and a two-bit state value (to be used by an 
associated FSM (fi nite state machine), shown in the 
fi gure) that tracks accuracy and enables a prediction. 
On every reference from a load/store instruction, 
the new target address is compared to the predicted 
address (prev_addr ! stride), and the result is used to 
update state and other fi elds in the entry. The scheme 
tracks strides and generates prefetches when stride 
accesses are detected; when it detects non-stride 
accesses it ensures that no prefetches are initiated. 

2Note that increasing the cache block size creates de facto sequential accesses out of small-stride accesses.

incorrect

correct

init

transient

steady

no-pred

incorrect

correctReference Prediction Table

program counter

pc prev_addr stride state

correct

(update stride) incorrect
(update stride)

incorrect
(update stride) correct

match
found

FIGURE 3.10: Baer and Chen’s PC-based stride predictor. In the finite state machine, conditionals are shown in bold, and  actions 
are shown in parentheses.I Reference prediction table tracks load/store accesses and

strides between addresses of the same load/store
I Stride used to make prediction of next address to prefetch
I FSM tracks and fixes stride predictions
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Strided prefetching without the Program Counter
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Palacharla’s Elimination of the Program Counter
An important aspect of Baer and Chen’s  mechanism 

is that it uses the program counter to separate differ-
ent address streams coming from different load and 
store instructions. When multiple streams are inter-
leaved, the net result can look random even if the 
individual streams are regular and easily predicted. 
Thus, the program counter is a powerful tool that 
separates different streams with different behaviors, 
each of which can be more predictable individually 
than the total stream. This is similar in spirit to apply-
ing different heuristics to different classifi cations of 
behavior. However, in the absence of special hardware 
support, the use of the program counter necessitates 
an on-core, hardware-based prefetching solution: 
the PC-based mechanism cannot be used to gener-
ate prefetches from the off-chip caches to memory; 
it cannot be used in the disk cache; it cannot be used 
in web caches; etc. On the other hand, the operating 
system’s buffer cache can potentially make use of a 
PC-based prefetching scheme, because the operat-
ing system does have access to the program counter 
of the trap instruction that invoked the I/O system. 
However, if the trap instruction is in a shared library 
(e.g., fread() or fwrite()), then it cannot be used to dis-
tinguish activity coming from different regions of the 
application code. 

The net result is that it would be very valuable to 
have a mechanism that can recognize patterns within 
a larger stream without the need for a program coun-
ter. Such a mechanism could be used at any point in 
the memory system (on-chip, off-chip, in the DRAM 
system, in the disk system, in hardware, in software, 
etc.). Palacharla and Kessler present such a mechanism 
[1994], shown in Figure 3.11. The scheme dynamically 
partitions the memory space into statically defi ned 
equal-sized regions (defi ned by the tag/czone partition 
shown in the fi gure), each of which is tracked for stride 
behavior. Instead of separating streams from each 
other by identifying each with its program counter, the 
scheme exploits the fact that stream behavior is likely to 
be localized (consider, for example, a vector operation 
on two large arrays A and B with non-sequential behav-
ior A ! 1, A ! 3, A ! 5, … and B, B ! 2, B ! 4, …; note 
that A ! 3 and A ! 5 are nearby in the memory space, 
as are B ! 2 and B ! 4, but A ! 3 and B ! 2 are relatively 
distant). Judicious choice of the partition between tag 
and czone (stands for “concentration zone”) enables 
one to separate the A stream from the B stream. If the 
czone partition is no larger than the array size, refer-
ences to A and B will have different tag values, but if the 
tag bit vector is made too small (if czone is large enough 
to encompass both A and B), then references to A and B 
will appear to be in the same stream.

czonetag

meta 1

stride != a–last_addr 

(stride = a–last_addr)Reference Prediction Table

data address

tag prev_addr stride state

(last_addr = a)

matching
tags tag/czone partition set at run-time

meta 2

invalid

(last_addr = a)

(stride = a–last_addr)
(last_addr = a)

stride == a–last_addr 
(allocate stream)

FIGURE 3.11: Palacharla and Kessler’s non-PC-based stride predictor. In the finite state machine, state-transition conditions are 
shown in bold, and actions are shown in parentheses.
I Tag partitions the address space in regions
I Prefetcher separates streams in different address regions
I FSM requires three references that miss
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Correlation Prefetching
I Prefetching repeating patterns that are not dominated by a

single or a few strides
I Algorithmic locality often not captured by strides (e.g.

walking trees with dynamically allocated memory)
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identical to Rechstschaffen’s cache-miss history 
table: the table retains the most recent correlated 
miss, in its fundamental implementation. To wit, 
if item Q causes a cache miss after item P causes 
a cache miss, then the shadow directory holds an 
entry of the form “P:Q,” where P is the tag and Q is 
its corresponding data. A later miss to P followed 
by a miss to X causes the P:Q entry to be replaced 
by a P:X entry. The directory is managed in an LRU 
fashion, and each entry maintains status such as a 
confi dence bit indicating that the following address 
was seen more than once. The patent description 
also describes an extension in which an entry in the 
directory can maintain information on more than 
one subsequent reference address (similar to hav-
ing NumSucc ! 1).

Figure 3.13(a) illustrates in a bit more detail how 
a typical correlation table is organized and  operated 

(e.g., by Baer and Sager, Rechstschaffen and Pome-
rene, but also by Charney and Reeves [1995], Joseph 
and Grunwald [1997], and Sherwood et al. [2000]). 
Each row stores the tag of an address that missed and 
the addresses of a set of NumSucc immediate suc-
cessor misses—misses that have been seen to imme-
diately follow the fi rst one at different points in the 
application. The fi gure shows two snapshots of the 
table at different points in the miss stream (i and ii). 
Within a row, successors are listed in MRU order from 
left to right. At any time, the hardware keeps a pointer 
to the row of the last miss observed. On a miss, the 
table places the miss address as one of the immediate 
successors of the last miss, and a new row is allocated 
for the new miss unless it already exists. When the 
table is used to prefetch (iii), it reacts to an observed 
miss by fi nding the corresponding row and prefetch-
ing all NumSucc successors, starting from the MRU 
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FIGURE 3.13: Correlation prefetching algorithms: (a) base and (b) replicated.
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Correlation Prefetching
I Second Snapshot
I Successors of miss stored in MRU order
I Hardware keeps pointer to row of last observed miss
I On miss hardware updates successors and starts new

correlation stream
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Correlation Prefetching

I Third Snapshot
I Only successors in single row prefeteched, limits

performance
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ing all NumSucc successors, starting from the MRU 

a

c
b c

bd

a
cd

on miss a prefetch d, b
(iii)

a

c
b c

bd

a
cd

a,b,c,a,d,c,...

(ii) current miss

a

c

b
b c

NumSucc=2

a,b,c,a,d,c,...

current miss  (i)

NumRows=4

Miss SequenceCorrelation Table

a,b,c,a,d,c,...

d c
a

a
a

c
b c

cb

d

d

Last
 SecondLast

current miss(ii)

a

c

b
b c

c

Last

d c
a

a
a

c
b c

cb

d

d

NumSucc=2

NumLevels=2

 SecondLast
a,b,c,a,d,c,...

current miss
(i)

Miss Sequence Correlation Table

   on miss a    prefetch d,b,c
(iii)

(a) (b)

FIGURE 3.13: Correlation prefetching algorithms: (a) base and (b) replicated.Dimitrios S. Nikolopoulos HY425 Lecture 14: Improving Cache Performance II 17 / 29



Reducing miss penalty or miss rate

Multi-level Correlation Prefetching

I Maintain multiple pointers (a queue) in the correlation table
I Replicate miss information in the table
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identical to Rechstschaffen’s cache-miss history 
table: the table retains the most recent correlated 
miss, in its fundamental implementation. To wit, 
if item Q causes a cache miss after item P causes 
a cache miss, then the shadow directory holds an 
entry of the form “P:Q,” where P is the tag and Q is 
its corresponding data. A later miss to P followed 
by a miss to X causes the P:Q entry to be replaced 
by a P:X entry. The directory is managed in an LRU 
fashion, and each entry maintains status such as a 
confi dence bit indicating that the following address 
was seen more than once. The patent description 
also describes an extension in which an entry in the 
directory can maintain information on more than 
one subsequent reference address (similar to hav-
ing NumSucc ! 1).

Figure 3.13(a) illustrates in a bit more detail how 
a typical correlation table is organized and  operated 

(e.g., by Baer and Sager, Rechstschaffen and Pome-
rene, but also by Charney and Reeves [1995], Joseph 
and Grunwald [1997], and Sherwood et al. [2000]). 
Each row stores the tag of an address that missed and 
the addresses of a set of NumSucc immediate suc-
cessor misses—misses that have been seen to imme-
diately follow the fi rst one at different points in the 
application. The fi gure shows two snapshots of the 
table at different points in the miss stream (i and ii). 
Within a row, successors are listed in MRU order from 
left to right. At any time, the hardware keeps a pointer 
to the row of the last miss observed. On a miss, the 
table places the miss address as one of the immediate 
successors of the last miss, and a new row is allocated 
for the new miss unless it already exists. When the 
table is used to prefetch (iii), it reacts to an observed 
miss by fi nding the corresponding row and prefetch-
ing all NumSucc successors, starting from the MRU 
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FIGURE 3.13: Correlation prefetching algorithms: (a) base and (b) replicated.
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identical to Rechstschaffen’s cache-miss history 
table: the table retains the most recent correlated 
miss, in its fundamental implementation. To wit, 
if item Q causes a cache miss after item P causes 
a cache miss, then the shadow directory holds an 
entry of the form “P:Q,” where P is the tag and Q is 
its corresponding data. A later miss to P followed 
by a miss to X causes the P:Q entry to be replaced 
by a P:X entry. The directory is managed in an LRU 
fashion, and each entry maintains status such as a 
confi dence bit indicating that the following address 
was seen more than once. The patent description 
also describes an extension in which an entry in the 
directory can maintain information on more than 
one subsequent reference address (similar to hav-
ing NumSucc ! 1).

Figure 3.13(a) illustrates in a bit more detail how 
a typical correlation table is organized and  operated 

(e.g., by Baer and Sager, Rechstschaffen and Pome-
rene, but also by Charney and Reeves [1995], Joseph 
and Grunwald [1997], and Sherwood et al. [2000]). 
Each row stores the tag of an address that missed and 
the addresses of a set of NumSucc immediate suc-
cessor misses—misses that have been seen to imme-
diately follow the fi rst one at different points in the 
application. The fi gure shows two snapshots of the 
table at different points in the miss stream (i and ii). 
Within a row, successors are listed in MRU order from 
left to right. At any time, the hardware keeps a pointer 
to the row of the last miss observed. On a miss, the 
table places the miss address as one of the immediate 
successors of the last miss, and a new row is allocated 
for the new miss unless it already exists. When the 
table is used to prefetch (iii), it reacts to an observed 
miss by fi nding the corresponding row and prefetch-
ing all NumSucc successors, starting from the MRU 

a

c
b c

bd

a
cd

on miss a prefetch d, b
(iii)

a

c
b c

bd

a
cd

a,b,c,a,d,c,...

(ii) current miss

a

c

b
b c

NumSucc=2

a,b,c,a,d,c,...

current miss  (i)

NumRows=4

Miss SequenceCorrelation Table

a,b,c,a,d,c,...

d c
a

a
a

c
b c

cb

d

d

Last
 SecondLast

current miss(ii)

a

c

b
b c

c

Last

d c
a

a
a

c
b c

cb

d

d

NumSucc=2

NumLevels=2

 SecondLast
a,b,c,a,d,c,...

current miss
(i)

Miss Sequence Correlation Table

   on miss a    prefetch d,b,c
(iii)

(a) (b)

FIGURE 3.13: Correlation prefetching algorithms: (a) base and (b) replicated.

Dimitrios S. Nikolopoulos HY425 Lecture 14: Improving Cache Performance II 19 / 29



Reducing miss penalty or miss rate

Multi-level Correlation Prefetching

I Use NLEVELS-1 successors to index the table and
prefetch more

I Example: NLEVELS=2

Chapter 3 MANAGEMENT OF CACHE CONTENTS 137

identical to Rechstschaffen’s cache-miss history 
table: the table retains the most recent correlated 
miss, in its fundamental implementation. To wit, 
if item Q causes a cache miss after item P causes 
a cache miss, then the shadow directory holds an 
entry of the form “P:Q,” where P is the tag and Q is 
its corresponding data. A later miss to P followed 
by a miss to X causes the P:Q entry to be replaced 
by a P:X entry. The directory is managed in an LRU 
fashion, and each entry maintains status such as a 
confi dence bit indicating that the following address 
was seen more than once. The patent description 
also describes an extension in which an entry in the 
directory can maintain information on more than 
one subsequent reference address (similar to hav-
ing NumSucc ! 1).

Figure 3.13(a) illustrates in a bit more detail how 
a typical correlation table is organized and  operated 

(e.g., by Baer and Sager, Rechstschaffen and Pome-
rene, but also by Charney and Reeves [1995], Joseph 
and Grunwald [1997], and Sherwood et al. [2000]). 
Each row stores the tag of an address that missed and 
the addresses of a set of NumSucc immediate suc-
cessor misses—misses that have been seen to imme-
diately follow the fi rst one at different points in the 
application. The fi gure shows two snapshots of the 
table at different points in the miss stream (i and ii). 
Within a row, successors are listed in MRU order from 
left to right. At any time, the hardware keeps a pointer 
to the row of the last miss observed. On a miss, the 
table places the miss address as one of the immediate 
successors of the last miss, and a new row is allocated 
for the new miss unless it already exists. When the 
table is used to prefetch (iii), it reacts to an observed 
miss by fi nding the corresponding row and prefetch-
ing all NumSucc successors, starting from the MRU 
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Other Prefetching Schemes
I Content-based prefetching

I Identify two loads out of which one produces the address
consumed by the other

I Indicates pointer chasing
I Content-directed prefetching

I Scan words fetched from memory to speculate if they are
likely addresses

I Prefetch if word fetched is an address
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Touch and Farber [1994] illustrate a similar 
 concept in the fi le system. They show that the data 
loaded by an I/O operation can help determine 
what to fetch next when the semantics of the I/O 
operation are known. For instance, they prefetch/
preload the contents of a directory whenever a user 
changes to that directory via a cd (change directory) 
operation. However, one cannot directly apply this 
to a transparent I/O cache that does not know why 
a particular block was fetched; there is no simple 
transformation from Roth’s scheme because Roth 
exploits the fact that a load instruction typically 
produces a single register value—a relatively small 
datum easily tracked to identify it as the target 
address for a following load. I/O “loads,” on the 
other hand, produce much larger blocks of data 
(two orders of magnitude larger). Thus it is harder 
to identify the data corresponding to a recurrent 
I/O load. 

Cooksey describes a scheme that could address 
this issue [Cooksey et al. 2002]. In Cooksey’s con-
tent-directed prefetching, pointers are identified 
and prefetched based on a set of heuristics applied 
to the contents of an entire memory block. The 
technique borrows from conservative garbage 
collection; when data is demand-fetched from 
memory, each address-sized word of the data is 
examined for its suitability as a likely address. Can-
didate addresses need to be translated from the vir-
tual to the physical address space and then issued 
as prefetch requests. As prefetch requests return 

data from memory, their contents are examined 
to retrieve subsequent candidates. The heuristics 
scan each 4-byte chunk on every loaded cache 
block. Each chunk is divided into several sections, 
as shown in Figure 3.14. The figure shows an L2 
miss address that causes a block to be brought into 
the L2 cache and a 4-byte chunk from the incom-
ing block to be considered as a candidate prefetch 
address. The first heuristic compares a few upper 
bits (the compare bits) of the candidate prefetch 
address with ones from the miss address. If they 
match, the candidate prefetch address may be an 
address that points to the same region of memory 
as the miss address. This heuristic relies on the fact 
that linked data structure traversal may dereference 
many pointers that are located nearby; pointers that 
jump across a large space, for example, a pointer 
from the stack to heap region, cannot be identified 
by the heuristic as recurrent-load addresses. The 
heuristics works well except for the two regions 
where the compare bits are all 0’s or all 1’s. Small 
non-address integers with 0’s in their compare bits 
should not be confused as addresses, and small 
negative numbers may have all 1’s in the compare 
bits; these instances need a different heuristic to 
distinguish them from addresses. One alterna-
tive would be to disregard prefetch addresses that 
have all 0’s and all 1’s in their compare bits. Unfor-
tunately, these cases are too frequent to ignore 
because many operating systems allocate stack 
or heap data in those locations. To address this, 

31

Compare Bits Filter Bits

Candidate Prefetch Address

L2 Miss Address31 0

0

Align Bits

FIGURE 3.14: Heuristics for pointer identification.Dimitrios S. Nikolopoulos HY425 Lecture 14: Improving Cache Performance II 21 / 29
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Dynamic Data Structure Reorganization for
Locality

I List linearization
I Idea borrowed from garbage collection
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from active lists “compact” representations. The scheme 
described by Fenichel and Yochelson improves inter-list 
locality by removing dead lists. The scheme described 
by Hansen improves intra-list locality signifi cantly by 
explicitly linearizing lists, much in the same vein as 
data linearization proposed by Luk and Mowry [1996], 
except that Hansen’s approach is dynamic, is performed 
by the system, and thus remains completely transparent 
to application software. 

Figure 3.16 illustrates Hansen’s mechanism.  Figure 
3.16(a) shows a typical list representation; in particu-
lar, elements added to a list are dynamically allocated 
and separately allocated structures. Thus, any newly 
added elements will be linked data structures. Fig-
ure 3.16(b) shows the result of list compaction; data 
structures logically adjacent in the list become physi-
cally contiguous in memory. Note that this is not 
a one-time fi x that is run once and is never needed 
again. Any changes to the compacted list structure 
(e.g., element additions or deletions, list-element 
restructuring, etc.) will yield a linked-list organiza-
tion of physically disjunct data structures. This type 
of dynamic, transparent data linearization is possible 
in a LISP system (or any similar system) because the 
linked nature of the data structures is not visible to the 

programmer. Therefore, if the system software works 
correctly, there can be no instances of dangling point-
ers when data structures are copied and old versions 
are deleted; the system can account for every pointer 
to an object because such pointers are under its 
direct control. Garbage collection is possible in such 
a system because the relocation of objects is provably 
non-deleterious—the relocation of an object cannot 
affect application-level program correctness. The 
same is not true of other programming systems and 
languages, particularly C—one cannot dynamically 
and transparently relocate linked structures out from 
under a C program because one cannot account for 
all possible pointers to an object. C exports the notion 
of a memory pointer to the programmer, which is 
both extremely powerful and extremely dangerous or 
at least extremely limiting in terms of what dynamic 
optimizations are possible and easily accomplished. 
This is precisely why memory allocation and deallo-
cation are explicitly left to the programmer in C and 
C-like languages. 

Nonetheless, transparent object relocation has 
been done for C-language programs. The trick is 
to provide a safety net that catches those instances 
where a dangling pointer is later used. Luk and Mowry 
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FIGURE 3.16: Hansen’s list-linearizing garbage collector: (a) data structures for several typical lists; (b) corresponding compact 
representations produced by the garbage collector. 
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Page Coloring
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cache. A variant hashes the process ID with 
the VPN fi rst to ensure that similar, com-
monly referenced address ranges in differ-
ent processes map to different ranges in the 
cache (e.g., the beginning of the code sec-
tion, the top of the stack, etc.).
Bin hopping: This uses a round-robin 
page assignment in which the operat-
ing system maintains for each process a 
separate pointer into the set of bin queues, 
facilitating the same separation of process-

•

address spaces as the hashed version of 
page coloring, above. For example, the fi rst 
virtual page mapped in address space UID 
is assigned to a page frame in bin number 
(last_bin[UID] ! rand()), meaning that the 
initial placement is random. The second 
is assigned to a page frame in bin number 
(""last_bin[UID]), meaning that the bin 
number is one greater than the previous. If 
no pages are available in the desired bin, the 
next sequential bin is chosen.

32KB Virtual Cache
(maps 8 4K pages)

4KB
region

of cache

40KB Region
of the process’s virtual address space

32KB Physical Cache
(maps 8 4K pages)

192KB Region
of physical memory

This mapping
is entirely OS-dependent
and can vary significantly
from run to run of application

FIGURE 3.17: How virtual mapping can negate page placement. A compiler’s page-placement heuristic ensures that objects 
used at the same time are placed in adjacent or non-conflicting locations, e.g., pages that do not map to the same region in a 
virtually indexed cache. This is shown on the left side of the Figure.  For objects that cannot be placed in adjacent locations, such 
as a block of code and the data on which it operates, the page-placement heuristic ensures that even if the objects map to the 
same region of the cache, they will not map to the same cache blocks (as shown on the left: two instances where two pages 
co-reside in the cache without conflict). However, when a physically indexed cache is used, the compiler’s efforts are completely 
undone, unless the kernel preserves contiguity of virtual data in the physical space (which it does not, in general, do). On the right 
is shown an arbitrary mapping of virtual pages to physical pages that results in numerous page and cache block conflicts that 
would not have occurred in a virtually indexed cache.
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Page Coloring

I Physical layout of pages of data in DRAM differs from
physical layout of pages of data in cache

I Consequence of virtual-to-physical address translation
I Software can implement conflict-free placement of pages if

cache is virtually-indexed
I Placing working set in adjacent virtual pages guarantees

mapping in adjacent cache page-size regions
I Page coloring

I Match bottom bits of virtual page number with bottom bits
of physical frame number

I Implemented using bins of physical pages that map to the
same page-size region in the cache

I Implementation lies in the operating system
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Software Prefetching
Mowry’s algorithm:

I Identify statically references that miss using locality
analysis

I Examples assumes array elements are doubles and cache
block is 32 bytes
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useful blocks from the L1 cache. In addition, usefully 
prefetched blocks are fi lled into the L1 cache as late 
as possible—at the time of the processor’s reference 
rather than the prefetch block’s arrival—thus delay-
ing the eviction of potentially useful blocks from the 
L1 cache. On the other hand, prefetch buffers con-
sume memory that could have otherwise been used 
to build a larger L1 cache.

Mowry’s Algorithm
Most software prefetching in practice focuses on 

array references performed within loops that give rise 
to regular memory-access patterns. These memory 
references employ array subscripts that are affi ne, 
i.e., linear combinations of loop index variables with 
constant coeffi cients and additive constants. Affi ne 
array references are quite common in a variety of 
applications, including dense-matrix linear algebra 
and fi nite-difference PDE (partial differential equa-
tion) solvers as well as image processing and scans/
joins in relational databases. These programs can 
usually exploit long cache lines to reduce memory-
access costs but may suffer poor performance due to 
cache confl ict and capacity misses arising from the 

large amounts of data accessed. An important feature 
of these codes is that memory-access patterns can 
be identifi ed exactly at compile time, assuming array 
dimension sizes are known. Consequently, programs 
performing affi ne array references are good candi-
dates for software prefetching.

The best-known approach for instrumenting 
software prefetching of affi ne array references is the 
compiler algorithm proposed by Mowry [Mowry 
et al. 1992, Mowry 1998]. To illustrate the algorithm 
we use the two-dimensional (2D) Jacobi kernel in 
Figure 3.24(a) as an example, instrumenting it with 
software prefetching using Mowry’s algorithm in Fig-
ure 3.24(b). The algorithm involves three major steps: 
locality analysis, cache-miss isolation, and prefetch 
scheduling.

Locality analysis determines the array references 
that will miss in the cache and thus require prefetch-
ing. The goal of this step is to avoid unnecessary 
prefetches, or prefetches that incur run-time over-
head without improving performance because they 
hit in the cache. The analysis proceeds in two parts. 
First, reuse between dynamic instances of individual 
static array references is identifi ed. In particular, 
locality analysis looks for three types of reuse: spatial, 

f o r  ( j = 2 ;  j  < =  N - 1 ;  j + + )  {
   f o r  ( i = 2 ;  i  < =  P D ;  i + = 4 )  {        / / P r o l o g u e
      p r e f e t c h ( & B [ j ] [ i ] ) ;
      p r e f e t c h ( & B [ j - 1 ] [ i ] ) ;
      p r e f e t c h ( & B [ j + 1 ] [ i ] ) ;
      p r e f e t c h ( & A [ j ] [ i ] ) ;
   }
   f o r  ( i = 2 ;  i  <  N - P D - 1 ;  i + = 4 )  {     / / S t e a d y  S t a t e
      p r e f e t c h ( & B [ j ] [ i + P D ] ) ;
      p r e f e t c h ( & B [ j - 1 ] [ i + P D ] ) ;
      p r e f e t c h ( & B [ j + 1 ] [ i + P D ] ) ;
      p r e f e t c h ( & A [ j ] [ i + P D ] ) ;

      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;
      A [ j ] [ i + 1 ] = 0 . 2 5 * ( B [ j ] [ i ] + B [ j ] [ i + 2 ] + B [ j - 1 ] [ i + 1 ] + B [ j + 1 ] [ i + 1 ] ) ;
      A [ j ] [ i + 2 ] = 0 . 2 5 * ( B [ j ] [ i + 1 ] + B [ j ] [ i + 3 ] + B [ j - 1 ] [ i + 2 ] + B [ j + 1 ] [ i + 2 ] ) ;
      A [ j ] [ i + 3 ] = 0 . 2 5 * ( B [ j ] [ i + 2 ] + B [ j ] [ i + 4 ] + B [ j - 1 ] [ i + 3 ] + B [ j + 1 ] [ i + 3 ] ) ;
   }
   f o r  ( i = N - P D ;  i  < =  N - 1 ;  i + + )       / / E p i l o g u e
      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;
}

f o r  ( j = 2 ;  j  < =  N - 1 ;  j + + )
   f o r  ( i = 2 ;  i  < =  N - 1 ;  i + + )
      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;

b )

a )

FIGURE 3.24: Example illustrating Mowry’s algorithm. (a) is 2D Jacobi kernel code; (b) is code instrumented with software 
prefetching using Mowry’s algorithm [Mowry 1991].Dimitrios S. Nikolopoulos HY425 Lecture 14: Improving Cache Performance II 25 / 29
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Software Prefetching
Mowry’s algorithm:

I Algorithm identifies spatial reuse (all references in
example), temporal reuse for each reference and temporal
reuse for group of references

I Algorithm computes number of iterations between reuses
and volume of data accessed to identify misses
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useful blocks from the L1 cache. In addition, usefully 
prefetched blocks are fi lled into the L1 cache as late 
as possible—at the time of the processor’s reference 
rather than the prefetch block’s arrival—thus delay-
ing the eviction of potentially useful blocks from the 
L1 cache. On the other hand, prefetch buffers con-
sume memory that could have otherwise been used 
to build a larger L1 cache.

Mowry’s Algorithm
Most software prefetching in practice focuses on 

array references performed within loops that give rise 
to regular memory-access patterns. These memory 
references employ array subscripts that are affi ne, 
i.e., linear combinations of loop index variables with 
constant coeffi cients and additive constants. Affi ne 
array references are quite common in a variety of 
applications, including dense-matrix linear algebra 
and fi nite-difference PDE (partial differential equa-
tion) solvers as well as image processing and scans/
joins in relational databases. These programs can 
usually exploit long cache lines to reduce memory-
access costs but may suffer poor performance due to 
cache confl ict and capacity misses arising from the 

large amounts of data accessed. An important feature 
of these codes is that memory-access patterns can 
be identifi ed exactly at compile time, assuming array 
dimension sizes are known. Consequently, programs 
performing affi ne array references are good candi-
dates for software prefetching.

The best-known approach for instrumenting 
software prefetching of affi ne array references is the 
compiler algorithm proposed by Mowry [Mowry 
et al. 1992, Mowry 1998]. To illustrate the algorithm 
we use the two-dimensional (2D) Jacobi kernel in 
Figure 3.24(a) as an example, instrumenting it with 
software prefetching using Mowry’s algorithm in Fig-
ure 3.24(b). The algorithm involves three major steps: 
locality analysis, cache-miss isolation, and prefetch 
scheduling.

Locality analysis determines the array references 
that will miss in the cache and thus require prefetch-
ing. The goal of this step is to avoid unnecessary 
prefetches, or prefetches that incur run-time over-
head without improving performance because they 
hit in the cache. The analysis proceeds in two parts. 
First, reuse between dynamic instances of individual 
static array references is identifi ed. In particular, 
locality analysis looks for three types of reuse: spatial, 

f o r  ( j = 2 ;  j  < =  N - 1 ;  j + + )  {
   f o r  ( i = 2 ;  i  < =  P D ;  i + = 4 )  {        / / P r o l o g u e
      p r e f e t c h ( & B [ j ] [ i ] ) ;
      p r e f e t c h ( & B [ j - 1 ] [ i ] ) ;
      p r e f e t c h ( & B [ j + 1 ] [ i ] ) ;
      p r e f e t c h ( & A [ j ] [ i ] ) ;
   }
   f o r  ( i = 2 ;  i  <  N - P D - 1 ;  i + = 4 )  {     / / S t e a d y  S t a t e
      p r e f e t c h ( & B [ j ] [ i + P D ] ) ;
      p r e f e t c h ( & B [ j - 1 ] [ i + P D ] ) ;
      p r e f e t c h ( & B [ j + 1 ] [ i + P D ] ) ;
      p r e f e t c h ( & A [ j ] [ i + P D ] ) ;

      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;
      A [ j ] [ i + 1 ] = 0 . 2 5 * ( B [ j ] [ i ] + B [ j ] [ i + 2 ] + B [ j - 1 ] [ i + 1 ] + B [ j + 1 ] [ i + 1 ] ) ;
      A [ j ] [ i + 2 ] = 0 . 2 5 * ( B [ j ] [ i + 1 ] + B [ j ] [ i + 3 ] + B [ j - 1 ] [ i + 2 ] + B [ j + 1 ] [ i + 2 ] ) ;
      A [ j ] [ i + 3 ] = 0 . 2 5 * ( B [ j ] [ i + 2 ] + B [ j ] [ i + 4 ] + B [ j - 1 ] [ i + 3 ] + B [ j + 1 ] [ i + 3 ] ) ;
   }
   f o r  ( i = N - P D ;  i  < =  N - 1 ;  i + + )       / / E p i l o g u e
      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;
}

f o r  ( j = 2 ;  j  < =  N - 1 ;  j + + )
   f o r  ( i = 2 ;  i  < =  N - 1 ;  i + + )
      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;

b )

a )

FIGURE 3.24: Example illustrating Mowry’s algorithm. (a) is 2D Jacobi kernel code; (b) is code instrumented with software 
prefetching using Mowry’s algorithm [Mowry 1991].
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I Loop unrolling and peeling isolate cache misses (one per
reference per unrolled iteration in example)

I Compiler inserts prefetches for references that miss using
a prefetch distance, measured in iterations
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useful blocks from the L1 cache. In addition, usefully 
prefetched blocks are fi lled into the L1 cache as late 
as possible—at the time of the processor’s reference 
rather than the prefetch block’s arrival—thus delay-
ing the eviction of potentially useful blocks from the 
L1 cache. On the other hand, prefetch buffers con-
sume memory that could have otherwise been used 
to build a larger L1 cache.

Mowry’s Algorithm
Most software prefetching in practice focuses on 

array references performed within loops that give rise 
to regular memory-access patterns. These memory 
references employ array subscripts that are affi ne, 
i.e., linear combinations of loop index variables with 
constant coeffi cients and additive constants. Affi ne 
array references are quite common in a variety of 
applications, including dense-matrix linear algebra 
and fi nite-difference PDE (partial differential equa-
tion) solvers as well as image processing and scans/
joins in relational databases. These programs can 
usually exploit long cache lines to reduce memory-
access costs but may suffer poor performance due to 
cache confl ict and capacity misses arising from the 

large amounts of data accessed. An important feature 
of these codes is that memory-access patterns can 
be identifi ed exactly at compile time, assuming array 
dimension sizes are known. Consequently, programs 
performing affi ne array references are good candi-
dates for software prefetching.

The best-known approach for instrumenting 
software prefetching of affi ne array references is the 
compiler algorithm proposed by Mowry [Mowry 
et al. 1992, Mowry 1998]. To illustrate the algorithm 
we use the two-dimensional (2D) Jacobi kernel in 
Figure 3.24(a) as an example, instrumenting it with 
software prefetching using Mowry’s algorithm in Fig-
ure 3.24(b). The algorithm involves three major steps: 
locality analysis, cache-miss isolation, and prefetch 
scheduling.

Locality analysis determines the array references 
that will miss in the cache and thus require prefetch-
ing. The goal of this step is to avoid unnecessary 
prefetches, or prefetches that incur run-time over-
head without improving performance because they 
hit in the cache. The analysis proceeds in two parts. 
First, reuse between dynamic instances of individual 
static array references is identifi ed. In particular, 
locality analysis looks for three types of reuse: spatial, 

f o r  ( j = 2 ;  j  < =  N - 1 ;  j + + )  {
   f o r  ( i = 2 ;  i  < =  P D ;  i + = 4 )  {        / / P r o l o g u e
      p r e f e t c h ( & B [ j ] [ i ] ) ;
      p r e f e t c h ( & B [ j - 1 ] [ i ] ) ;
      p r e f e t c h ( & B [ j + 1 ] [ i ] ) ;
      p r e f e t c h ( & A [ j ] [ i ] ) ;
   }
   f o r  ( i = 2 ;  i  <  N - P D - 1 ;  i + = 4 )  {     / / S t e a d y  S t a t e
      p r e f e t c h ( & B [ j ] [ i + P D ] ) ;
      p r e f e t c h ( & B [ j - 1 ] [ i + P D ] ) ;
      p r e f e t c h ( & B [ j + 1 ] [ i + P D ] ) ;
      p r e f e t c h ( & A [ j ] [ i + P D ] ) ;

      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;
      A [ j ] [ i + 1 ] = 0 . 2 5 * ( B [ j ] [ i ] + B [ j ] [ i + 2 ] + B [ j - 1 ] [ i + 1 ] + B [ j + 1 ] [ i + 1 ] ) ;
      A [ j ] [ i + 2 ] = 0 . 2 5 * ( B [ j ] [ i + 1 ] + B [ j ] [ i + 3 ] + B [ j - 1 ] [ i + 2 ] + B [ j + 1 ] [ i + 2 ] ) ;
      A [ j ] [ i + 3 ] = 0 . 2 5 * ( B [ j ] [ i + 2 ] + B [ j ] [ i + 4 ] + B [ j - 1 ] [ i + 3 ] + B [ j + 1 ] [ i + 3 ] ) ;
   }
   f o r  ( i = N - P D ;  i  < =  N - 1 ;  i + + )       / / E p i l o g u e
      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;
}

f o r  ( j = 2 ;  j  < =  N - 1 ;  j + + )
   f o r  ( i = 2 ;  i  < =  N - 1 ;  i + + )
      A [ j ] [ i ] = 0 . 2 5 * ( B [ j ] [ i - 1 ] + B [ j ] [ i + 1 ] + B [ j - 1 ] [ i ] + B [ j + 1 ] [ i ] ) ;

b )

a )

FIGURE 3.24: Example illustrating Mowry’s algorithm. (a) is 2D Jacobi kernel code; (b) is code instrumented with software 
prefetching using Mowry’s algorithm [Mowry 1991].Dimitrios S. Nikolopoulos HY425 Lecture 14: Improving Cache Performance II 27 / 29
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manipulate dense matrices. Two properties 
of array structures are essential to this work: 
uniform, random access to elements, and a 
numer theoretic basis for statically analyzing 
data dependencies. These properties allow 
compilers to analyze array accesses completely 
and to reorder them in a way that increases 
cache locality (loop transformations) without 
affecting a program’s result. 

Unfortunately, pointer structures share neither 
property. [Chilimbi et al. 1999]

Due to the dynamic nature of LDS creation and 
modifi cation, pointer-chasing codes commonly 
exhibit poor spatial and temporal locality and experi-
ence poor cache behavior. In addition, LDS traversal 
requires the sequential reference and dereference of 
the pointers stored inside visited nodes, thus serial-
izing all memory operations performed along the 
traversal.

The pointer-chasing problem not only limits appli-
cation performance, but it also potentially limits the 
effectiveness of prefetching. As discussed earlier, an 
important goal of software prefetching is to initiate 
prefetches suffi ciently early to tolerate their latency. 
Doing so requires knowing the prefetch memory 
address in advance as well. This is straightforward 
for array data structures since the address of future 
array elements can be computed given the desired 
array indices. However, determining the address 
of a future link node in an LDS requires traversing 
the intermediate link nodes due to the pointer-
chasing problem, thus preventing the early initiation 
of prefetches.

Natural Pointer Techniques
The simplest software prefetching technique for 
LDS traversal is greedy prefetching, proposed by 
Luk and Mowry [1996]. Greedy prefetching inserts 
software prefetch instructions immediately prior to 
visiting a node for all possible successor nodes that 
might be encountered by the traversal. To demon-
strate the technique, Figure 3.25 shows the prefetch 
instrumentation for two types of LDS traversals. 
Figure 3.25(a) illustrates greedy prefetching for a 
loop-based, linked-list traversal in which a single 
prefetch is inserted at the top of the loop for the next 
link node in the list. Figure 3.25(b) illustrates greedy 
prefetching for a recursive tree traversal in which 
prefetches are inserted at the top of the recursive 
function for each child node in the sub-tree.

Greedy prefetching is attractive due to its sim-
plicity. However, its ability to properly time prefetch 
initiation is limited. For the linked-list traversal in 
Figure 3.25(a), each prefetch overlaps with a single-
loop iteration only. Greater overlap is not possible 
since the technique cannot prefetch nodes beyond 
the immediate successor due to the pointer- chasing 
problem described earlier. If the amount of work in a 
single-loop iteration is small compared to the prefetch 
latency, than greedy prefetching will not effectively tol-
erate the memory stalls. The situation is somewhat bet-
ter for the tree traversal in Figure 3.25(b). Although the 
prefetch of ptr->left suffers a similar problem as the 
linked-list traversal (its latency overlaps with a single 
recursive call only), the prefetch of ptr->right over-
laps with more work—the traversal of the entire left 
sub-tree. But the timing of prefetch initiation may 

s t r u c t  n o d e  { d a t a ,  n e x t }
   * p t r ,  * l i s t _ h e a d ;

p t r  =  l i s t _ h e a d ;
w h i l e  ( p t r )  {
   p r e f e t c h ( p t r - > n e x t ) ;
   . . .
   p t r  =  p t r - > n e x t ;
}

s t r u c t  n o d e  { d a t a ,  l e f t ,  r i g h t }
   * p t r ;

v o i d  r e c u r s e ( p t r )  {
   p r e f e t c h ( p t r - > l e f t ) ;
   p r e f e t c h ( p t r - > r i g h t ) ;
   . . .
   r e c u r s e ( p t r - > l e f t ) ;
   r e c u r s e ( p t r - > r i g h t ) ;
}

a ) b )

FIGURE 3.25: Example illustrating greedy pointer prefetching. Example pointer prefetching for (a) linked-list and (b) tree 
traversals using greedy prefetching.
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not be ideal. The latency for prefetching ptr->right 
may still not be fully tolerated if the left sub-tree tra-
versal contains insuffi cient work. Alternatively, the 
prefetched node may arrive too early and suffer evic-
tion if the left sub-tree traversal contains too much 
work.

Another approach to prefetching LDS traversals is 
data linearization prefetching. Like greedy prefetch-
ing, this technique was proposed by Luk and Mowry 
[1996]. Data linearization prefetching makes the 
observation that if contemporaneously traversed link 
nodes in an LDS are laid out linearly in memory, then 
prefetching a future node no longer requires sequen-
tially traversing the intermediate nodes to determine 
its address. Instead, a future node’s memory address 
can be computed simply by offsetting from the cur-
rent node pointer, much like indexing into an array. 
Hence, data linearization prefetching avoids the 
pointer-chasing problem altogether and can initiate 
prefetches as far in advance as necessary.

The key issue for data linearization prefetching is 
achieving the desired linear layout of LDS nodes. Lin-
earization can occur either at LDS creation or after 
an LDS has been created. From a cost standpoint, 
the former is more desirable since the latter requires 
reorganizing an existing LDS via data copying at run 
time. Moreover, linearizing at LDS creation is feasi-
ble especially if the order of LDS traversal is known 
a priori. In this case, the allocation and linkage of 
individual LDS nodes should simply follow the order 
of node traversal. As long as the memory allocator 
places contemporaneously allocated nodes regularly 
in memory, the desired linearization can be achieved. 
Notice, however, that periodic “re-linearization” (via 
copying) may be necessary if link nodes are inserted 
and deleted frequently. Hence, data linearization 
prefetching is most effective for applications in which 
the LDS connectivity does not change signifi cantly 
during program execution.

Jump Pointer Techniques
Both greedy and data linearization prefetching do 

not modify the logical structure of the LDS to perform 
prefetching. In contrast, another group of pointer 
prefetching techniques have been studied that insert 

special pointers into the LDS, called jump pointers, for 
the sole purpose of prefetching. Jump pointers con-
nect non-consecutive link nodes, allowing prefetch 
instructions to name link nodes further down the 
pointer chain without traversing the intermediate 
link nodes and without performing linearization 
beforehand. Effectively, the jump pointers increase 
the dimensionality and reduce the diameter of an 
LDS, an idea borrowed from Skip Lists [Pugh 1990].

Several jump pointer techniques have been stud-
ied in the literature. The most basic approach is 
jump pointer prefetching as originally proposed by 
Luk and Mowry [1996]. Roth and Sohi [1999] also 
investigated jump pointer prefetching, introduc-
ing variations that use a combination of software 
and hardware support to pursue the jump pointers. 
 Figure 3.26(a) illustrates the basic technique, apply-
ing jump pointer prefetching to the same linked-list 
traversal shown in Figure 3.25. Each linked-list node 
is augmented with a jump pointer fi eld, called jump 

s t r u c t  n o d e  { d a t a ,  n e x t ,  j u m p }
   * p t r ,  * l i s t _ h e a d ,  * p r e f e t c h _ a r r a y [ P D ] ,  * h i s t o r y [ P D ] ;
i n t  i ,  h e a d ,  t a i l ;

f o r  ( i  =  0 ;  i  <  P D ;  i + + )  / / P r o l o g u e  L o o p
   p r e f e t c h ( p r e f e t c h _ a r r a y [ i ] ) ;

p t r  =  l i s t _ h e a d ;
w h i l e  ( p t r - > n e x t )  {   / / S t e a d y  S t a t e  L o o p
   p r e f e t c h ( p t r - > j u m p ) ;
   . . .
   p t r  =  p t r - > n e x t ;
}

f o r  ( i  =  0 ;  i  <  P D ;  i + + )  h i s t o r y [ i ]  =  N U L L ;
t a i l  =  0 ;
h e a d  =  P D - 1 ;

p t r  =  l i s t _ h e a d ;
w h i l e  ( p t r )  {   / / P r e f e t c h  P o i n t e r  G e n e r a t i o n  L o o p
   h i s t o r y [ h e a d ]  =  p t r ;
   i f  ( ! h i s t o r y [ t a i l ] )
      p r e f e t c h _ a r r a y [ t a i l ]  =  p t r ;
   e l s e
      h i s t o r y [ t a i l ] - > j u m p  =  p t r ;
   h e a d  =  ( h e a d + 1 ) % P D ;
   t a i l  =  ( t a i l + 1 ) % P D ;
   p t r  =  p t r - > n e x t ;
}

a )

b )

FIGURE 3.26: Example illustrating jump pointer and prefetch 
 array pointer prefetching. Example pointer prefetching for a 
linked, list traversal using jump pointers and prefetch arrays. (a) 
shows the traversal code instrumented with prefetching through 
jump pointers and prefetch arrays. (b) shows the prefetch pointer 
initialization code.
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