HY425 Lecture 01: Introduction

Dimitrios S. Nikolopoulos

University of Crete and FORTH-ICS

October 13, 2011

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Course Outline

People

Instructor

Dimitris Nikolopoulos

e-mail: dsn

office: G-104 (UoC), G-115 (FORTH-ICS)
office hours: by appointment

Personnel

Vassilis Papaefstathiou
e-mail: papaef

office: G-113 (FORTH-ICS)
office hours: by appointment

Lectures
Monday—Wednesday, 11:00—13:00, Rho Alpha 203
Friday 11:00-13:00, Rho Alpha 203 on a need basis

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Course Outline

Course topics

Advanced Computer Architecture

>

>

Principles of computer systems design (0.5 week)
Basic pipelining (1 week)

Instruction-level parallelism in HW (3 weeks)
Instruction-level parallelism in SW (2 weeks)
Memory hierarchies (2 weeks)

Multiprocessors (2 weeks)

Storage systems (1 week, but rarely make it)
Interconnection networks (1 week, but rarely make it)
Reserved for future use (0.5 week)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Course Outline

Assighments

Paper assighments

>

>

>

Homework problems on paper
Nominal load per homework: 3 hours
Expect 3—5 paper assignments

Machine assighments

» Alternating with homework assignments

>

>

Nominal load per assignment: 20 hours
Expect 2—-3 machine assignments

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Course Outline

Assignments

Lab assignments

» Simulation of essential processor components
» Dynamic binary instrumentation (PIN)

» Projects are individual (no exceptions)
» Potential topics:

1. Event counting

2. Branch prediction

3. Cache design, prefetching

4. Multiprocessor coherence and consistency (optional)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Course Outline

Grading

Exams

» Midterm (Friday 29.10.10): 20%
» Final: 20%
» No threshold on exams, just get a 5.0+ average

Assignments

» Programming assignments 35%
» Homework assignments on paper 25%
» Do not cheat, we use moss

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Course Outline

Other important course information

» Web page: http://www.csd.uoc.gr/"hy425
» Mailing list: hy425-list@csd.uoc.gr

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

Renaissance in computer design ending?

Microprocessors

» RISC processors shifted focus to ILP, caches
» “Free” performance scaling with new technology
» Sustainable performance improvement until about 2002

New challenges

» Performance wall (lack of ILP, faster clocks, long latencies)
» Power wall (Performance per Watt drops)
» Reliability wall (more components, higher failure rates)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

Renaissance in computer design ending?
Processor performance trends

© 2007 Elsevier. Inc. All rights reserved.

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

Defining computer architecture

Instruction Set Architecture

» |SAs converged to a common RISC paradigm
» CISC ISAs implemented on RISC pipelines

» Load-store architectures, general-purpose registers

» Aligned memory addressing, simple addressing modes
» Byte, word, double-word operands

» Arithmetic, logic, control operations

» Fixed-length encoding

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

Defining computer architecture

Hardware Organization
» Processor architecture
» Pipelining, hazards, ILP, HW/SW interface
» Memory hierarchies
» Interconnects
» |/O systems
» Hardware technology used (e.g. component size)

» Computer architecture focuses on organization and
quantitative principles of design

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

What drives CA research and innovation?
Latency lags bandwidth

10,000
Microprocessor

tas pleleloll b S
= Network
D
=
D
=
<4
[=N
£ Disk
= Memory
= 100 o e A T S S S e -
= -
=]
| ==
<
R=1 _-
=
= -
< ==
] s N
= Lo | >w ol .-m7 . (Latency improvement =

10 | /) : L bandwidth improvement)

<
1 .
1 10 100

Relative latency improvement

©2007 Elsavier. Inc. All ights resarved.

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

Transistor size trends and questions

Feature sizes, higher performance?

» Transistor size went town from 10 micros to 45 nanometers
» Quadratic increase in density, linear drop in feature size
» Linear increase in transistor performance

Where is the catch?

» Lower voltage to maintain safe operation

» Higher resistance and capacitance per unit of length
» Shorter wires but with higher resistance/capacitance
» Wire delays improving poorly compared to transistors

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

Power

The power equation

1

POWer gynamic = 7 * Capacitive load x Voltage® x frequency

ENergy gynamic = Capacitive load x Voltage®

Power gta1ic = Currentg e x Voltage

» Power due to switching more transistors increases
» Static power due to leakage current increasing

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Technology Trends

Measuring reliability

Reliability equations

MTTF = Mean Time To Failure

FIT = Failures In Time (per billion hours) = YTTF

MTTR = Mean Time to Repair

N MTTF
Module availability = MTTF + MTTR

#components

Fl Tsystem - Z FIT,

=1

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Measuring performance

Comparing design alternatives

Design X is n times faster than design Y

Execution timey
Execution timey

» Wall-clock time: time to complete a task

» CPU time: time CPU is busy

» Workload: Mixture of programs (including OS) on a system
» Kernels: Common, important functions in applications

» Microbenchmarks: Synthetic programs trying to:

» Isolate components and measure performance
» Imitate workloads of real world in a controlled setting

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Measuring performance

Benchmarks

Desktop

» SPECCPU (revised every few years)
» Real programs measuring processor-memory activity

Multi-core desktop/server

» SPECOMP, SPECMPI (scientific), SPECapc (graphics)
» Focus on parallelism, synchronization, communication

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Measuring performance

Benchmarks

Client/Server

» SPECjbb, SPECjms, SPECjvm, SPECsfs, SPECmail, ...
» Measuring throughput (how many tasks per unit of time)
» Measuring latency (how quickly does client get response)

Embedded systems

» EEMBC, MiBench
» Measuring performance, throughput, latency

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Measuring performance

Summarizing performance

Arithmetic mean of wall-clock time

» Biased by long-running programs

» May rank designs in non-intuitive ways:

» Machine A: Program Py — 1000 secs., P, — 1 secs.
» Machine B: Program P; — 800 secs., P, — 100 secs.
» What if machine runs P> most of the time?

Measuring against a reference computer

Execution time eference
Execution time

SP ECratioA -

"o _ Execution timeg _ Performancex
SP ECratioB

Execution timerererence Execution times ~ Performanceg
Execution timeg

HY425 Lecture 01: Introduction

Dimitrios S. Nikolopoulos

Measuring performance

Summarizing performance (cont.)

Example
Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40

Means

» Total time ignores program contribution to total workload

» Arithmetic mean biased by long programs

» Weighted arithmetic mean a better choice?

» How do we calculate weights?

Dimitrios S. Nikolopoulos

HY425 Lecture 01: Introduction

Measuring performance

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight,

=1

Example, W(1) = W(2) = 50

x Time;

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 500.50 55.00 20.00

Dimitrios S. Nikolopoulos

Measuring performance

HY425 Lecture 01: Introduction

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight,

=1

x Time;

Example, W(1) = 0.909 W(2) = 0.091

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 91.91 18.19 20.00

Dimitrios S. Nikolopoulos

HY425 Lecture 01: Introduction

Measuring performance

Summarizing performance (cont.)

Weighted arithmetic mean

n
>~ Weight; x Time;

=1

Example, W(1) = 0.999 W(2) = 0.001

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 2.00 10.09 20.00

Dimitrios S. Nikolopoulos

Measuring performance

HY425 Lecture 01: Introduction

Summarizing performance (cont.)

Using ratios

» Ratios against reference machine are independent of
mixture of programs

Geometric mean

Geometric meany

n

n H Execution time ratio;

i=1

Geometric meang

Dimitrios S. Nikolopoulos

, A
= Geometric mean(E)

HY425 Lecture 01: Introduction

(1)

Measuring performance

Pros and cons of geometric means

Pros

» Consistent rankings, independent of program frequencies
» Not influenced by peculiarities of any single machine

Cons

» Geometric mean does not predict execution time

» Sensitivity to benchmark vs. machine remains
» Encourages machine tuning for specific benchmarks
» Benchmarks can not be touched, but compilers can!

» Any “averaging” metric loses information

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Design principles

Qualitative principles of design
Taking advantage of parallelism

» Use pipelining to overlap instructions

» Use multiple execution units

» Use multiple cores

» Use multiple processors to increase throughput

Locality

» Programs reuse instructions and data
» 90-10 rule
» 90% of execution time spent running 10% of instructions

» Programs access data in nearby addresses

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Design principles

Qualitative principles of design (cont.)

Make the common case fast

» Trade-off’s in design (e.g. performance vs. power/area)
» Provide efficient design for the common case
» Amdahl’'s Law

Using performance equations

» Processor performance equation =
f(cycle time, instruction count, stalls, instruction mix, .. .)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Design principles

Amdahl’s Law

performance with enhancement

speedup = .
P P performance without enhancement

execution timene, = execution timeyy X

fractionenhanced >
spe edupenheznced

((1 — fractionenhanced) +

execution timeyy

speedu § = T _
PeeaUPoverall = oy acution timene
1
(1 — fraction)+ Jractionesanceq =
enhanced Speedupenhanced
1

speedu n— '
peealPoveral — 3 fractiongnhanced

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Design principles

Processor performance equation

CPU time

CPU time = CPI x cycle time
CP/ — CPU clock cycles

instruction count
CPU time = instruction count x CPI x cycle time =

, instructions clock cycles seconds
CPU time = X — —— X
program instruction ~ clock cycle

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Design principles

Processor performance equation

How can CA help?

» Technology has been providing faster clock speeds

» Main performance factor for almost 20 years
» Trend seems to reverse
» Limitations due to power consumption, reliability

» Architecture can pack more computing power in same area
» Architecture can improve CPI
» Algorithms and compilers can reduce instruction count

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Design principles

Processor performance equation

Instruction mixes

CPU time = CPI x cycle time
~ CPU clock cycles

Pl = — .
¢ Instruction count
CPU time = instruction count x CPI x cycle time =

instructions y clock cycles y seconds N
program instruction clock cycle

cpu time =

n
CPU time = | > " IC; x CPl; | x cycle time

i=1

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Design principles

Price/performance

10,000,000 7 800
1 700

41 600
1,000,000

4 500

—e— TPM
1 400

TPM

—e— TPM/$1000

TPM/§1000

4 300
100,000

4 200
4 100

£ 2007 Elsevier, Inc. Al rights reserved.

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Conclusions

Concluding remarks

Fallacies and pitfalls

» Ignoring Amdahl’s law

» Reliability is as good as that of the most faulty component
» Cost of processor dominates system cost?

» Currently, on servers and laptops storage dominates cost!
» Benchmarks remain valid for long

» Workloads evolve (Internet, laptops, handheld computers,
sensors, controllers, actuators, ...)
» Tuning for depreciated benchmarks undesirable

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

Conclusions

Concluding remarks (cont.)

Fallacies and pitfalls

» Reliability metrics ignoring lifetime of component

» Peak performance is expected performance
» Detecting but not correcting faults

» Many components in the architecture non-critical for correct
operation

» Important to protect, check and duplicate critical
components

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction

