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Looking for sources of ILP
Single program

I Unrolled loops
I Frequent code paths, using branch prediction

I Threads: independent instruction streams in program

I Blocks of independent loop iterations
I Independent functions or other long code paths

Across multiple programs

I If one program does not expose sufficient ILP, execute multiple
programs simultaneously to increase overall available ILP

I Improve utilization of hardware resources, but not necessarily
performance of a single program
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Hardware multithreading

Latency overlap

I Processor maintains multiple active thread contexts
I Threads may be generated from a single or multiple

programs
I Multi-program vs. single-program thread-level parallelism

I Processor switches threads in two ways:
I Every cycle
I Upon a long-latency event incurred in a thread

I Multithreading overlaps latencies, improves utilization
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Hardware multithreading alternatives
Fine-grain multithreading

I Fine-grain multithreading switches processor context every
thread cycle

I Context belongs to same address space
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Hardware multithreading alternatives
Fine-grain multithreading

I Coarse-grain multithreading switches processor context upon
long-latency event

I Context may belong to different address space
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Fine-grain hardware multithreading

Switch every clock cycle

I Need fast HW switch between contexts
I Multiple PCs and register files
I Alternatively, thread ID attached to each GP register

I Implemented with round-robin scheduling, skipping stalled
threads

I Hides both short and long stalls
I Delays all threads, even if they have no stalls
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Coarse-grain hardware multithreading

Switch every clock cycle

I Can afford slower context switch than fine-grain
multithreading

I Threads are not slowed down
I Other thread runs when current thread stalls

I Pipeline startup cost upon thread switching
I Processor issues instructions from one thread (address

space)
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ILP waste

Single-thread processor with horizontal waste

vertical waste: no instructions 
scheduled in one cycle 

horizontal waste: one or more 
instruction slots empty in one cycle 
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ILP waste

Multi-threaded processor with vertical waste

vertical waste: no instructions 
scheduled in one cycle 

horizontal waste: one or more 
instruction slots empty in one cycle 

red thread scheduled in otherwise idle 
slots, multithreading attacks vertical waste 
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Simultaneous multithreading

Fine-grain multithreading in
same cycle

I Instructions fetched from
multiple threads in same
cycle

I Attacks horizontal waste
I Fine-grain or

coarse-grain
multithreading to attack
vertical waste

SMT concept

red thread scheduled in otherwise idle 
slots, multithreading attacks vertical waste 

yellow thread scheduled simultaneously 
with blue/red thread in same cycle, attacks 
Horizontal and vertical waste 
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Wasted instruction slots in ILP processor

Unused cycles in 8-issue processor

Dimitrios S. Nikolopoulos HY425 Lecture 11: Simultaneous Multithreading 12 / 36

Motivation
SMT design

SMT performance
ILP comparison

Conclusions

Cast ILP processor to exploit TLP

Reuse ILP hardware for TLP

I TLP and ILP exploit two different forms of parallelism
I TLP and ILP both need multiple functional units
I TLP can fill up functional units left idle by ILP
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Dynamically scheduled processor base

Shared HW mechanisms

I Large set of virtual registers can hold register sets of
independent threads

I Renaming provides unique register identifiers to different
threads

I Out-of-order completion of instructions from different
threads allowed

I No cross-thread RAW, WAW, WAR hazards
I Separate reorder buffer per thread
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SMT design issues
Extensions over superscalar

I Instruction issue logic
I Fetch instructions from > 1 threads simultaneously
I Policy choice for selecting ready threads to select

instructions
I Instructions per thread issued is policy parameter

I Hardware resource sharing
I Active threads may share caches, TLBs, branch predictors,

. . .
I Active threads may interfere between each other, thus

affecting performance
I Constructive “symbiotic” co-scheduling

I Active threads cooperatively improve hardware utilization
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Replicated state

Thread context

I PC and register file
I Address space (private or shared)
I Switching context

I 100s to 1000s of cycles in software
I More expensive between address spaces
I Less expensive between threads in same address space

I Hardware resources other than PC and registers can be
shared
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SMT workload considerations
Multi-programming (MP) workload

I One hardware thread per address space
I Multiple address spaces executing simultaneously

I Performance limited by contention for shared resources

Multi-threaded parallel workload (TLP)

I Many hardware threads per address space
I Parallelized program

I Performance limited by contention for shared resources
between threads of same program

I Performance limited by serialization bottlenecks, such as
synchronization, limited availability of parallelism
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SMT design considerations
Resource scaling

I Impact of fine-grained scheduling on single thread
performance

I Priority scheduling approaches to improve single-thread
performance

I More registers to hold multiple threads
I Complexity in instruction issue

I More instructions from >1 threads to be considered
I More complex selection logic (scheduling algorithm) for

instructions
I Complexity in instruction commit (choice among threads)
I Cache and TLB conflicts between threads
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Comparison between SMT and superscalar

IBM Power4
Out-of-order execution processor with 8 execution units
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Comparison between SMT and superscalar

IBM Power5 vs. Power4
Duplication of PC and commit logic
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Power5 data flow

Shared vs. private resources
Private instruction queues. Shared branch prediction logic,

register renaming, execution units, caches.
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Power5 thread priorities

Thread instruction issue control
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Power5 thread priority control details

Thread priorities

I Hardware or software-controlled
I Priority mechanism controls instruction decoding rate for each thread
I Hardware allocates R = 2|PrioT1−PrioT2|+1 decode slots
I R − 1 slots to higher-priority thread, rest of the slots to other thread
I One decode slot per thread if threads have equal priority
I Hardware throttles instruction fetch for thread, if thread causes stalls to

sibling thread
I Hardware policies for resource balancing (e.g. take away slots from

thread that incurs many L2 cache misses)
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Power5 single-thread execution

Thread switching

I Multi-threaded execution not always beneficial
I Idle threads with no work stay in dormant or inactive state
I Idle threads awaken with external (dormant) or timer

(inactive) interrupt
I Dormant threads may also be waken up by active threads
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Power5 extensions to support SMT

Incremental extensions to superscalar Power4

I Increased associativity of L1 instruction cache and the
instruction address translation buffers

I Per thread load and store queues
I Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches
I Separate instruction prefetch and buffering per thread
I Increased number of virtual registers from 152 to 240
I Increased size of several issue queues
I The Power5 core is about 24% larger than the Power4 core

because of the addition of SMT support
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SMT performance in commercial processors
Multi-program workloads

I Pentium 4 Extreme SMT achieves 1.01 speedup for SPECint rate
benchmark and 1.07 for SPECfp rate

I Pentium 4 is dual-threaded SMT
I SPECRate requires that each SPEC benchmark be run

against a vendor-selected number of copies of the same
benchmark

I Running on Pentium 4 each of 26 SPEC benchmarks paired with every
other (262 runs) speed-ups from 0.90 to 1.58; average is 1.20

I Power 5, 8 processor server 1.23 faster for SPECint rate with SMT, 1.16
faster for SPECfp rate

I Power 5 running 2 copies of each app speedup between 0.89 and 1.41
Most gained some FP apps had cache conflicts and least gains
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Comparison between ILP processors

Processor Micro architecture Fetch / Issue / 
Execute 

FU Clock 
Rate 
(GHz) 

Transis-tors  
Die size 

Power 

Intel Pentium 
4 Extreme 

Speculative dynamically 
scheduled; deeply 

pipelined; SMT  

 3/3/4 7 int. 1 
FP 

3.8 125 M    
122 mm2 

115 W 

AMD Athlon 
64 FX-57 

Speculative dynamically 
scheduled 

3/3/4 6 int. 3 
FP 

2.8 114 M 
115 mm2 

104 W 

IBM Power5  
(1 CPU only) 

Speculative dynamically 
scheduled; SMT;  
2 CPU cores/chip 

8/4/8 6 int. 2 
FP 

1.9 200 M 
300 mm2 

(est.) 

80W 
(est.) 

Intel Itanium 
2 

Statically scheduled  
VLIW-style 

6/5/11 9 int. 2 
FP 

1.6 592 M 
423 mm2 

130 W 
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Comparison between ILP processors

SPEC INT rate
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Comparison between ILP processors

SPEC FP rate
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Measuring processor efficiency

Area- and power-efficiency

I Processor performance gain comes at an area/power
budget cost

I Weigh performance again against power and area increase
I Area-efficiency

I Performance / transistor (e.g. SPECrate/million transistors)
I Power-efficiency

I Performance / watt (e.g. SPECrate/watt)
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Comparison between ILP processors

Power and area efficiency

0 

5 

10 

15 

20 

25 

30 

35 

 SPECInt / M 
Transistors 

 SPECFP / M 
Transistors 

 SPECInt / 
mm^2 SPECFP / mm^2 

 SPECInt / Watt 
SPECFP / Watt 

Itanium 2 Pentium 4 AMD Athlon 64 POWER 5 

Dimitrios S. Nikolopoulos HY425 Lecture 11: Simultaneous Multithreading 34 / 36



Motivation
SMT design

SMT performance
ILP comparison

Conclusions

Best ILP approach?

Results with commercial processors

I AMD Athlon most performance-efficient in INT programs
I Power5 most performance-efficient in FP programs
I Power5 most power-efficient overall
I Itanium VLIW least power-efficient and area-efficient

overall
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