HY425 Lecture 15: DRAM Technology

Dimitrios S. Nikolopoulos

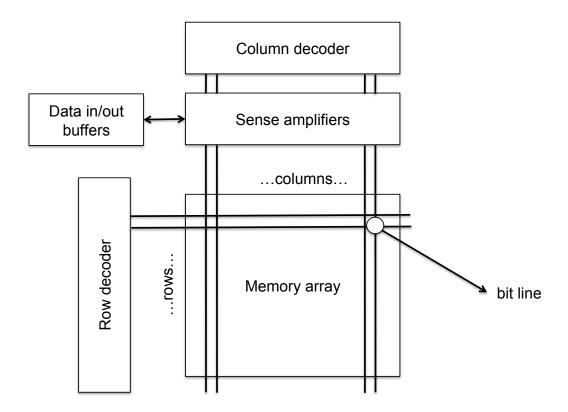
University of Crete and FORTH-ICS

December 2, 2011

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology
Virtual memory

HY425 Lecture 15: DRAM Technology


1/34

DRAM

Fundamentals

- Random-access memory using one transistor-capacitor pair per bit
- Capacitors leak, needs refresh
- Composed of one or more memory arrays
 - Organized in rows and columns
 - Need sense amplifiers to compensate for voltage swing

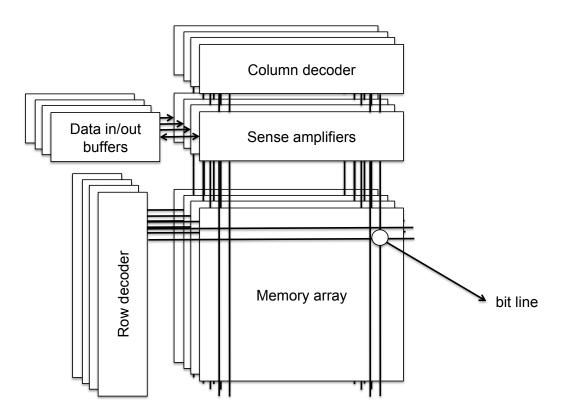
DRAM cell

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology


4/34

DRAM

Fundamentals

- Each DRAM memory array outputs one bit
- DRAMS use multiple memory arrays to output multiple bits at a time
 - ×N indicates DRAM with N memory arrays
 - ×16, ×32 DRAMS typical today
- Each collection of ×N arrays forms a DRAM bank
- Banks can be read/written independently

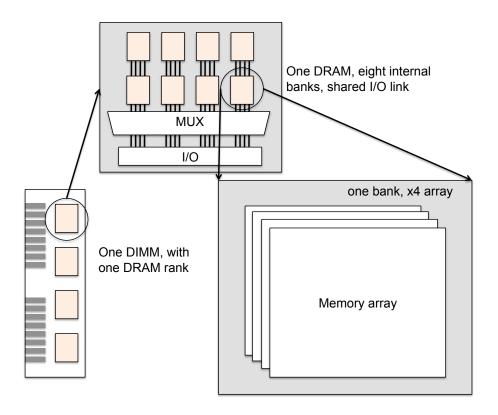
×4 DRAM

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology


6/34

Interleaved DRAM

DRAM memory bandwidth

- Limited bandwidth from one DRAM bank
- Increase bandwidth by delivering data from multiple banks
 - Processor DRAM interconnect (e.g. bus) with higher clock frequency than any one DRAM
 - Bus control switches between multiple DRAM banks to achieve high data rate

DIMMs and Ranks

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology

8/34

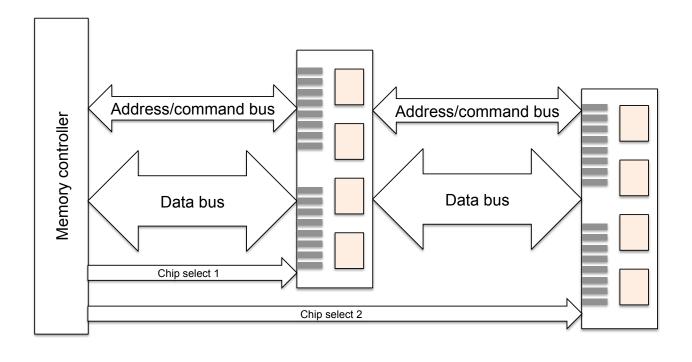
Modern DRAM organization

Hierarchy of DRAM memories

- A system has multiple DIMMs
- Each DIMM has multiple DRAM devices in one or more ranks
- Each DRAM device has multiple banks
- Each bank has multiple memory arrays
- Concurrency in ranks and banks increases memory bandwidth

Processor-DRAM interconnect

- Buses
 - Address/command lines
 - ▶ Data lines (wide, >= 64 bits in leading processors)
 - Chip select lines
- Recent systems adopt increasingly more scalable solutions
 - Point-to-point, crossbar interconnects
 - Hypertransport, Intel CSI/QuickPath


Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology
Virtual memory

HY425 Lecture 15: DRAM Technology

10/34

Processor-DRAM bus organization

Memory controller

Controller operation

- Device executing processor memory requests
- Separate off-processor chip in earlier systems
- Integrated on-chip with the processor in modern systems
- Bus, point-to-point, crossbar interconnect with processor

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology

12/34

Lifetime of a memory access

Steps in memory access

- 1. Processor orders and queues memory requests
- 2. Request sent to memory controller
- 3. Controller queues and orders requests
- For request in head of queue, controller waits until requested DRAM ready
- Controller breaks address bits into rank, bank, bank row, bank column fields
- 6. Controller sends chip-select signal to select rank
- Selected bank at selected rank precharged to activate selected row

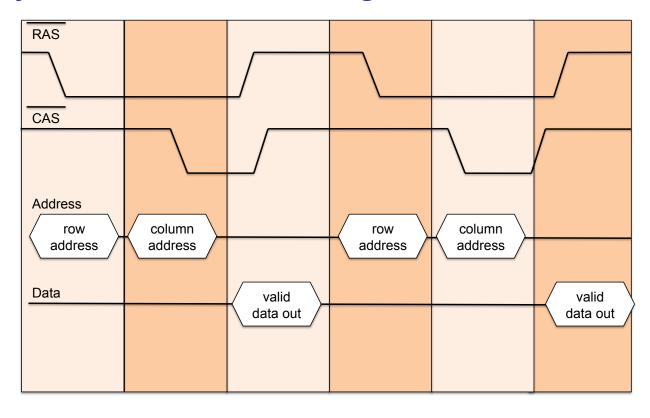
Lifetime of a memory access

Steps in memory access

- 8. Activate row in DRAMs of selected bank in selected rank
 - Use RAS (row-address strobe signal)
- 9. Send entire row to sense amplifiers
 - Sense amps may already have a valid row
- 10. Select desired column using CAS (column-address strobe)

Dimitrios S. Nikolopoulos

DRAM basics


Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology

14/34

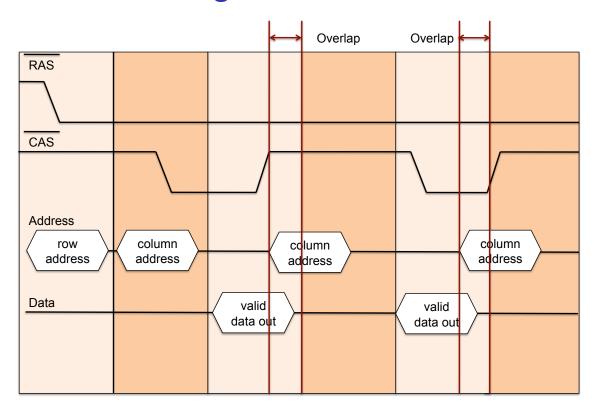
Asynchronous DRAM timing

Fast Page Mode

- Allow row to remain available (open) for multiple column accesses
- Holds row data in sense amplifiers for longer period
- Memory controller holds RAS signal while changing CAS signal
- Sense amplifiers function as "cache" for DRAM rows
- Multiple CAS signals can access multiple words in same row
- Exploits spatial locality via successive accesses to same row

Dimitrios S. Nikolopoulos

DRAM basics


Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology

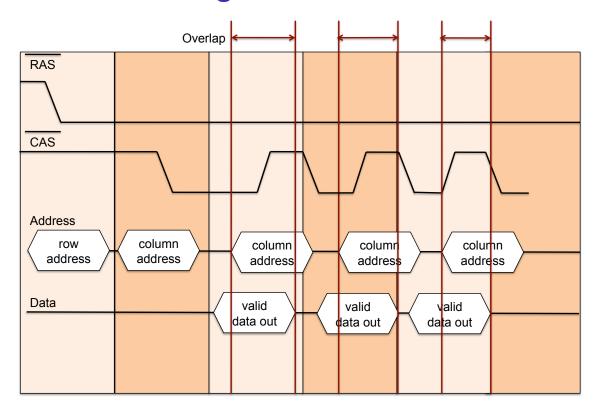
17/34

FPM DRAM timing

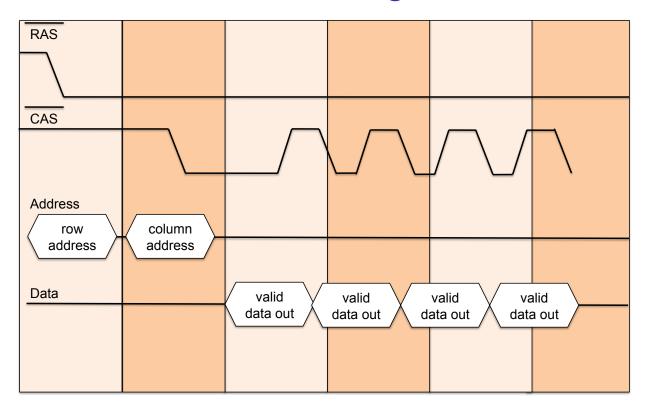
EDO DRAM

- Adds latches to FPM DRAM to permit rapid CAS deassertion
- Accelerates precharging for output
- Latches allow also row in output to remain valid longer
- ▶ 10%-15% shorter access time than FPM

Dimitrios S. Nikolopoulos


DRAM basics
Advanced DRAM technology

Virtual memory


HY425 Lecture 15: DRAM Technology

19/34

EDO DRAM timing

Burst mode EDO DRAM timing

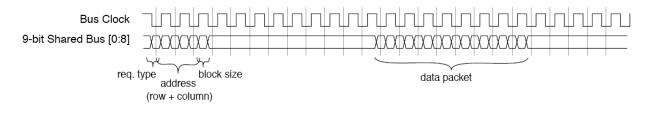
Dimitrios S. Nikolopoulos

DRAM basics

Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology


21/34

Synchronous DRAM

- Asynchrony in DRAM due to RAS and CAS signals arriving at any time
- Synchronous DRAM uses clock to deliver requests at regular intervals
- More predictable DRAM timing
- Less skew, faster turnaround on requests
- Synchronous DRAMs support burst mode accesses
- Initial performance similar to BEDO DRAM
- Clock scaling enabled higher performance later

Rambus DRAM (RDRAM)

- Fully multiplexed, narrow bus replaces, control, data, address bus
 - 8-bit bus at 250 MHz, delivers 500 MB/s
- Split request-response protocol resembling network protocols

Dimitrios S. Nikolopoulos

DRAM basics

HY425 Lecture 15: DRAM Technology

23/34

Advanced DRAM technology Virtual memory

Concurrent Rambus DRAM

- Split bus into address, command and data segments
- 1-byte data segment, 1-bit address segment, 1-bit control segment
 - Later extended to 2 bytes data, 5 bits address, 3 bits control
 - Frequency also increased to 500 MHz
- Perform simultaneous command, address, data transmit on bus

Modern DRAM designs

- Double Data Rate (DDR) SDRAM
 - Double data transfer rate by transferring at both clock edges
 - Otherwise almost identical to single data rate DRAM
- Virtual Channel Memory SDRAM
 - Adds a real cache (SRAM) to buffer large data blocks
 - Increased read/write latency on miss
- Fully Buffered DIMM
 - Channel speed improving at the expense of channel capacity
 - Memory controllers on DIMMS
 - Replace shared bus with point-to-point connections between controllers and DRAMs
 - Higher storage capacity without sacrificing bandwidth

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology

25/34

Virtual Memory 101

Why VM?

- Share a physical address space among many processes
- Providing protection between processes
- Handle efficiently processes with sparse address spaces
- Load physical memory on-demand
- Load programs anywhere in physical memory (relocation)
- Run programs too large to fit in physical memory

Virtual Memory 101

VM terminology

- Page or segment correspond to block
 - Pages are fixed-size, segments are variable-size blocks
- CPU produces virtual addresses translated to physical addresses

VM versus caches

- Replacement controlled by operating system versus hardware
- Memory miss penalty huge compared to cache miss penalty
 - Makes replacement decision extremely important

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology

Virtual memory

HY425 Lecture 15: DRAM Technology

28/34

Cache vs. VM parameter comparison

Parameter	First-level cache	Virtual memory
Block (page) size	16–128 bytes	4096–65,536 bytes
Hit time	1–3 clock cycles	50–150 clock cycles
Miss penalty	8-150 clock cycles	1,000,000-10,000,000 clock cycles
(Access time)	(6-130 clock cycles)	(800,000–8,000,000 clock cycles)
(Transfer time)	(2-20 clock cycles)	(200,000–2,000,000 clock cycles)
Miss rate	0.1–10%	0.00001–0.001%
Address mapping	25–45 bit physical address	32-64 bit virtual address to 25-45 bit
	to 14-20 bit cache address	physical address

Design choices

Block placement

- Miss penalty huge compared to cache
- OS designer opts for lower miss rate
- Fully associative placement
 - Exception: page coloring
 - Page consecutive VM in consecutive physical frames pages to avoid cache conflicts
 - Requires knowledge of cache organization and cache mapping scheme

Dimitrios S. Nikolopoulos

DRAM basics
Advanced DRAM technology

Virtual memory

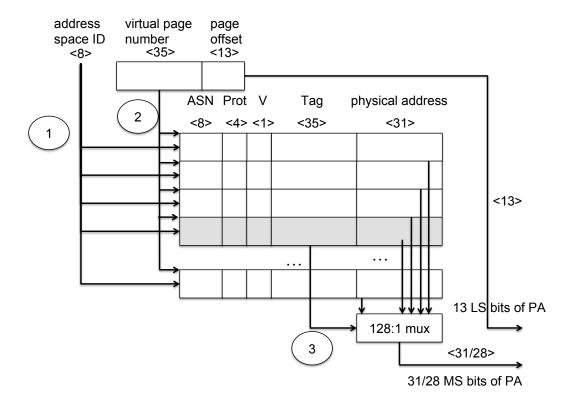
HY425 Lecture 15: DRAM Technology

30/34

Design choices

Finding the block in memory

- Page tables or segment tables or segmented paging
 - Common optimizations: inverted page tables, multi-level page tables
- TLB for fast address translation


Selecting block for replacement

 Approximations of LRU with one or more use and reference bits

Write policy

Always write-back due to disk latency

Alpha 21264 TLB example

Dimitrios S. Nikolopoulos

DRAM basics

HY425 Lecture 15: DRAM Technology

32/34

DRAM basics Advanced DRAM technology Virtual memory

Alpha TLB in detail

Design choices

- Virtually addressed TLB
 - Uses address space identifier (PID)
 - Avoids flushes on context switches
- No use or reference bit
 - System periodically clears permission bits (read, write)
 - Recorded reads, writes serve as reference/use bits
 - No need to write to TLB during normal memory accesses

Selecting page size

Trade-off's

- Larger page size means smaller page tables
- Larger page size can enable a larger virtually-indexed, physically-tagged L1 cache
- Transferring large pages from disk can be more efficient (latency lags bandwidth)
- Less TLB entries, more memory mapped in the TLB
- Smaller page size means less memory waste due to internal fragmentation

Dimitrios S. Nikolopoulos

HY425 Lecture 15: DRAM Technology

34/34