
Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

HY425 Lecture 01: Introduction

Dimitrios S. Nikolopoulos

University of Crete and FORTH-ICS

October 13, 2011

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 1 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

People
Instructor
Dimitris Nikolopoulos
e-mail: dsn
office: G-104 (UoC), G-115 (FORTH-ICS)
office hours: by appointment

Personnel
Vassilis Papaefstathiou
e-mail: papaef
office: G-113 (FORTH-ICS)
office hours: by appointment

Lectures
Monday–Wednesday, 11:00–13:00, Rho Alpha 203
Friday 11:00–13:00, Rho Alpha 203 on a need basis

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 3 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Course topics

Advanced Computer Architecture

I Principles of computer systems design (0.5 week)
I Basic pipelining (1 week)
I Instruction-level parallelism in HW (3 weeks)
I Instruction-level parallelism in SW (2 weeks)
I Memory hierarchies (2 weeks)
I Multiprocessors (2 weeks)
I Storage systems (1 week, but rarely make it)
I Interconnection networks (1 week, but rarely make it)
I Reserved for future use (0.5 week)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 4 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Assignments

Paper assignments

I Homework problems on paper
I Nominal load per homework: 3 hours
I Expect 3–5 paper assignments

Machine assignments

I Alternating with homework assignments
I Nominal load per assignment: 20 hours
I Expect 2–3 machine assignments

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 5 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Assignments

Lab assignments

I Simulation of essential processor components
I Dynamic binary instrumentation (PIN)
I Projects are individual (no exceptions)
I Potential topics:

1. Event counting
2. Branch prediction
3. Cache design, prefetching
4. Multiprocessor coherence and consistency (optional)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 6 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Grading

Exams

I Midterm (Friday 29.10.10): 20%
I Final: 20%
I No threshold on exams, just get a 5.0+ average

Assignments

I Programming assignments 35%
I Homework assignments on paper 25%
I Do not cheat, we use moss

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 7 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Other important course information

I Web page: http://www.csd.uoc.gr/˜hy425
I Mailing list: hy425-list@csd.uoc.gr

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 8 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Renaissance in computer design ending?

Microprocessors

I RISC processors shifted focus to ILP, caches
I “Free” performance scaling with new technology
I Sustainable performance improvement until about 2002

New challenges

I Performance wall (lack of ILP, faster clocks, long latencies)
I Power wall (Performance per Watt drops)
I Reliability wall (more components, higher failure rates)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 10 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Renaissance in computer design ending?
Processor performance trends

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 11 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Defining computer architecture

Instruction Set Architecture
I ISAs converged to a common RISC paradigm

I CISC ISAs implemented on RISC pipelines
I Load-store architectures, general-purpose registers
I Aligned memory addressing, simple addressing modes
I Byte, word, double-word operands
I Arithmetic, logic, control operations
I Fixed-length encoding

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 12 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Defining computer architecture

Hardware Organization

I Processor architecture
I Pipelining, hazards, ILP, HW/SW interface

I Memory hierarchies
I Interconnects
I I/O systems
I Hardware technology used (e.g. component size)
I Computer architecture focuses on organization and

quantitative principles of design

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 13 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

What drives CA research and innovation?
Latency lags bandwidth

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 14 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Transistor size trends and questions

Feature sizes, higher performance?

I Transistor size went town from 10 micros to 45 nanometers
I Quadratic increase in density, linear drop in feature size
I Linear increase in transistor performance

Where is the catch?

I Lower voltage to maintain safe operation
I Higher resistance and capacitance per unit of length
I Shorter wires but with higher resistance/capacitance
I Wire delays improving poorly compared to transistors

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 15 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Power

The power equation

Powerdynamic =
1
2
× Capacitive load × Voltage2 × frequency

Energydynamic = Capacitive load × Voltage2

Power static = Currentstatic × Voltage

I Power due to switching more transistors increases
I Static power due to leakage current increasing

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 16 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Measuring reliability

Reliability equations

MTTF = Mean Time To Failure

FIT = Failures In Time (per billion hours) =
1

MTTF
MTTR = Mean Time to Repair

Module availability =
MTTF

MTTF + MTTR

FITsystem =

#components∑

i=1

FITi

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 17 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Comparing design alternatives

Design X is n times faster than design Y

Execution timeY

Execution timeX
= n

I Wall-clock time: time to complete a task
I CPU time: time CPU is busy
I Workload: Mixture of programs (including OS) on a system
I Kernels: Common, important functions in applications
I Microbenchmarks: Synthetic programs trying to:

I Isolate components and measure performance
I Imitate workloads of real world in a controlled setting

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 19 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Benchmarks

Desktop

I SPECCPU (revised every few years)
I Real programs measuring processor-memory activity

Multi-core desktop/server

I SPECOMP, SPECMPI (scientific), SPECapc (graphics)
I Focus on parallelism, synchronization, communication

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 20 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Benchmarks

Client/Server

I SPECjbb, SPECjms, SPECjvm, SPECsfs, SPECmail, . . .
I Measuring throughput (how many tasks per unit of time)
I Measuring latency (how quickly does client get response)

Embedded systems

I EEMBC, MiBench
I Measuring performance, throughput, latency

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 21 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Summarizing performance

Arithmetic mean of wall-clock time

I Biased by long-running programs
I May rank designs in non-intuitive ways:

I Machine A: Program P1 → 1000 secs., P2 → 1 secs.
I Machine B: Program P1 → 800 secs., P2 → 100 secs.
I What if machine runs P2 most of the time?

Measuring against a reference computer

n =
SPECratioA

SPECratioB

=

Execution timereference
Execution timeA

Execution timereference
Execution timeB

=
Execution timeB

Execution timeA
=

PerformanceA

PerformanceB

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 22 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Summarizing performance (cont.)

Example
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40

Means
I Total time ignores program contribution to total workload
I Arithmetic mean biased by long programs
I Weighted arithmetic mean a better choice?
I How do we calculate weights?

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 23 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Summarizing performance (cont.)

Weighted arithmetic mean

n∑

i=1

Weighti × Timei

Example, W(1) = W(2) = 50
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 500.50 55.00 20.00

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 24 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Summarizing performance (cont.)

Weighted arithmetic mean

n∑

i=1

Weighti × Timei

Example, W(1) = 0.909 W(2) = 0.091
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 91.91 18.19 20.00

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 25 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Summarizing performance (cont.)

Weighted arithmetic mean

n∑

i=1

Weighti × Timei

Example, W(1) = 0.999 W(2) = 0.001
Computer A Computer B Computer C

Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 2.00 10.09 20.00

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 26 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Summarizing performance (cont.)

Using ratios

I Ratios against reference machine are independent of
mixture of programs

Geometric mean

n

√√√√
n∏

i=1

Execution time ratioi

Geometric meanA

Geometric meanB
= Geometric mean(

A
B
) (1)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 27 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Pros and cons of geometric means

Pros

I Consistent rankings, independent of program frequencies
I Not influenced by peculiarities of any single machine

Cons
I Geometric mean does not predict execution time

I Sensitivity to benchmark vs. machine remains
I Encourages machine tuning for specific benchmarks
I Benchmarks can not be touched, but compilers can!

I Any “averaging” metric loses information

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 28 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Qualitative principles of design
Taking advantage of parallelism

I Use pipelining to overlap instructions
I Use multiple execution units
I Use multiple cores
I Use multiple processors to increase throughput

Locality

I Programs reuse instructions and data
I 90-10 rule

I 90% of execution time spent running 10% of instructions
I Programs access data in nearby addresses

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 30 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Qualitative principles of design (cont.)

Make the common case fast

I Trade-off’s in design (e.g. performance vs. power/area)
I Provide efficient design for the common case
I Amdahl’s Law

Using performance equations

I Processor performance equation =
f (cycle time, instruction count , stalls, instruction mix , . . .)

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 31 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Amdahl’s Law

speedup =
performance with enhancement

performance without enhancement

execution timenew = execution timeold ×(
(1− fractionenhanced ) +

fractionenhanced

speedupenhanced

)

speedupoverall =
execution timeold

execution timenew
=

1
(1− fractionenhanced ) +

fractionenhanced
speedupenhanced

⇒

speedupoverall →
1

1− fractionenhanced

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 32 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Processor performance equation

CPU time

CPU time = CPI × cycle time

CPI =
CPU clock cycles
instruction count

⇒
CPU time = instruction count × CPI × cycle time⇒

CPU time =
instructions

program
× clock cycles

instruction
× seconds

clock cycle

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 33 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Processor performance equation

How can CA help?

I Technology has been providing faster clock speeds
I Main performance factor for almost 20 years
I Trend seems to reverse
I Limitations due to power consumption, reliability

I Architecture can pack more computing power in same area
I Architecture can improve CPI
I Algorithms and compilers can reduce instruction count

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 34 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Processor performance equation

Instruction mixes

CPU time = CPI × cycle time

CPI =
CPU clock cycles
instruction count

⇒
CPU time = instruction count × CPI × cycle time⇒

cpu time =
instructions

program
× clock cycles

instruction
× seconds

clock cycle
⇒

CPU time =

(
n∑

i=1

ICi × CPIi

)
× cycle time

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 35 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Price/performance

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 36 / 39



Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Concluding remarks

Fallacies and pitfalls

I Ignoring Amdahl’s law
I Reliability is as good as that of the most faulty component
I Cost of processor dominates system cost?

I Currently, on servers and laptops storage dominates cost!
I Benchmarks remain valid for long

I Workloads evolve (Internet, laptops, handheld computers,
sensors, controllers, actuators, . . . )

I Tuning for depreciated benchmarks undesirable

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 38 / 39

Course Outline
Technology Trends

Measuring performance
Design principles

Conclusions

Concluding remarks (cont.)

Fallacies and pitfalls

I Reliability metrics ignoring lifetime of component
I Peak performance is expected performance
I Detecting but not correcting faults

I Many components in the architecture non-critical for correct
operation

I Important to protect, check and duplicate critical
components

Dimitrios S. Nikolopoulos HY425 Lecture 01: Introduction 39 / 39


