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ILP techniques
Hardware

I Dynamic scheduling with scoreboard
I Renaming (Tomasulo, renaming registers)
I Branch prediction
I Multiple issue
I Speculation

Software

I Instruction scheduling
I Code transformations (topic of next lecture)
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What limits ILP

Software and hardware issues
I Limits of parallelism in programs

I Data flow – true data dependencies
I Control flow – control dependencies
I Code generation, scheduling by compiler

I Hardware complexity
I Large storage structures – branch prediction, ROB, window
I Complex logic – dependence control, associative searches
I Higher bandwidth – multiple issue, multiple outstanding

instructions
I Long latencies – memory system (caches, DRAM)
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Recap: add scalar to vector
Unrolling and renaming (6 cycles per iteration)

Loop: LD F0,0(R1)
ADDD F4,F0,F2
SD F4,0(R1)
LD F6,-8(R1)
ADDD F8,F6,F2
SD F8,-8(R1)
LD F10,-16(R1)
ADDD F12,F10,F2
SD F12,-16(R1)
LD F14,-24(R1)
ADDD F16,F14,F2
SD F16,-24(R1)
ADDI R1,R1,-32
BNE R1, R2, Loop

I Pros Unrolling lowers loop overhead (ADDI, BNE)
I Cons: Unrolling grows code size
I Cons: Register pressure
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Recap: add scalar to vector

Unrolling and renaming with improved instruction
scheduling (3.5 cycles per iteration)

Loop: LD F0,0(R1)
LD F6,-8(R1)
LD F10,-16(R1)
LD F14,-24(R1)
ADDD F4,F0,F2
ADDD F8,F6,F2
ADDD F12,F10,F2
ADDD F16,F14,F2
SD F4,0(R1)
SD F8,-8(R1)
SD F12,-16(R1)
ADDI R1,R1,-32
BNE R1, R2, Loop
SD F16, 8(R1)
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Recap: add scalar to vector

Unrolling and renaming with dual-issue
Integer instruction FP instruction Clock cycle
Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD F4,0(R1) ADDD F16,F14,F2 6
SD F8,-8(R1) ADDD F20,F18,F2 7
SD F12,-16(R1) 8
SD F16,-24(R1) 9
ADDI R1,R1,-40 10
BNE R1,R2,Loop 11
SD F20,-32(R1) 12

2.4 cycles per iteration
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Predict branches as always taken

Example
DSUBU and BEQZ need to stall

LD R1,0(R2)
DSUBU R1,R1,R3
BEQZ R1,L
OR R4,R5,R6
DADDU R10,R4,R3

L: DADDU R7,R8,R9

Example
LD R1,0(R2)
DADDU R7,R8,R9 #speculative
DSUBU R1,R1,R3
BEQZ R1,L
OR R4,R5,R6
DADDU R10,R4,R3

L:

I Second control-dependent
DADDU speculatively moved
before branch to eliminate stall

I Note that moved DADDU is not
data-dependent on OR, or first
DADDU
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Static branch prediction alternatives

Simple offline branch prediction schemes

I Predict always taken
I 34% misprediction rate, high variance

I Predict based on direction of branch
I Forward not taken, backward taken
I Misprediction rates 30%–40%

I Predict based on execution profile
I Branch bias (mostly taken or not taken)
I Accuracy sensitive to input
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Performance of profile-based branch prediction
SPECCPU92 results
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Profile-based vs. static prediction
SPECCPU92 results
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VLIW processors
Statically scheduled multiple-issue processors

I Reduce hardware cost compared to dynamically scheduled
I Advanced compiler support for exploiting ILP

I Instructions scheduled in packets
I No dependences among instructions in packet

I Long instruction word (64+ bits)
I Explicit parallelism among instructions

I Compiler guarantees that instructions are independent
I Multiple functional units
I Parallelism exploited via loop unrolling and instruction

scheduling
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Add scalar to vector example

Unrolling and code scheduling in VLIW

I 2 load/store, 2 INT, 1 FP unit
I 1.29 cycles per iteration (vs. 2.4 in two-issue superscalar)
Memory Memory FP FP Integer
reference 1 reference 2 operation 1 operation 2 branch
LD F0, 0(R1) LD F6,-8(R1)
LD F10, -16(R1) LD F14,-24(R1)
LD F18, -32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2
LD F26, -48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2

ADDD F20,F18,F2 ADDD F24,F22,F2
SD F4, 0(R1) SD F8, -8(R1) ADDD F28,F26,F2
SD F12, -16(R1) SD F16, -24(R1)
SD F20, -24(R1) SD F24, -32(R1) ADDI R1, R1, -56
SD F28, 8(R1) BNE R1, R2, Loop
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VLIW processors
Statically scheduled multiple-issue processors

I Parallelism sought within and across basic blocks
I Static branch prediction
I Hardware support for predicated instruction execution

Design implications

I Increased code size
I Lock-step execution of instruction bundles

I Stall in a FU causes entire processor pipeline stall
I Hard to schedule instructions upon cache misses
I Solution: check hazards and dependences at issue time,

use hardware to enable unsynchronized execution
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VLIW processors (cont.)

Code compatibility

I Old binary can not run if number of FUs changes
I Format of instruction bundles is changed
I Binary translation across VLIW HW generations
I Binary translation from superscalar to VLIW

I Superscalar runs unmodified binaries from previous HW
generations

I only code scheduling may require changes for performance
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Compiler dependence analysis of source code

Loop-level parallelization

I Dependence analysis for detecting loop-carried
dependences

I Dependences between instructions in two lexicographically
ordered iterations of a loop

I Lexicographical ordering produces the equivalent of a
sequential in-order execution of all instructions in a loop

I Independent iterations can be unrolled at will
I Independent iterations can execute in parallel

I Key to exploit multiple processors
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Example

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2*/

}

I Loop-carried dependence on S1 (A[i+1] depends on A[i],
C[i])

I Loop-carried dependence on S2 (B[i+1] depends on B[i])
I Same-iteration dependence on S2 (B[i+1] depends on

A[i+1])
I Loop-carried dependences may or may not prevent

parallelization
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Example
Can this loop be parallelized?
for (i=1; i<=100; i=i+1) {

A[i] = B[i] + C[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2*/

}

I Peel one iteration from each end of the loop
I Notice that no iteration produces result for future iteration

A[1] = B[1] + C[1];
for (i=1; i<=99; i=i+1) {

A[i+1] = B[i+1] + C[i+1]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2*/

}
B[101] = C[100] + D[100];

I Loop-carried dependence eliminated
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Dependence analysis
Limitations of analyzing memory references

I Static analysis indicates that there may be a dependence between two
instructions due to naming of memory locations

I Dependence resolution requires disambiguation of memory references

I Easy for scalar variables, harder for arrays, hard for pointers
I Dependences do not always prevent parallelization

Uncovering parallelism in loops with dependences

for (i=6; i<=100; i=i+1) {
A[i] = A[i-5] + A[i]; /* S1 */

}

I No loop-carried dependences in 5 iterations
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Dependence analysis 101

I Assume affine array indices: index = a× i + b
I Index in multi-dimensional array affine, if index in each

dimension affine
I Assume two references a× j + b, c × k + d , check if:

I Array elements are within loop bounds:
m ≤ j ≤ n,m ≤ k ≤ n

I j precedes k (lexicographical ordering)
I a× j + b = c × k + d
I GCD test: test if GCD(a, c) divides (d − b)
I Necessary but not sufficient condition

I a,b, c,d and bounds need to be known at compile-time
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Eliminating dependences through renaming

Finding dependences in source code

for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

I True dependences S1 → S3, S1 → S4
I Antidependence S1 → S2, S3 → S4
I Output dependence S1 → S4
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Eliminating dependences through renaming

Finding dependences in source code

for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

Renaming resolves output and anti dependences

for (i=1; i<=100; i=i+1) {
T1[i] = X[i] / c; /* S1 */
T2[i] = X[i] + c; /* S2 */
Z[i] = T1[i] + c; /* S3 */
Y[i] = c - T1[i]; /* S4 */

}
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Limits of dependence analysis
Examples of hard to analyze cases

I Hard to analyze pointer references
I Determine if two pointers reference same memory location
I Undecidable for dynamically allocated data structures
I Hard if code uses with pointer arithmetic

I Array-indexed arrays, sparse arrays, indirect references
I Input-dependent dependences
I Inter-procedural dependences, analysis beyond basic

blocks
I Conservatism of analysis

I Correctness precedes performance in compilers
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Other compiler optimizations
Copy propagation

ADDI R1, R2, 4
ADDI R1, R1, 4

ADDI R1, R2, 8

Tree height reduction

ADD R1,R2,R3
ADD R4,R1,R6
ADD R8,R4,R7

ADD R1,R2,R3
ADD R4,R7,R6
ADD R8,R1,R4

I Assumes addition is associative (not true in FP arithmetic)

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 27 / 44



Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining
Symbolic loop unrolling

I Benefits of loop unrolling with reduced code size

I Instructions in loop body selected from different loop iterations

I Increase distance between dependent instructions

Iteration 
0 

Iteration1 
Iteration 

2 
Iteration 

3 Iteration 
4 

Software  
pipelined 
iteration 

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 29 / 44



Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining

Loop unrolled 3 times
Iteration i: LD F0,0(R1)

ADDD F4,F0,F2
SD F4,0(R1)

Iteration i+1: LD F0,0(R1)
ADDD F4,F0,F2
SD 0(R1),F4

Iteration i+2: LD F0,0(R1)
ADDD F4,F0,F2
SD F4,0(R1)

Software pipelined loop
Loop: SD F4,16(R1) #store to v[i]

ADDD F4,F0,F2 #add to v[i-1]
LD F0,0(R1) #load v[i-2]
ADDI R1,R1,-8
BNE R1,R2,Loop

I 5 cycles/iteration (with
dynamic scheduling and
renaming)

I Need startup/cleanup code
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Software pipelining (cont.)

SW pipelined loop with startup and cleanup code
#startup, assume i runs from 0 to n
ADDI R1,R1,-16 #point to v[n-2]
LD F0,16(R1) #load v[n]
ADDD F4,F0,F2 #add v[n]
LD F0,8(R1) #load v[n-1]
#body for (i=2;i<=n-2;i++)

Loop: SD F4,16(R1) #store to v[i]
ADDD F4,F0,F2 #add to v[i-1]
LD F0,0(R1) #load v[i-2]
ADDI R1,R1,-8
BNE R1,R2,Loop
#cleanup
SD F4,8(R1) #store v[1]
ADDD F4,F0,F2 #add v[0]
SD F4,0(R1) #store v[0]

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 31 / 44



Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining versus unrolling
Performance effects of SW pipelining vs. unrolling

I Unrolling reduces loop overhead per iteration
I SW pipelining reduces startup-cleanup pipeline overhead

Overlapping 
iterations 

(a) software pipelining 

startup  cleanup 

Overlapping 
iterations 

(b) loop unrolling 

f(unrolled iterations) 
overlap between 
unrolled iterations 
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Software pipelining (cont.)
Advantages

I Less code space than conventional unrolling
I Loop runs at peak speed during steady state

I Overhead only at loop initiation and termination
I Complements unrolling

Disadvantages

I Hard to overlap long latencies
I Unrolling combined with SW pipelining

I Requires advanced compiler transformations
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Predication
Conditional move

I A predicated instruction packs a conditional and an
instruction

I Instruction control-dependent on conditional
I If conditional is false instruction is converted to no-op,

otherwise executed
I Convert control dependence to data dependence

#if (A==0) {S=T;}
# simple translation

BNEZ R1, L #if (A==0)
ADDI R2, R3, 0 #S=T;

L:
# predicated instruction

CMOVZ R2, R3, R1 #move T to S if R1=0
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Predication

Generalized predication

I Predicates applied to all instructions
I Enables predicated execution of large code blocks
I Speculatively puts time-critical instructions under

predicates

No predication
Slot 1 Slot 2
LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7
BEQZ R10,L
LW R8,0(R10)
LW R9,0(R8)

Predication
Slot 1 Slot 2
LW R1,40(R2) ADD R3,R4,R5
LWC R8,0(R10),R10 ADD R6,R3,R7
BEQZ R10,L
LW R9,0(R8)
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Predication implementation issues
Preserve control and data flow, precise interrupts

I Speculative predicated instructions may not throw illegal
exceptions

I LWC may not throw exception if R10 == 0
I LWC may throw recoverable page fault if R10 6= 0

I Instruction conversion to nop
I Early condition detection may not be possible due to data

dependence
I Late condition detection incurs stalls and consumes

pipeline resources needlessly
I Instructions may be dependent on multiple branches
I Compiler able to find instruction slots and reorder
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Hardware support for speculation
Alternatives for handling speculative exceptions

I Hardware and OS ignore exceptions from speculative instructions
I Mark speculative instructions and check for exceptions

I Additional instructions to check for exceptions and recover
I Registers marked with poison bits to catch exceptions upon read
I Hardware buffers instruction results until instruction is no longer

speculative

Exception classes

I Recoverable: exception from speculative instruction may harm
performance, but not preciseness

I Unrecoverable: exception from speculative instruction compromises
preciseness
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Solution I: Ignore exceptions
HW/SW solution

I Instruction causing exception returns undefined value
I Value not used if instruction is speculative

I Incorrect result if instruction is non-speculative
I Compiler generates code to throw regular exception

I Rename registers receiving speculative results

Non-speculative
# if (A==0) A=B; else A=A+4;

LD R1,0(R3) ;load A
BNEZ R1,L1 ;test A
LD R1,0(R2) ;then load B
J L2

L1: ADDI R1,R1,4 ;else
L2: SD R1,0(R3) ;store A

Speculative
# if (A==0) A=B; else A=A+4;

LD R1,0(R3) ;load A
LD R4,0(R2) ;speculative load B
BEQZ R1,L3 ;test A
ADDI R4,R1,4 ;else

L3: SD R4,0(R3) ;non-speculative store
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Solution II: mark speculative instructions

# if (A==0) A=B; else A=A+4;
LD R1,0(R3) ;load A
SLD R4,0(R2) ;speculative load B
BNEZ R1,L1 ;test A
CHK R4,recover ;speculation check
J L2 ;skip else

L1: ADDI R4,R1,4 ;else
L2: SD R4,0(R3) ;store A
recover:...

I Instruction checking speculation status
I Jump to recovery code if exception
I Itanium CHK instruction
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Solution III: poison bits

# if (A==0) A=B; else A=A+4;
LD R1,0(R3) ;load A
SLD R4,0(R2) ;speculative load B
BEQZ R1,L3 ;test A
ADDI R4,R1,4 ;else

L3: SD R4,0(R3) ;store A

I R4 marked with poison bit
I Use of R4 in SD raises exception if SLD raises exception
I Generate exception when result of offending instruction is

used for the first time
I OS code needs to save poison bits during context

switching
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Performance of VLIW processors
Itanium vs. Alpha vs. Pentium 4

I Low INT performance
I Better FP performance, highly application-dependent
I Poor power-efficiency (performance/watt)
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What next?

Alternatives to exploit parallelism

I Vector processors and SIMD – next lecture
I Simultaneous multithreading – lecture after next
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