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Limitations of ILP

ILP walls

I Hard to exploit higher degrees of ILP
I Deeper pipelines, wider instruction issue

I Increased hardware complexity with small performance
gain

I Heavy burden on software on statically scheduled
processors
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Vector processors
Vector instructions

I a loop in an instruction
I explicit parallelism, programmer guarantees independence
I hazard check between blocks of operations
I exploit memory parallelism
I less loop overhead, control hazards

Benefits
I Scientific, engineering, multimedia applications

I Computation on arrays dominates, data parallelism
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Vector architecture
Vector MIPS

Features compared to scalar

I Vector registers (wide)
I Vector FUs, load/store

units
I Parallel pipelines or lanes
I Vector ISA

Dimitrios S. Nikolopoulos HY425 Lecture 10: Vector processors 6 / 41



Recap
Architecture
Performance

Code vectorization
Design optimizations

Evaluation
SIMD extensions

Example: SAXPY, DAXPY
MIPS code

LD F0,a ;load scalar a
ADDI R4,Rx,#512 ;last address to load

Loop: LD F2,0(Rx) ;load X(i)
MULD F2,F2,F0 ;a ? X(i)
LD F4,0(Ry) ;load Y(i)
ADDD F4,F4,F2 ;a ? X(i) + Y(i)
SD 0(Ry),F4 ;store into Y(i)
ADDIU Rx,Rx,#8 ;increment index to X
ADDIU Ry,Ry,#8 ;increment index to Y
SUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ;check if done

VMIPS code
LD F0,a ;load scalar a
LV V1,Rx ;load vector X
MULVSD V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVD V4,V2,V3 ;add
SV Ry,V4 ;store the result
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Vector instruction execution

One versus multiple pipelined units
ADDV C,A,B 
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Vector instruction-level parallel execution

Vector processor with four lanes
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Multi-lane vector unit

Example

load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 
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Vector processor performance factors

I Length of vector registers
I Vector operation initiation rate (>= 1 per cycle)
I Number of lanes (parallel pipelines)
I Vector instructions executing in same cycle – convoy
I Time to execute a single convoy – chime

1: LV V1,Rx ;load vector X
2: MULVSD V2,V1,F0 ;vector-scalar multiply
3: LV V3,Ry ;load vector Y
4: ADDVD V4,V2,V3 ;add
5: SV Ry,V4 ;store the result
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Vector processor performance measurement

Vector instruction latency

I Pipelined vector FUs
I Convoys do not overlap due to dependences
I Vector startup time:

I time until first result out from pipelined FU
I Rest of results come out one per cycle
I S + VL− 1, S: startup time, VL: vector length
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Example: DAXPY
4 convoys

Functional unit Latency
load/store unit 12
multiply unit 7

add unit 6
Convoy Start time First result Last result
1: LD 0 12 11+n
2: MULVSD, LV 12+n 24+n 23+2n
3: ADDVD 24+2n 30+2n 29+3n
4: SV 30+3n 42+3n 41+4n

I Latency of convoy depends on slowest instruction in convoy

I Latency of second convoy is latency of slower LV instruction

I Shorter vector length implies more pipeline restarts in FUs
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Vector load/store unit

Requirements from memory system

I Load/store units need word/cycle bandwidth from memory
I Hard to meet demand, even with advanced memory

systems
I Multiple memory banks, interleaving
I High memory bank cycle time
I Multiple loads/stores per clock need to be supported

I How many banks are needed to sustain throughput to
load/store units?
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Example
6-cycle bank latency, starting addrress=136

I double-word (8-byte) bank interleaving
Bank

cycle 0 1 2 3 4 5 6 7
0 136
1 busy 144
2 busy busy 152
3 busy busy busy 160
4 busy busy busy busy 168
5 busy busy busy busy busy 176
6 busy busy busy busy busy 184
7 192 busy busy busy busy busy
8 busy 200 busy busy busy busy
9 busy busy 208 busy busy busy
10 busy busy busy 216 busy busy
11 busy busy busy busy 224 busy
12 busy busy busy busy busy 232
13 busy busy busy busy busy 240
14 busy busy busy busy busy 248
15 256 busy busy busy busy busy
16 busy 264 busy busy busy busy
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Vector processor performance metrics

I FLOPS: Floating point operations per second
I Rn: FLOPS with MVL = n
I Tn: Time with MVL = n
I R∞: FLOPS with MVL =∞
I N1/2: Vector length to achieve R∞

2 FLOPS
I Nv : Vector length to achieve more FLOPS than scalar
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Stripmining
Vector length

I Typically shorter than real vector sizes (2–64 elements)
I Loop transformation to vectorize code
I Partition loop into vector instructions

Example
/* Original code */
for (i=1;i<=n;i++)

Y[i] = a * X[i] + Y[i]

/* Vectorized code */
low = 1;
VL = (n mod MVL); /*find the odd-size piece*/
for j = 0; j < n/MVL; j++) {

for (i=low; i <= low+VL-1; i++)
Y(i) = a * X(i) + Y(i); /*main operation*/

low = low + VL; /*start of next vector*/
VL = MVL; /*reset the length to max*/

}
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Stripmining performance

I Tstart : vector pipeline startup cost for loop body
I Tloop: scalar code per outer loop iteration
I chimes: number of chimes needed to execute convoys in

the loop
I Pipelined vector units, no overlap of convoys

Tn = d n
MVL

e × (Tloop + Tstart) + n × chimes (1)
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Stripmining performance (cont.)

I Overhead more than 50% of total time for short vectors
I Jumps indicate iterations of outer loop after stripmining
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Vector strides
Matrix-matrix multiplication
for (i=0; i<100; i++)

for (j=0; j<100; j++) {
A[i][j] = 0.0;
for (k=0; k<100; k++)
A[i][j] = A[i][j] + B[i][k]*C[k][j]

}

Vectorization considerations

I Innermost loop over row of B and column of C
I Row-major array allocation in C
I Vector with non-adjacent elements for k -th column of C
I Vector registers pack data with non-unit strides in memory

I Compare to caches where blocks store only unit-stride data
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Vector strides

Instructions for strided data access

I LVWS: load vector with stride
I SVWS: store vector with stride
I Also known as gather/scatter operations
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Vector strides (cont.)
Implications for memory system

I Non-unit strides may
increase conflicts in
memory banks

I Example: 100× 100
matrix-matrix
multiplication, double-word
(8-byte) interleaving, array
type double, starting
address of C = 136

Bank

cycle 0 1 2 3 4 5 6 7
0 136
1 busy 936
2 busy busy
3 busy busy
4 busy busy
5 busy busy
6 1736 busy
7 busy 2536
8 busy busy
9 busy busy

10 busy busy
11 busy busy
12 3336 busy
13 busy 4136
14 busy busy
15 busy busy
16 busy busy
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Vector strides (cont.)

Implications for memory system

I Example: 128× 128
matrix-matrix multiplication,
double-word (8-byte)
interleaving, array type double,
starting address of C = 136

Bank

cycle 0 1 2 3 4 5 6 7
0 136
1 busy
2 busy
3 busy
4 busy
5 busy
6 1160
7 busy
8 busy
9 busy

10 busy
11 busy
12 2184
13 busy
14 busy
15 busy
16 busy
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Vector strides (cont.)
Evaluating the impact of conflicts

I Conflicts occur when stride is multiple of nbanks × element size

I Stalls occur if requests to same bank come more frequently than
bank busy time

nbanks
LCM(stride,nbanks)

< bank busy time (2)

I Conflicts avoided when strides and number of banks are prime
relative to each other

I Increasing number of banks decreases frequency of conflicts

I 100× 100 mxm incurs conflict in every other access with 8
banks
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Chaining
Forwarding results between vector instructions

I Vector instruction starts as soon as first element becomes available
I Simultaneous read/write of vector register for different elements
I Vector register also read by multiple dependent instructions simultaneously

MULV V1,V2,V3

ADDV V5,V1,V4
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Conditional execution
Conditional vector instructions

I Convert control dependence to data
dependence

I Vector mask register marks vector
elements to operate

I Set vector mask bits for elements for
which conditional is true

Example
for (i=0; i<64; i++)

if (A[i] != 0)
A[i] = A[i] - B[i]

}

VMIPS conditional instructions
LV V1,Ra ;load vector A into V1
LV V2,Rb ;load vector B
LD F0,#0 ;load FP zero into F0
SNEVSD V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
SUBVD V1,V1,V2 ;subtract under vector mask
CVM ;set the vector mask to all 1s
SV Ra,V1 ;store the result in A
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Scatter-gather operations

Indirection arrays

I Sparse matrix codes access
arrays indirectly (e.g. A[B[i]])

I Indirection arrays
implemented with index
vector registers

I Gather: Collect elements
pointed to by index vector

I Scatter: Distribute elements
to locations pointed to by
index vector

Example
for (i=0; i<64; i++)
A[K[i]]=A[K[i]]-C[M[i]]

VMIPS gather (LVI), scatter
(SVI) instructions
Assume Ra, Rk, Rc Rm have starting addresses of A, K,
C, M

LV Vk,Rk ;load K
LVI Va,(Ra+Vk) ;load A(K(I))
LV Vm,Rm ;load M
LVI Vc,(Rc+Vm) ;load C(M(I))
ADDV.D Va,Va,Vc ;add them
SVI (Ra+Vk),Va ;store A(K(I))
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Pipeline startup and draining latency

Two independent instructions using same FU

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

Functional Unit Latency 

Dead Time 

First vector instruction 

Second vector instruction 

Draining 
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Vector processor performance metrics

I FLOPS: Floating point operations per second
I Rn: FLOPS with MVL = n
I Tn: Time with MVL = n
I R∞: FLOPS with MVL =∞
I N1/2: Vector length to achieve R∞

2 FLOPS
I Nv : Vector length to achieve more FLOPS than scalar

Tn = d n
MVL

e × (Tloop + Tstart) + n × Tchime (3)
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DAXPY example
Execution with 500 MHz dual-issue vector processor

LV V1,Rx MULVS V2,V1,F0 Convoy 1: Chained load and multiply
LV V3,Ry ADDVD V4,V2,V3 Convoy 2: Chained load and add
SV V4,Ry Convoy 3: Store result

Assumptions

I MVL=64, LV/SV FU latency=12, ADDVD FU latency=6, MULVS FU
latency=7, Tloop = 15

Tstart = 12 + 7 + 12 + 6 + 12 = 49 (4)

Tloop = 15 (5)

Tchime = 3 (6)

Tn = d n
64
e(49 + 15) + 3n (7)

Tn ≤ 4n + 64 (8)
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DAXPY example (cont.)
Execution with 500 MHz, dual-issue vector processor

LV V1,Rx MULVS V2,V1,F0 Convoy 1: Chained load and multiply
LV V3,Ry ADDVD V4,V2,V3 Convoy 2: Chained load and add
SV V4,Ry Convoy 3: Store result

Peak and realistic performance

R∞ = lim
n→∞

(
operations per iteration× clock rate

clock cycles per iteration

)
(9)

lim
n→∞

(clock cycles per iteration) = lim
n→∞

(
4n + 64

n

)
= 4 (10)

R∞ =

(
2× 500MHz

4

)
= 250MFLOPS (11)

R66 =
2× 500MHz

T66
66

=
2× 66× 500

2× (49 + 15) + 3× 66
MFLOPS = 202MFLOPS (12)
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DAXPY example (cont.)
Execution with 500 MHz, dual-issue vector processor

LV V1,Rx MULVS V2,V1,F0 Convoy 1: Chained load and multiply
LV V3,Ry ADDVD V4,V2,V3 Convoy 2: Chained load and add
SV V4,Ry Convoy 3: Store result

Peak and realistic performance
Assume three instead of one pipeline for memory operations
Instructions fit in one convoy (with chaining)

T66 = d66
64
e(15 + 49) + 66× 1 = 194 (13)

(14)

Strip-mining overhead overlapped

T66 = (15 + 49) + 66× 1 = 130,R∞ = 2× clock rate (15)

(16)
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SIMD extensions to superscalar processors

Motivation
I Add SIMD vector instruction execution capabilities with

minimal extensions to a pipelined processor
I Wide registers, typically 128-bit
I Additional short vector execution units, typically 128-bit

I Extend ISA with vector instructions
I MMX, SSE, SSE2, SSE3, SSE4, AltiVec, . . .
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Adding SIMD extensions to pipelined superscalar
processor

Pentium 4 microarchitecture
Borrowed from Intel Technology Journal

c©
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Intel SSE extensions

Pentium II onwards

I 8–16 128-bit registers (XMM registers), plus 8–16 64-bit
MMX registers

I Registers enable packed data (2 double-words, 4 words, 8
half-words, 16 chars) operations and/or scalar operations

I Single-cycle SSE ALU operations
I SIMD memory-register load/store operations

I prefetching
I streaming stores
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Intel SSE extensions
Example: inner product
typedef float v4sf __attribute__ ((mode(V4SF))); // floating point vector type
float x[k]; float y[k]; // operand vectors of length k
float inner_product = 0.0, temp[4];
v4sf acc, X, Y; // 4x32-bit float registers
acc = __builtin_ia32_xorps(acc, acc); // zero the accumulator
for (int i = 0; i < (k - 3); i += 4) {

X = __builtin_ia32_loadups(&x[i]); // load groups of four floats
Y = __builtin_ia32_loadups(&y[i]);
acc = __builtin_ia32_addps(acc, __builtin_ia32_mulps(X, Y));

}
__builtin_ia32_storeups(temp, acc); // add the accumulated values
inner_product = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < k; i++) // add up the remaining floats

inner_product += x[i] * y[i]);

xorps: bit-wise xor of single-precision floating point values
loadups: move four unaligned packed single-precision floats from memory
mulps,addps: multiply, add single-precision floats
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