
Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

HY425 Lecture 09: Software to exploit ILP

Dimitrios S. Nikolopoulos

University of Crete and FORTH-ICS

November 4, 2010

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 1 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

ILP techniques
Hardware

I Dynamic scheduling with scoreboard
I Renaming (Tomasulo, renaming registers)
I Branch prediction
I Multiple issue
I Speculation

Software

I Instruction scheduling
I Code transformations (topic of next lecture)

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 3 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

What limits ILP

Software and hardware issues
I Limits of parallelism in programs

I Data flow – true data dependencies
I Control flow – control dependencies
I Code generation, scheduling by compiler

I Hardware complexity
I Large storage structures – branch prediction, ROB, window
I Complex logic – dependence control, associative searches
I Higher bandwidth – multiple issue, multiple outstanding

instructions
I Long latencies – memory system (caches, DRAM)

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 4 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Recap: add scalar to vector
Unrolling and renaming (6 cycles per iteration)

Loop: LD F0,0(R1)
ADDD F4,F0,F2
SD F4,0(R1)
LD F6,-8(R1)
ADDD F8,F6,F2
SD F8,-8(R1)
LD F10,-16(R1)
ADDD F12,F10,F2
SD F12,-16(R1)
LD F14,-24(R1)
ADDD F16,F14,F2
SD F16,-24(R1)
ADDI R1,R1,-32
BNE R1, R2, Loop

I Pros Unrolling lowers loop overhead (ADDI, BNE)
I Cons: Unrolling grows code size
I Cons: Register pressure

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 5 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Recap: add scalar to vector

Unrolling and renaming with improved instruction
scheduling (3.5 cycles per iteration)

Loop: LD F0,0(R1)
LD F6,-8(R1)
LD F10,-16(R1)
LD F14,-24(R1)
ADDD F4,F0,F2
ADDD F8,F6,F2
ADDD F12,F10,F2
ADDD F16,F14,F2
SD F4,0(R1)
SD F8,-8(R1)
SD F12,-16(R1)
ADDI R1,R1,-32
BNE R1, R2, Loop
SD F16, 8(R1)

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 6 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Recap: add scalar to vector

Unrolling and renaming with dual-issue
Integer instruction FP instruction Clock cycle
Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD F4,0(R1) ADDD F16,F14,F2 6
SD F8,-8(R1) ADDD F20,F18,F2 7
SD F12,-16(R1) 8
SD F16,-24(R1) 9
ADDI R1,R1,-40 10
BNE R1,R2,Loop 11
SD F20,-32(R1) 12

2.4 cycles per iteration

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 7 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Predict branches as always taken

Example
DSUBU and BEQZ need to stall

LD R1,0(R2)
DSUBU R1,R1,R3
BEQZ R1,L
OR R4,R5,R6
DADDU R10,R4,R3

L: DADDU R7,R8,R9

Example
LD R1,0(R2)
DADDU R7,R8,R9 #speculative
DSUBU R1,R1,R3
BEQZ R1,L
OR R4,R5,R6
DADDU R10,R4,R3

L:

I Second control-dependent
DADDU speculatively moved
before branch to eliminate stall

I Note that moved DADDU is not
data-dependent on OR, or first
DADDU

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 9 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Static branch prediction alternatives

Simple offline branch prediction schemes

I Predict always taken
I 34% misprediction rate, high variance

I Predict based on direction of branch
I Forward not taken, backward taken
I Misprediction rates 30%–40%

I Predict based on execution profile
I Branch bias (mostly taken or not taken)
I Accuracy sensitive to input

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 10 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Performance of profile-based branch prediction
SPECCPU92 results

12%

22%

18%

11%

12%

5%

6%

9%

10%

15%

0% 5% 10% 15% 20% 25%

compress

eqntott

espresso

gcc

li

doduc

ear

hydro2d

mdljdp

su2cor

Misprediction rate

Performance of profile-based branch prediction

12%

22%

18%

11%

12%

5%

6%

9%

10%

15%

0% 5% 10% 15% 20% 25%

compress

eqntott

espresso

gcc

li

doduc

ear

hydro2d

mdljdp

su2cor

Misprediction rate

Performance of profile-based branch prediction

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 11 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Profile-based vs. static prediction
SPECCPU92 results

1

6

11

11

14

19

11

11

14

96

56

19

37

60

58

250

159

92

113

253

0 50 100 150 200 250 300

compress

eqntott

espresso

gcc

li

doduc

ear

hydro2d

mdljdp

su2cor

Instructions between mispredicted branches

Performance of profile-based branch prediction

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 12 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

VLIW processors
Statically scheduled multiple-issue processors

I Reduce hardware cost compared to dynamically scheduled
I Advanced compiler support for exploiting ILP

I Instructions scheduled in packets
I No dependences among instructions in packet

I Long instruction word (64+ bits)
I Explicit parallelism among instructions

I Compiler guarantees that instructions are independent
I Multiple functional units
I Parallelism exploited via loop unrolling and instruction

scheduling

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 14 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Add scalar to vector example

Unrolling and code scheduling in VLIW

I 2 load/store, 2 INT, 1 FP unit
I 1.29 cycles per iteration (vs. 2.4 in two-issue superscalar)
Memory Memory FP FP Integer
reference 1 reference 2 operation 1 operation 2 branch
LD F0, 0(R1) LD F6,-8(R1)
LD F10, -16(R1) LD F14,-24(R1)
LD F18, -32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2
LD F26, -48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2

ADDD F20,F18,F2 ADDD F24,F22,F2
SD F4, 0(R1) SD F8, -8(R1) ADDD F28,F26,F2
SD F12, -16(R1) SD F16, -24(R1)
SD F20, -24(R1) SD F24, -32(R1) ADDI R1, R1, -56
SD F28, 8(R1) BNE R1, R2, Loop

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 15 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

VLIW processors
Statically scheduled multiple-issue processors

I Parallelism sought within and across basic blocks
I Static branch prediction
I Hardware support for predicated instruction execution

Design implications

I Increased code size
I Lock-step execution of instruction bundles

I Stall in a FU causes entire processor pipeline stall
I Hard to schedule instructions upon cache misses
I Solution: check hazards and dependences at issue time,

use hardware to enable unsynchronized execution
Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 16 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

VLIW processors (cont.)

Code compatibility

I Old binary can not run if number of FUs changes
I Format of instruction bundles is changed
I Binary translation across VLIW HW generations
I Binary translation from superscalar to VLIW

I Superscalar runs unmodified binaries from previous HW
generations

I only code scheduling may require changes for performance

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 17 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Compiler dependence analysis of source code

Loop-level parallelization

I Dependence analysis for detecting loop-carried
dependences

I Dependences between instructions in two lexicographically
ordered iterations of a loop

I Lexicographical ordering produces the equivalent of a
sequential in-order execution of all instructions in a loop

I Independent iterations can be unrolled at will
I Independent iterations can execute in parallel

I Key to exploit multiple processors

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 19 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Example

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2*/

}

I Loop-carried dependence on S1 (A[i+1] depends on A[i],
C[i])

I Loop-carried dependence on S2 (B[i+1] depends on B[i])
I Same-iteration dependence on S2 (B[i+1] depends on

A[i+1])
I Loop-carried dependences may or may not prevent

parallelization

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 20 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Example
Can this loop be parallelized?
for (i=1; i<=100; i=i+1) {

A[i] = B[i] + C[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2*/

}

I Peel one iteration from each end of the loop
I Notice that no iteration produces result for future iteration

A[1] = B[1] + C[1];
for (i=1; i<=99; i=i+1) {

A[i+1] = B[i+1] + C[i+1]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2*/

}
B[101] = C[100] + D[100];

I Loop-carried dependence eliminated

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 21 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Dependence analysis
Limitations of analyzing memory references

I Static analysis indicates that there may be a dependence between two
instructions due to naming of memory locations

I Dependence resolution requires disambiguation of memory references

I Easy for scalar variables, harder for arrays, hard for pointers
I Dependences do not always prevent parallelization

Uncovering parallelism in loops with dependences

for (i=6; i<=100; i=i+1) {
A[i] = A[i-5] + A[i]; /* S1 */

}

I No loop-carried dependences in 5 iterations

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 22 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Dependence analysis 101

I Assume affine array indices: index = a× i + b
I Index in multi-dimensional array affine, if index in each

dimension affine
I Assume two references a× j + b, c × k + d , check if:

I Array elements are within loop bounds:
m ≤ j ≤ n,m ≤ k ≤ n

I j precedes k (lexicographical ordering)
I a× j + b = c × k + d
I GCD test: test if GCD(a, c) divides (d − b)
I Necessary but not sufficient condition

I a,b, c,d and bounds need to be known at compile-time

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 23 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Eliminating dependences through renaming

Finding dependences in source code

for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

I True dependences S1 → S3, S1 → S4
I Antidependence S1 → S2, S3 → S4
I Output dependence S1 → S4

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 24 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Eliminating dependences through renaming

Finding dependences in source code

for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

Renaming resolves output and anti dependences

for (i=1; i<=100; i=i+1) {
T1[i] = X[i] / c; /* S1 */
T2[i] = X[i] + c; /* S2 */
Z[i] = T1[i] + c; /* S3 */
Y[i] = c - T1[i]; /* S4 */

}

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 25 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Limits of dependence analysis
Examples of hard to analyze cases

I Hard to analyze pointer references
I Determine if two pointers reference same memory location
I Undecidable for dynamically allocated data structures
I Hard if code uses with pointer arithmetic

I Array-indexed arrays, sparse arrays, indirect references
I Input-dependent dependences
I Inter-procedural dependences, analysis beyond basic

blocks
I Conservatism of analysis

I Correctness precedes performance in compilers

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 26 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Other compiler optimizations
Copy propagation

ADDI R1, R2, 4
ADDI R1, R1, 4

ADDI R1, R2, 8

Tree height reduction

ADD R1,R2,R3
ADD R4,R1,R6
ADD R8,R4,R7

ADD R1,R2,R3
ADD R4,R7,R6
ADD R8,R1,R4

I Assumes addition is associative (not true in FP arithmetic)

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 27 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining
Symbolic loop unrolling

I Benefits of loop unrolling with reduced code size

I Instructions in loop body selected from different loop iterations

I Increase distance between dependent instructions

Iteration
0

Iteration1
Iteration

2
Iteration

3 Iteration
4

Software
pipelined
iteration

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 29 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining

Loop unrolled 3 times
Iteration i: LD F0,0(R1)

ADDD F4,F0,F2
SD F4,0(R1)

Iteration i+1: LD F0,0(R1)
ADDD F4,F0,F2
SD 0(R1),F4

Iteration i+2: LD F0,0(R1)
ADDD F4,F0,F2
SD F4,0(R1)

Software pipelined loop
Loop: SD F4,16(R1) #store to v[i]

ADDD F4,F0,F2 #add to v[i-1]
LD F0,0(R1) #load v[i-2]
ADDI R1,R1,-8
BNE R1,R2,Loop

I 5 cycles/iteration (with
dynamic scheduling and
renaming)

I Need startup/cleanup code

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 30 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining (cont.)

SW pipelined loop with startup and cleanup code
#startup, assume i runs from 0 to n
ADDI R1,R1,-16 #point to v[n-2]
LD F0,16(R1) #load v[n]
ADDD F4,F0,F2 #add v[n]
LD F0,8(R1) #load v[n-1]
#body for (i=2;i<=n-2;i++)

Loop: SD F4,16(R1) #store to v[i]
ADDD F4,F0,F2 #add to v[i-1]
LD F0,0(R1) #load v[i-2]
ADDI R1,R1,-8
BNE R1,R2,Loop
#cleanup
SD F4,8(R1) #store v[1]
ADDD F4,F0,F2 #add v[0]
SD F4,0(R1) #store v[0]

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 31 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining versus unrolling
Performance effects of SW pipelining vs. unrolling

I Unrolling reduces loop overhead per iteration
I SW pipelining reduces startup-cleanup pipeline overhead

Overlapping
iterations

(a) software pipelining

startup cleanup

Overlapping
iterations

(b) loop unrolling

f(unrolled iterations)
overlap between
unrolled iterations

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 32 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Software pipelining (cont.)
Advantages

I Less code space than conventional unrolling
I Loop runs at peak speed during steady state

I Overhead only at loop initiation and termination
I Complements unrolling

Disadvantages

I Hard to overlap long latencies
I Unrolling combined with SW pipelining

I Requires advanced compiler transformations

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 33 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Predication
Conditional move

I A predicated instruction packs a conditional and an
instruction

I Instruction control-dependent on conditional
I If conditional is false instruction is converted to no-op,

otherwise executed
I Convert control dependence to data dependence

#if (A==0) {S=T;}
simple translation

BNEZ R1, L #if (A==0)
ADDI R2, R3, 0 #S=T;

L:
predicated instruction

CMOVZ R2, R3, R1 #move T to S if R1=0

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 35 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Predication

Generalized predication

I Predicates applied to all instructions
I Enables predicated execution of large code blocks
I Speculatively puts time-critical instructions under

predicates

No predication
Slot 1 Slot 2
LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7
BEQZ R10,L
LW R8,0(R10)
LW R9,0(R8)

Predication
Slot 1 Slot 2
LW R1,40(R2) ADD R3,R4,R5
LWC R8,0(R10),R10 ADD R6,R3,R7
BEQZ R10,L
LW R9,0(R8)

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 36 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Predication implementation issues
Preserve control and data flow, precise interrupts

I Speculative predicated instructions may not throw illegal
exceptions

I LWC may not throw exception if R10 == 0
I LWC may throw recoverable page fault if R10 6= 0

I Instruction conversion to nop
I Early condition detection may not be possible due to data

dependence
I Late condition detection incurs stalls and consumes

pipeline resources needlessly
I Instructions may be dependent on multiple branches
I Compiler able to find instruction slots and reorder

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 37 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Hardware support for speculation
Alternatives for handling speculative exceptions

I Hardware and OS ignore exceptions from speculative instructions
I Mark speculative instructions and check for exceptions

I Additional instructions to check for exceptions and recover
I Registers marked with poison bits to catch exceptions upon read
I Hardware buffers instruction results until instruction is no longer

speculative

Exception classes

I Recoverable: exception from speculative instruction may harm
performance, but not preciseness

I Unrecoverable: exception from speculative instruction compromises
preciseness

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 38 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Solution I: Ignore exceptions
HW/SW solution

I Instruction causing exception returns undefined value
I Value not used if instruction is speculative

I Incorrect result if instruction is non-speculative
I Compiler generates code to throw regular exception

I Rename registers receiving speculative results

Non-speculative
if (A==0) A=B; else A=A+4;

LD R1,0(R3) ;load A
BNEZ R1,L1 ;test A
LD R1,0(R2) ;then load B
J L2

L1: ADDI R1,R1,4 ;else
L2: SD R1,0(R3) ;store A

Speculative
if (A==0) A=B; else A=A+4;

LD R1,0(R3) ;load A
LD R4,0(R2) ;speculative load B
BEQZ R1,L3 ;test A
ADDI R4,R1,4 ;else

L3: SD R4,0(R3) ;non-speculative store

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 39 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Solution II: mark speculative instructions

if (A==0) A=B; else A=A+4;
LD R1,0(R3) ;load A
SLD R4,0(R2) ;speculative load B
BNEZ R1,L1 ;test A
CHK R4,recover ;speculation check
J L2 ;skip else

L1: ADDI R4,R1,4 ;else
L2: SD R4,0(R3) ;store A
recover:...

I Instruction checking speculation status
I Jump to recovery code if exception
I Itanium CHK instruction

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 40 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Solution III: poison bits

if (A==0) A=B; else A=A+4;
LD R1,0(R3) ;load A
SLD R4,0(R2) ;speculative load B
BEQZ R1,L3 ;test A
ADDI R4,R1,4 ;else

L3: SD R4,0(R3) ;store A

I R4 marked with poison bit
I Use of R4 in SD raises exception if SLD raises exception
I Generate exception when result of offending instruction is

used for the first time
I OS code needs to save poison bits during context

switching

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 41 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

Performance of VLIW processors
Itanium vs. Alpha vs. Pentium 4

I Low INT performance
I Better FP performance, highly application-dependent
I Poor power-efficiency (performance/watt)

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 43 / 44

Recap
Static branch prediction

VLIW
Dependence analysis

Software pipelining
HW support

Conclusions

What next?

Alternatives to exploit parallelism

I Vector processors and SIMD – next lecture
I Simultaneous multithreading – lecture after next

Dimitrios S. Nikolopoulos HY425 Lecture 09: Software to exploit ILP 44 / 44

	Recap
	

	Static branch prediction
	

	VLIW
	

	Dependence analysis
	

	Software pipelining
	

	HW support
	

	Conclusions
	

