
Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

HY425 Lecture 02: Pipelining

Dimitrios S. Nikolopoulos

University of Crete and FORTH-ICS

October 13, 2011

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 1 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Review from last lecture
Important technological implications

I Latency lags bandwidth
I Shrinking transistors do not necessarily improve

performance
I Power wall, deteriorating reliability
I Measuring and summarizing performance

I Wall-clock time
I Geometric mean of execution time ratios
I No single averaging metric is perfect

I Quantitative principles of design
I Parallelism, locality, common case fast, Amdahl’s law

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 3 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Update on assignments

Homework

I Homework 1 up today due in one week.

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 4 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Datapath
Control

Processor review

Datapath

I Storage elements (registers, caches, memory)
I Functional (execution) units (ALU, adders)
I Operated by control signals

Control

I State machine producing control signals

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 6 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Datapath
Control

Multi-cycle datapath
Five-stage instruction execution sequence

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

R
eg File

M
U

X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 7 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Datapath
Control

Multi-cycle datapath
Five-stage instruction execution sequence

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

R
eg File

M
U

X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

IR <= mem[PC];
PC <= PC + 4
A <= Reg[IRrs];
B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB
WB <= rslt

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 8 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Datapath
Control

Instruction operation control

IR <= mem[PC];
PC <= PC + 4

A <= Reg[IRrs];
B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

IF

ID

PC <= IRjaddr if bop(A,b)
PC <= PC+IRim

cond. branch jump register-register

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

register-immediate

r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

EX

MEM

WB

load-store

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 9 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Datapath
Control

Data stationary control

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

R
eg File

M
U

X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Local decoding logic for each pipeline stage
Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 10 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Datapath
Control

Simplified visualization of pipelines

Instruction order

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 11 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Limits of pipelining
Hazards

I Hazard is a condition which prevents an instruction from
executing during a pipeline stage

I Structural hazards occur when the hardware does not have
enough resources in a pipeline stage to accommodate an
instruction

I Older instructions occupy resources in same stage

I Data hazards occur when an instruction needs input from a prior
instruction and the input is not ready

I Control hazards occur when execution of an instruction depends
on a branch and branch outcome is not known yet

I Missing taken/not-taken or destination address information
Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 13 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Example of structural hazard
Single memory port for instructions and data

In
st

ru
ct

io
n

or
de

r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 14 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Resolving structural hazards
Bubbles

In
st

ru
ct

io
n

or
de

r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

Bubble Bubble Bubble Bubble Bubble

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 15 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Bubbles

Software vs. hardware bubbles

I Software (compiler) inserts bubbles by inserting nop
instructions in the pipeline

I Hardware uses hazard detection unit in the control logic
I Detection unit evaluates conditions for hazards
I Stalls the pipeline briefly (one cycle) to resolve the hazard
I Stalling the pipeline at any stage amounts to zeroing output

control signals

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 16 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Pipeline control

Recap

I Control signals in EX stage (ALUOp, RegDst, ALUSrc)
I Control signals in MEM stage (Branch, MemRead,

MemWrite)
I Control signals in WB stage (MemtoReg, RegWrite)

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 17 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Impact of pipeline stalls on performance
Speedup of pipelining

Speeduppipelined =
avg instruction time unpipelined
avg instruction time pipelined

=
CPIunpipelined × Clock cycleunpipelined

CPIpipelined × Clock cyclepipelined

=
CPIunpipelined

CPIpipelined
×

Clock cycleunpipelined

Clock cyclepipelined

CPIpipelined = IdealCPI + Pipeline stall cycles per instruction

= 1 + Pipeline stall cycles per instruction

Speeduppipelined =
CPIunpipelined

1 + Pipeline stall cycles per instruction

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 19 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Impact of pipeline stalls on performance
Speedup of pipelining

Speeduppipelined =
1

1 + Pipeline stall cycles per instruction

×
Clock cycleunpipelined

Clock cyclepipelined

Ideal balanced pipeline

Clock cyclepipelined =
Clock cycleunpipelined

Pipeline depth

Speeduppipelined =
1

1 + Pipeline stall cycles per instruction
×Pipeline depth

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 20 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Data Hazards
Read-after-write data hazard through registers

In
st

ru
ci

to
n

or
de

r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 22 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Read-after-write (RAW) hazard

Details
Inst I: add r1, r2, r3
Inst J: sub r4, r1, r3

I Instruction I precedes instruction J in program order
I Instruction I produces result used by instruction J
I Instruction J is data-dependent on instruction I
I Result is not actually committed in register r1 in simple

5-stage pipeline until instruction I finishes the WB stage
I Value of result actually produced earlier, i.e. during the EX

stage of instruction I

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 23 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Write-after-read (WAR) hazard

Details
Inst I: sub r4, r1, r3
Inst J: add r1, r2, r3

I Instruction I precedes instruction J in program order
I Instruction I reads the register written by instruction J
I If instruction I reads r1 in cycle C, instruction J writes r1 in

cycle C+4
I No hazard in simple 5-stage pipeline
I Hazard may occur if we attempt to reorder the two

instructions. Will see examples later in the course . . .

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 24 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Write-after-write (WAW) hazard

Details
Inst I: add r1, r2, r3
Inst J: add r1, r1, r4

I Instruction I precedes instruction J in program order
I Instruction I writes in the same register as instruction J
I If instruction I writes r1 in cycle C, instruction J writes r1 in

cycle C+1
I No actual hazard in simple 5-stage pipeline
I Hazard may occur if we attempt to reorder the two

instructions.

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 25 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Forwarding
Exploit early production of results in pipeline

Time (clock cycles)

In
st

ru
ct

io
n

or
de

r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 26 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Forwarding control
Additional multiplexers select ALU input

M
E

M
/W

R

ID
/E

X

E
X

/M
E

M

Data
Memory

A
LU

m
ux

m
ux

R
egisters

NextPC

Immediate

m
ux

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 27 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

RAW hazards through memory
Store following load to same memory location

Time (clock cycles)

In
st

ru
ct

io
n

or
de

r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 28 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Forwarding can not resolve all hazards
Load-use hazard

Time (clock cycles)

In
st

ru
ct

io
n

or
de

r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 29 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Resolving load-use hazard
Bubble to provide chance for forwarding

7/13/09

Time (clock cycles)

or r8,r1,r9

In
st

ru
ci

to
n

or
de

r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU

DMem Ifetch Reg

Reg Ifetch A
LU

DMem Reg Bubble

Ifetch A
LU

DMem Reg Bubble Reg

Ifetch A
LU

DMem Bubble Reg

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 30 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Resolving load-use hazard

Control logic
//Instruction needs to stall in the EX stage
if (ID/EX.MemRead and // A load instruction has been issued a cycle ago
((ID/EX.RegisterRd = IF/ID.RegisterRs) or // ld destination is source A
(ID/EX.RegisterRd = IF/ID.RegisterRt))) // or ld destination is source B
stall pipeline // zero out all control signals, thwarts EX, MEM, WB stages

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 31 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Pipeline forwarding data logic summary
Forwarding from ALU (EX/MEM) and memory (MEM/WB)

Pipeline Pipeline
register register Destination
containing Opcode containing Opcode of of the Comparison
source of source destination destination forwarded (if equal then
instruction instruction instruction instruction result forward)
EX/MEM Register- ID/EX Register-register ALU, Top ALU EX/MEM.IR16..20 =

register ALU ALU immediate, load, input ID/EX.IR6..10
store, branch

EX/MEM Register- ID/EX Register-register ALU Bottom ALU EX/MEM.IR16..20 =
register ALU input ID/EX.IR11..15

MEM/WB Register- ID/EX Register-register ALU, Top ALU MEM/WB.IR16..20 =
register ALU ALU immediate, load, input ID/EX.IR6..10

store, branch
MEM/WB Register- ID/EX Register-register ALU Bottom ALU MEM/WB.IR16..20 =

register ALU input ID/EX.IR11..15
EX/MEM ALU ID/EX Register-register ALU, Top ALU EX/MEM.IR11..15 =

immediate ALU immediate, load, input ID/EX.IR6..10
store, branch

EX/MEM ALU ID/EX Register-register ALU Bottom ALU EX/MEM.IR11..15 =
immediate input ID/EX.IR11..15

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 32 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Pipeline forwarding data logic summary (cont.)

Forwarding from ALU (EX/MEM) and memory (MEM/WB)
Pipeline Pipeline
register register Destination
containing Opcode containing Opcode of of the Comparison
source of source destination destination forwarded (if equal then
instruction instruction instruction instruction result forward)
MEM/WB ALU ID/EX Register-register ALU, Top ALU MEM/WB.IR11..15 =

immediate ALU immediate, load, input ID/EX.IR6..10
MEM/WB ALU ID/EX Register-register ALU Bottom ALU MEM/WB.IR11..15 =

immediate input ID/EX.IR11..15
MEM/WB Load ID/EX Register-register ALU, Top ALU MEM/WB.IR11..15 =

ALU immediate, load, input ID/EX.IR6..10
MEM/WB Load ID/EX Register-register ALU Bottom ALU MEM/WB.IR11..15 =

input ID/EX.IR11..15

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 33 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Resolving branches in pipeline
Control-dependent instructions

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 35 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Understanding control hazards
MIPS datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

R
eg File

M
U

X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

PC+4 PC+8 beq

Branch execution

I Comparison with
zero and target
address
calculation at EX
stage

I 2 stall cycles

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 36 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Understanding control hazards
MIPS datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

ALU

M
em

ory

Reg File

M
UX

M
UX

Data
M

em
ory

M
UX

Sign
Extend

Zero?

IF/ID

ID/EX

M
EM

/W
B

EX/M
EM

4

Adder

Next SEQ PC Next SEQ PC

RD RD RD W
B

Da
ta

Next PC

Address

RS1

RS2

Imm

M
UX

PC+4 PC+8 beq PC+12

Branch execution
I Branch taken

decision plus
potential branch
target out of EX
stage

I Next PC forwarded
from MEM stage
through multiplexer

I 1 more stall cycle for
a total of 3

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 37 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Reducing branch stall impact

Impact of branches on performance

I Branch frequency (conditional, unconditional)
I ca. 20% for integer programs
I ca. 10% for floating point programs

Stall CPI from branches = branch frequency × branch penalty

Speeduppipeline =
Pipeline depth

1 + branch frequency × branch penalty

I Max speedup drops from 5.0 to 3.1 (int), or 3.8 (fp)

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 38 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Reducing branch stall impact
HW solution

Adder

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

ALU

M
em

ory

R
eg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX/M
EM

4

Adder

Next
SEQ
PC

RD RD RD W
B

D
at

a

Next PC

Address

RS1

RS2

Imm

M
U

X

ID
/EX

IF/ID

Explanation

I Comparison with
zero happens at
EX stage

I Move
comparison to
EX stage

I May increase
cycle time!

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 39 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Reducing branch stall impact

HW/SW solution

I Delayed branches always execute the instruction in the slot
following the branch (PC+4)

I Instruction two slots down (PC+8) affected by the branch
I Software (compiler) tasked with filling delay slots
I Choices are from before the branch, from the target

(branch taken), or from the fall through path (branch not
taken)

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 40 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Options for filling delay slot
Three paths to look for instructions

add $1,$2,$3
if $2=0 then
delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then
delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add $1,$2,$3

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 41 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Options for filling delay slot
A: reduces instructions and improves performance

add $1,$2,$3
if $2=0 then
delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then
delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add $1,$2,$3

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 42 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Options for filling delay slot
B: may require to copy instruction if branch taken

add $1,$2,$3
if $2=0 then
delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then
delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add $1,$2,$3

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 43 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Options for filling delay slot
C: conditionally dependent instruction should not execute

add $1,$2,$3
if $2=0 then
delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then
delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add $1,$2,$3

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 44 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Exception handling in pipelines
Exception difficulties in pipelining

I Exceptions may occur in different stages (e.g. overflows at EX,
page faults at MEM, I/O device requests anywhere)

I Some exceptions are restartable
Instruction flush and restart

I Flush instructions following instruction causing the exception

I Start execution of exception handler from new address

I Instruction flush is done using nop or trap (IF) or zeroing of
control signals (ID, EX, MEM)

I Save address of offending instruction plus 4, if restartable

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 46 / 47

Recap
Processor review

Hazards
Performance
Data hazards

Control hazards
Exceptions

Precise vs. imprecise exceptions

I Instructions before offending instruction have committed results to
registers/memory

I Offending and following instructions execute from the beginning
I Exceptions may happen out-of-order
I LW followed by an ADD
I HW maintains exception status vector for ”early” exceptions
I Exceptions are ”processed” in WB stage
I Status vector is read to cancel register or memory update

Dimitrios S. Nikolopoulos HY425 Lecture 02: Pipelining 47 / 47

