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Recap

ILP techniques
Hardware
» Dynamic scheduling with scoreboard
» Renaming (Tomasulo, renaming registers)
» Branch prediction
» Multiple issue
» Speculation

Software

» Instruction scheduling
» Code transformations (topic of next lecture)
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What limits ILP

Software and hardware issues

» Limits of parallelism in programs

» Data flow — true data dependencies
» Control flow — control dependencies
» Code generation, scheduling by compiler

» Hardware complexity

» Large storage structures — branch prediction, ROB, window

» Complex logic — dependence control, associative searches

» Higher bandwidth — multiple issue, multiple outstanding
instructions

» Long latencies — memory system (caches, DRAM)
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Recap

Recap: add scalar to vector
Unrolling and renaming (6 cycles per iteration)

Loop: LD FO0,0(R1)
ADDD F4,F0,F2
SD F4,0(R1)

LD F6,-8(R1)
ADDD F8,F6,F2
SD F8,-8(R1)
LD F10,-16 (R1)
ADDD F12,F10,F2
SD F12,-16 (R1)
LD F14,-24 (R1)
ADDD F16,F14,F2
SD F16,-24 (R1)
ADDI R1,R1,-32
BNE R1l, R2, Loop

» Pros Unrolling lowers loop overhead (ADDI, BNE)
» Cons: Unrolling grows code size
» Cons: Register pressure

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP



Recap: add scalar to vector

Unrolling and renaming with improved instruction
scheduling (3.5 cycles per iteration)

Loop: LD
LD
LD
LD
ADDD
ADDD
ADDD
ADDD
SD
SD
SD
ADDI
BNE
sD

FO0,0(R1)
F6,-8(R1)
F10,-16 (R1)
Fl14,-24 (R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
Fl6,F14,F2
F4,0(R1)
F8,-8(R1)
F12,-16 (R1)
R1,R1,-32
R1l, R2, Loop
F16, 8(R1l)
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Recap: add scalar to vector

Unrolling and renaming with dual-issue

Integer instruction FP instruction Clock cycle
Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD F4,0(R1) ADDD F16,F14,F2 6
SD F8,-8(R1) ADDD F20,F18,F2 7
SD F12,-16(R1) 8
SD F16,-24(R1) 9
ADDI R1,R1,-40 10
BNE R1,R2,Loop 11
SD F20,-32(R1) 12

2.4 cycles per iteration
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Static branch prediction

Predict branches as always taken

Example
LD R1, 0 (R2)
DADDU R7,R8,R9 #speculative
DSUBU R1,R1,R3
Example BEQZ R1l,L
OR R4,R5,R6
DSUBU and BEQZ need to stall DADDU  R10, R4, R3
L:

LD R1, 0 (R2)
DSUBU R1,R1,R3
BEQZ R1,L -

o R4’ RS, R6 » Second control dgpendent
DADDU  R10,R4,R3 DADDU speculatively moved

L DADDU  R7,R8,R3 before branch to eliminate stall

» Note that moved DADDU is not
data-dependent on OR, or first
DADDU
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Static branch prediction

Static branch prediction alternatives

Simple offline branch prediction schemes

» Predict always taken
» 34% misprediction rate, high variance
» Predict based on direction of branch

» Forward not taken, backward taken
» Misprediction rates 30%—40%

» Predict based on execution profile

» Branch bias (mostly taken or not taken)
» Accuracy sensitive to input
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Static branch prediction

Performance of profile-based branch prediction
SPECCPU92 results

Performance of profile-based branch prediction

su2cor 15%
mdljdp 10%
hydro2d 9%
ear [l 6%
doduc il 5%
li 12%
gce 1%

espresso 18%
eqgntott 22%

compress 12%

0% 5% 10% 15% 20% 25%
Misprediction rate
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Static branch prediction

Profile-based vs. static prediction
SPECCPU92 results

Performance of profile-based branch prediction
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» Reduce hardware cost compared to dynamically scheduled
» Advanced compiler support for exploiting ILP

VLIW processors
Statically scheduled multiple-issue processors

» Instructions scheduled in packets
» No dependences among instructions in packet

» Long instruction word (64+ bits)

» Explicit parallelism among instructions
» Compiler guarantees that instructions are independent

» Multiple functional units

» Parallelism exploited via loop unrolling and instruction
scheduling

Dimitrios S. Nikolopoulos
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Add scalar to vector example

Unrolling and code scheduling in VLIW

» 2 load/store, 2 INT, 1 FP unit
» 1.29 cycles per iteration (vs. 2.4 in two-issue superscalar)

Memory Memory FP FP Integer
reference 1 reference 2 operation 1 operation 2 branch
LD FO, O(R1) LD F6,-8(R1)
LD F10, -16(R1) LD F14,-24(R1)
LD F18, -32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2
LD F26, -48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2
ADDD F20,F18,F2 ADDD F24,F22,F2
SD F4, 0(R1) SD F8, -8(R1) ADDD F28,F26,F2
SD F12, -16(R1) SD F16, -24(R1)
SD F20, -24(R1) SD F24, -32(R1) ADDI R1, R1, -56
SD F28, 8(R1) BNE R1, R2, Loop

Dimitrios S. Nikolopoulos

HY425 Lecture 09: Software to exploit ILP



VLIW processors
Statically scheduled multiple-issue processors

» Parallelism sought within and across basic blocks

» Static branch prediction
» Hardware support for predicated instruction execution

Design implications

» Increased code size
» Lock-step execution of instruction bundles

» Stall in a FU causes entire processor pipeline stall

» Hard to schedule instructions upon cache misses

» Solution: check hazards and dependences at issue time,
use hardware to enable unsynchronized execution
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VLIW processors (cont.)

Code compatibility

» OlId binary can not run if number of FUs changes

» Format of instruction bundles is changed
» Binary translation across VLIW HW generations
» Binary translation from superscalar to VLIW

» Superscalar runs unmodified binaries from previous HW
generations

» only code scheduling may require changes for performance
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Dependence analysis

Compiler dependence analysis of source code

Loop-level parallelization

» Dependence analysis for detecting loop-carried
dependences

» Dependences between instructions in two lexicographically
ordered iterations of a loop
» Lexicographical ordering produces the equivalent of a
sequential in-order execution of all instructions in a loop
» Independent iterations can be unrolled at will
» Independent iterations can execute in parallel
» Key to exploit multiple processors
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Dependence analysis

Example

for (i=1; i<=100; i=i+l) {
A[i+l] = A[i] + C[il; /#* S1 %/
B[i+l] = B[i] + A[i+l]; /# S2+/
}

» Loop-carried dependence on S1 (A[i+1] depends on A[i],
CIi])

» Loop-carried dependence on S2 (B[i+1] depends on BJi])

» Same-iteration dependence on S2 (B[i+1] depends on
Afi+1])

» Loop-carried dependences may or may not prevent
parallelization
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Dependence analysis

Example

Can this loop be parallelized?

for (i=1; i<=100; i=i+l) {
A[i] = B[i] + C[i]l; /* S1 =/
B[i+l] = C[i] + D[il; /* S2%/
}

> Peel one iteration from each end of the loop
» Notice that no iteration produces result for future iteration

A[1] = B[1] + C[1];
for (i=1; i<=99; i=i+l) {
A[i+1] = B[i+1l] + C[i+1l]; /* S1 x/
B[i+l] = C[i] + D[il; /% S2x/
}
B[101] = C[100] + D[100];

» Loop-carried dependence eliminated
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Dependence analysis

Dependence analysis
Limitations of analyzing memory references

» Static analysis indicates that there may be a dependence between two
instructions due to naming of memory locations

» Dependence resolution requires disambiguation of memory references

» Easy for scalar variables, harder for arrays, hard for pointers
» Dependences do not always prevent parallelization

Uncovering parallelism in loops with dependences

for (i=6; i<=100; i=i+l) {
A[i] = A[i-5] + A[i]; /* 81 */
}

» No loop-carried dependences in 5 iterations
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Dependence analysis

Dependence analysis 101

» Assume affine array indices: index = ax i+ b

» Index in multi-dimensional array affine, if index in each
dimension affine

» Assume two references a x j + b, ¢ x k + d, check if:
» Array elements are within loop bounds:
m<j<nm<k<n
» j precedes k (lexicographical ordering)
»axf+b=cxk+d
» GCD test: test if GCD(a, ¢) divides (d — b)
» Necessary but not sufficient condition

» a, b, c,d and bounds need to be known at compile-time

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP

Dependence analysis

Eliminating dependences through renaming

Finding dependences in source code

for (i=1; i<=100; i=i+l) {
Y[i] X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 %/
Z[i] = Y[i] + c; /* 83 %/
Y[i] = ¢ - Y[i]; /* S4 */

» True dependences S1 — S3, S1 — S4
» Antidependence S1 — S2, S3 — S4
» Qutput dependence S1 — S4
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Dependence analysis

Eliminating dependences through renaming

Finding dependences in source code

for (i=1; i<=100; i=i+l) {

Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 %/
Y[i] = ¢ - Y[i]; /* S4 %/

}

Renaming resolves output and anti dependences

for (i=1; i<=100; i=i+1l) {

T1[i] = X[i] / c; /* S1 %/
T2[i] = X[i] + c; /* S2 */
Z[i] = T1[i] + c; /* S3 %/
Y[i] = ¢ - T1[i]; /* S4 %/
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Dependence analysis

Limits of dependence analysis
Examples of hard to analyze cases

» Hard to analyze pointer references

» Determine if two pointers reference same memory location
» Undecidable for dynamically allocated data structures
» Hard if code uses with pointer arithmetic

» Array-indexed arrays, sparse arrays, indirect references
» Input-dependent dependences

» Inter-procedural dependences, analysis beyond basic
blocks
» Conservatism of analysis
» Correctness precedes performance in compilers
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Dependence analysis

Other compiler optimizations
Copy propagation

ADDI R1, R2, 4
ADDI R1, R1, 4

ADDI R1, R2, 8

Tree height reduction

ADD R1,R2,R3
ADD R4,R1,R6
ADD R8,R4,R7

ADD R1,R2,R3
ADD R4,R7,R6
ADD RS8,R1,R4

» Assumes addition is associative (not true in FP arithmetic)
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Software pipelining

Software pipelining
Symbolic loop unrolling

» Benefits of loop unrolling with reduced code size
» Instructions in loop body selected from different loop iterations

» Increase distance between dependent instructions

Iteration

Iteration1

Iteration
2
Iteration

3 Iteration

4
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Software pipelining

Software pipelining

Software pipelined loop

Loop unro"ed 3 times Loop: SD F4,16 (R1) #store to v[il
ADDD F4,F0,F2 #add to v[i-1]
LD FO0,0(R1) #load v[i-2]
Iteration i: LD FO,0(R1) ADDI R1,R1,-8
ADDD F4,FO0,F2 BNE R1,R2, Loop
SD F4,0(R1)

Iteration i+l: LD FO,0(R1)
ADDD F4,F0,F2

SD 0 (R1), F4 » 5 cycles/iteration (with
Iteration i+2: LD FO,0(R1) . .

ADDD F4,F0,F2 dynamic scheduling and

SD F4,0(R1)

renaming)
» Need startup/cleanup code
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Software pipelining

Software pipelining (cont.)

SW pipelined loop with startup and cleanup code

#startup, assume i runs from 0 to n
ADDI R1,R1,-16 #point to v[n-2]
1D F0,16(R1l) #load v[n]

ADDD F4,F0,F2 #add v[n]

LD F0, 8 (R1) #load v[n-1]
#body for (i=2;i<=n-2;i++)

Loop: SD F4,16(R1) #store to v[i]
ADDD F4,F0,F2 #add to v[i-1]
LD FO0,0(R1) #load v[i-2]
ADDI R1,R1,-8
BNE R1,R2, Loop
#cleanup
SD F4,8(R1) #store v[1]

ADDD F4,F0,F2 #add v[0]
SD F4,0(R1) #store v[O0]
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Software pipelining

Software pipelining versus unrolling
Performance effects of SW pipelining vs. unrolling

» Unrolling reduces loop overhead per iteration
» SW pipelining reduces startup-cleanup pipeline overhead

startup cleanup

Overlapping
iterations

(a) software pipelining

overlap between
ns

f(unrolled iterations) unrolled iteratio
Overlapping
iterations

(b) loop unrolling
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Software pipelining

Software pipelining (cont.)
Advantages

» Less code space than conventional unrolling

» Loop runs at peak speed during steady state

» Overhead only at loop initiation and termination
» Complements unrolling

Disadvantages

» Hard to overlap long latencies
» Unrolling combined with SW pipelining

» Requires advanced compiler transformations
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HW support

Predication
Conditional move

» A predicated instruction packs a conditional and an
instruction

» Instruction control-dependent on conditional
» If conditional is false instruction is converted to no-op,
otherwise executed

» Convert control dependence to data dependence

#if (A==0) {s=T;}
# simple translation
BNEZ R1, L #if (A==0)
ADDI R2, R3, O #s=T;
L:
# predicated instruction
CMOVZ R2, R3, Rl #move T to S if R1=0
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HW support

Predication

Generalized predication

» Predicates applied to all instructions
» Enables predicated execution of large code blocks

» Speculatively puts time-critical instructions under
predicates

No predication

Slot 1 Siot 2 Preds'.ffﬁt'on Siot 2

[WRT1,40(R2) _ ADD R3,R4,R5 W R ,40(R2) ADD R3,R4.R5
ADD R6,R3,R7 [WC R8,0(R10),R10 __ ADD R6,R3,R7

BEQZ R10,L BEQZ R10,L

[W R8,0(R10) [W R9,0(R8)

[W R9,0(R8)
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HW support

Predication implementation issues
Preserve control and data flow, precise interrupts

» Speculative predicated instructions may not throw illegal
exceptions

» LWC may not throw exception if R10 ==
» LWC may throw recoverable page fault if R10 £ 0

» Instruction conversion to nop

» Early condition detection may not be possible due to data
dependence

» Late condition detection incurs stalls and consumes
pipeline resources needlessly

» Instructions may be dependent on multiple branches
» Compiler able to find instruction slots and reorder
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HW support

Hardware support for speculation

Alternatives for handling speculative exceptions

» Hardware and OS ignore exceptions from speculative instructions
» Mark speculative instructions and check for exceptions

» Additional instructions to check for exceptions and recover
» Registers marked with poison bits to catch exceptions upon read
» Hardware buffers instruction results until instruction is no longer
speculative

Exception classes

» Recoverable: exception from speculative instruction may harm
performance, but not preciseness

» Unrecoverable: exception from speculative instruction compromises
preciseness
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HW support

Solution I: Ignore exceptions
HW/SW solution

> Instruction causing exception returns undefined value
» Value not used if instruction is speculative
» Incorrect result if instruction is non-speculative
» Compiler generates code to throw regular exception
» Rename registers receiving speculative results

Non-speculative Speculative
# if (A==0) A=B; else A=A+4; # if (A==0) A=B; else A=A+4:
LD R1,0(R3) ;load A LD R1,0 (R3) .1oad A
ngZ gi’gtRz) f:::ﬁ ?oad B LD R4,0(R2) ;speculative load B
! ! BEQZ R1,L3 ;test A
Ll: iDDI ;i R1,4 ;else ADDI R4,R1,4  jelse
. ’ ’ 4 H , ; - l i
L2: sD R1,0 (R3) :store A L3 SD R4, 0 (R3) non-speculative store
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HW support

Solution II: mark speculative instructions

# if (A==0) A=B; else A=A+4;
LD R1,0(R3) ;load A
SLD R4, 0(R2) ; speculative load B
BNEZ R1,L1 ;test A
CHK R4, recover ;speculation check
J L2 ;skip else

L1l: ADDI R4,R1,4 ;else

L2: SD R4,0(R3) ;store A

recover: ...

» Instruction checking speculation status
» Jump to recovery code if exception
» [tanium CHK instruction
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HW support

Solution lll: poison bits

# if (A==0) A=B; else A=A+4;
LD R1,0(R3) ;load A
SLD R4,0(R2) ; speculative load B
BEQZ R1,L3 ;test A
ADDI R4,R1,4 ;else
L3: SD R4,0(R3) ;store A

» R4 marked with poison bit
» Use of R4 in SD raises exception if SLD raises exception

» Generate exception when result of offending instruction is
used for the first time

» OS code needs to save poison bits during context
switching

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP

Conclusions

Performance of VLIW processors

Itanium vs. Alpha vs. Pentium 4

gzip

- Itanium 2
Pentium 4@3,8
Il AMD Athlon 64

perlbmk Power5

0 500 1000 1500 2000 2500 3000 3500

SPECRatio
©2007 Elsevir, Inc. All rights reserved.

» Low INT performance
» Better FP performance, highly application-dependent
» Poor power-efficiency (performance/watt)
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Conclusions

What next?

Alternatives to exploit parallelism

» \ector processors and SIMD — next lecture
» Simultaneous multithreading — lecture after next
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