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Review from last lecture
Important technological implications

I Latency lags bandwidth
I Shrinking transistors do not necessarily improve

performance
I Power wall, deteriorating reliability
I Measuring and summarizing performance

I Wall-clock time
I Geometric mean of execution time ratios
I No single averaging metric is perfect

I Quantitative principles of design
I Parallelism, locality, common case fast, Amdahl’s law
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Update on assignments

Homework

I Homework 1 up today due in one week.
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Datapath
Control

Processor review

Datapath

I Storage elements (registers, caches, memory)
I Functional (execution) units (ALU, adders)
I Operated by control signals

Control

I State machine producing control signals
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Multi-cycle datapath
Five-stage instruction execution sequence
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Five-stage instruction execution sequence
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IR <= mem[PC];  
PC <= PC + 4 
A <= Reg[IRrs];  
B <= Reg[IRrt] 
rslt <= A opIRop B 

Reg[IRrd] <= WB 
WB <= rslt 
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Control

Instruction operation control

IR <= mem[PC];  
PC <= PC + 4 

A <= Reg[IRrs];  
B <= Reg[IRrt] 

r <= A opIRop B 

Reg[IRrd] <= WB 

WB <= r 

IF 

ID 

PC <= IRjaddr if bop(A,b) 
PC <= PC+IRim 

cond. branch jump register-register 

r <= A opIRop IRim 

Reg[IRrd] <= WB 

WB <= r 

register-immediate 

r <= A + IRim 

WB <= Mem[r] 

Reg[IRrd] <= WB 

EX 

MEM 

WB 

load-store 
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Data stationary control
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Local decoding logic for each pipeline stage
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Control

Simplified visualization of pipelines
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Limits of pipelining
Hazards

I Hazard is a condition which prevents an instruction from
executing during a pipeline stage

I Structural hazards occur when the hardware does not have
enough resources in a pipeline stage to accommodate an
instruction

I Older instructions occupy resources in same stage

I Data hazards occur when an instruction needs input from a prior
instruction and the input is not ready

I Control hazards occur when execution of an instruction depends
on a branch and branch outcome is not known yet

I Missing taken/not-taken or destination address information
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Example of structural hazard
Single memory port for instructions and data
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Resolving structural hazards
Bubbles
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Bubbles

Software vs. hardware bubbles

I Software (compiler) inserts bubbles by inserting nop
instructions in the pipeline

I Hardware uses hazard detection unit in the control logic
I Detection unit evaluates conditions for hazards
I Stalls the pipeline briefly (one cycle) to resolve the hazard
I Stalling the pipeline at any stage amounts to zeroing output

control signals
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Pipeline control

Recap

I Control signals in EX stage (ALUOp, RegDst, ALUSrc)
I Control signals in MEM stage (Branch, MemRead,

MemWrite)
I Control signals in WB stage (MemtoReg, RegWrite)
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Impact of pipeline stalls on performance
Speedup of pipelining

Speeduppipelined =
avg instruction time unpipelined
avg instruction time pipelined

=
CPIunpipelined × Clock cycleunpipelined

CPIpipelined × Clock cyclepipelined

=
CPIunpipelined

CPIpipelined
×

Clock cycleunpipelined

Clock cyclepipelined

CPIpipelined = IdealCPI + Pipeline stall cycles per instruction

= 1 + Pipeline stall cycles per instruction

Speeduppipelined =
CPIunpipelined

1 + Pipeline stall cycles per instruction
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Impact of pipeline stalls on performance
Speedup of pipelining

Speeduppipelined =
1

1 + Pipeline stall cycles per instruction

×
Clock cycleunpipelined

Clock cyclepipelined

Ideal balanced pipeline

Clock cyclepipelined =
Clock cycleunpipelined

Pipeline depth

Speeduppipelined =
1

1 + Pipeline stall cycles per instruction
×Pipeline depth
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Data Hazards
Read-after-write data hazard through registers
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Read-after-write (RAW) hazard

Details
Inst I: add r1, r2, r3
Inst J: sub r4, r1, r3

I Instruction I precedes instruction J in program order
I Instruction I produces result used by instruction J
I Instruction J is data-dependent on instruction I
I Result is not actually committed in register r1 in simple

5-stage pipeline until instruction I finishes the WB stage
I Value of result actually produced earlier, i.e. during the EX

stage of instruction I
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Write-after-read (WAR) hazard

Details
Inst I: sub r4, r1, r3
Inst J: add r1, r2, r3

I Instruction I precedes instruction J in program order
I Instruction I reads the register written by instruction J
I If instruction I reads r1 in cycle C, instruction J writes r1 in

cycle C+4
I No hazard in simple 5-stage pipeline
I Hazard may occur if we attempt to reorder the two

instructions. Will see examples later in the course . . .
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Write-after-write (WAW) hazard

Details
Inst I: add r1, r2, r3
Inst J: add r1, r1, r4

I Instruction I precedes instruction J in program order
I Instruction I writes in the same register as instruction J
I If instruction I writes r1 in cycle C, instruction J writes r1 in

cycle C+1
I No actual hazard in simple 5-stage pipeline
I Hazard may occur if we attempt to reorder the two

instructions.
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Forwarding
Exploit early production of results in pipeline
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Forwarding control
Additional multiplexers select ALU input

M
E

M
/W

R
 

ID
/E

X
 

E
X

/M
E

M
  

Data 
Memory 

A
LU

 

m
ux 

m
ux 

R
egisters 

NextPC 

Immediate 

m
ux 

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 27 / 47



Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

RAW hazards through memory
Store following load to same memory location
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Forwarding can not resolve all hazards
Load-use hazard
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Resolving load-use hazard
Bubble to provide chance for forwarding
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Resolving load-use hazard

Control logic
//Instruction needs to stall in the EX stage
if (ID/EX.MemRead and // A load instruction has been issued a cycle ago
((ID/EX.RegisterRd = IF/ID.RegisterRs) or // ld destination is source A
(ID/EX.RegisterRd = IF/ID.RegisterRt))) // or ld destination is source B
stall pipeline // zero out all control signals, thwarts EX, MEM, WB stages
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Pipeline forwarding data logic summary
Forwarding from ALU (EX/MEM) and memory (MEM/WB)

Pipeline Pipeline
register register Destination
containing Opcode containing Opcode of of the Comparison
source of source destination destination forwarded (if equal then
instruction instruction instruction instruction result forward)
EX/MEM Register- ID/EX Register-register ALU, Top ALU EX/MEM.IR16..20 =

register ALU ALU immediate, load, input ID/EX.IR6..10
store, branch

EX/MEM Register- ID/EX Register-register ALU Bottom ALU EX/MEM.IR16..20 =
register ALU input ID/EX.IR11..15

MEM/WB Register- ID/EX Register-register ALU, Top ALU MEM/WB.IR16..20 =
register ALU ALU immediate, load, input ID/EX.IR6..10

store, branch
MEM/WB Register- ID/EX Register-register ALU Bottom ALU MEM/WB.IR16..20 =

register ALU input ID/EX.IR11..15
EX/MEM ALU ID/EX Register-register ALU, Top ALU EX/MEM.IR11..15 =

immediate ALU immediate, load, input ID/EX.IR6..10
store, branch

EX/MEM ALU ID/EX Register-register ALU Bottom ALU EX/MEM.IR11..15 =
immediate input ID/EX.IR11..15
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Pipeline forwarding data logic summary (cont.)

Forwarding from ALU (EX/MEM) and memory (MEM/WB)
Pipeline Pipeline
register register Destination
containing Opcode containing Opcode of of the Comparison
source of source destination destination forwarded (if equal then
instruction instruction instruction instruction result forward)
MEM/WB ALU ID/EX Register-register ALU, Top ALU MEM/WB.IR11..15 =

immediate ALU immediate, load, input ID/EX.IR6..10
MEM/WB ALU ID/EX Register-register ALU Bottom ALU MEM/WB.IR11..15 =

immediate input ID/EX.IR11..15
MEM/WB Load ID/EX Register-register ALU, Top ALU MEM/WB.IR11..15 =

ALU immediate, load, input ID/EX.IR6..10
MEM/WB Load ID/EX Register-register ALU Bottom ALU MEM/WB.IR11..15 =

input ID/EX.IR11..15
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Resolving branches in pipeline
Control-dependent instructions

10: beq r1,r3,36 

14: and r2,r3,r5  

18: or  r6,r1,r7 

22: add r8,r1,r9 

36: xor r10,r1,r11 
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Understanding control hazards
MIPS datapath
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Branch execution

I Comparison with
zero and target
address
calculation at EX
stage

I 2 stall cycles

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 36 / 47



Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Understanding control hazards
MIPS datapath
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Branch execution
I Branch taken

decision plus
potential branch
target out of EX
stage

I Next PC forwarded
from MEM stage
through multiplexer

I 1 more stall cycle for
a total of 3
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Reducing branch stall impact

Impact of branches on performance

I Branch frequency (conditional, unconditional)
I ca. 20% for integer programs
I ca. 10% for floating point programs

Stall CPI from branches = branch frequency × branch penalty

Speeduppipeline =
Pipeline depth

1 + branch frequency × branch penalty

I Max speedup drops from 5.0 to 3.1 (int), or 3.8 (fp)
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Reducing branch stall impact
HW solution

Adder 

Memory 
Access 

Write 
Back 

Instruction 
Fetch 

Instr. Decode 
Reg. Fetch 

Execute 
Addr. Calc 

ALU
 

M
em

ory 

R
eg File 

M
U

X 

D
ata 

M
em

ory 

M
U

X 

Sign 
Extend 

Zero? 

M
EM

/W
B 

EX/M
EM

 

4

Adder 

Next 
SEQ 
PC 

RD RD RD W
B 

D
at

a 

Next PC 

Address 

RS1 

RS2 

Imm 

M
U

X 

ID
/EX 

IF/ID
 

Explanation

I Comparison with
zero happens at
EX stage

I Move
comparison to
EX stage

I May increase
cycle time!
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Reducing branch stall impact

HW/SW solution

I Delayed branches always execute the instruction in the slot
following the branch (PC+4)

I Instruction two slots down (PC+8) affected by the branch
I Software (compiler) tasked with filling delay slots
I Choices are from before the branch, from the target

(branch taken), or from the fall through path (branch not
taken)
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Options for filling delay slot
Three paths to look for instructions

add  $1,$2,$3 
if $2=0 then 
delay slot 

A. From before branch B. From branch target C. From fall through 

add  $1,$2,$3 
if $1=0 then 
delay slot 

add  $1,$2,$3 
if $1=0 then 
delay slot 

sub $4,$5,$6 

sub $4,$5,$6 

becomes becomes becomes 

if $2=0 then 
add  $1,$2,$3 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 
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Options for filling delay slot
A: reduces instructions and improves performance

add  $1,$2,$3 
if $2=0 then 
delay slot 

A. From before branch B. From branch target C. From fall through 

add  $1,$2,$3 
if $1=0 then 
delay slot 

add  $1,$2,$3 
if $1=0 then 
delay slot 

sub $4,$5,$6 

sub $4,$5,$6 

becomes becomes becomes 

if $2=0 then 
add  $1,$2,$3 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 
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Options for filling delay slot
B: may require to copy instruction if branch taken

add  $1,$2,$3 
if $2=0 then 
delay slot 

A. From before branch B. From branch target C. From fall through 

add  $1,$2,$3 
if $1=0 then 
delay slot 

add  $1,$2,$3 
if $1=0 then 
delay slot 

sub $4,$5,$6 

sub $4,$5,$6 

becomes becomes becomes 

if $2=0 then 
add  $1,$2,$3 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 
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Options for filling delay slot
C: conditionally dependent instruction should not execute

add  $1,$2,$3 
if $2=0 then 
delay slot 

A. From before branch B. From branch target C. From fall through 

add  $1,$2,$3 
if $1=0 then 
delay slot 

add  $1,$2,$3 
if $1=0 then 
delay slot 

sub $4,$5,$6 

sub $4,$5,$6 

becomes becomes becomes 

if $2=0 then 
add  $1,$2,$3 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 
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Exception handling in pipelines
Exception difficulties in pipelining

I Exceptions may occur in different stages (e.g. overflows at EX,
page faults at MEM, I/O device requests anywhere)

I Some exceptions are restartable
Instruction flush and restart

I Flush instructions following instruction causing the exception

I Start execution of exception handler from new address

I Instruction flush is done using nop or trap (IF) or zeroing of
control signals (ID, EX, MEM)

I Save address of offending instruction plus 4, if restartable
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Precise vs. imprecise exceptions

I Instructions before offending instruction have committed results to
registers/memory

I Offending and following instructions execute from the beginning
I Exceptions may happen out-of-order
I LW followed by an ADD
I HW maintains exception status vector for ”early” exceptions
I Exceptions are ”processed” in WB stage
I Status vector is read to cancel register or memory update
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