Lecture 6 notes

We can increase ILP by overcoming control dependencies and fetching instructions
beyond branches, before knowing the actual outcome of the branch. This technique
is broadly called “speculation” and we have already discussed extensively one form
of it, branch prediction.

Speculation differs from dynamic scheduling. Speculation, issues, fetches and
executes instructions (possibly without committing their results), as if branch
prediction is always correct. Dynamic scheduling fetches and executes instructions
that are ready to trigger, in a non-speculative manner. Dynamic scheduling
implements essentially a data-flow execution model, instructions are triggered as
soon as their operands are ready.

Speculation can complement and enhance processors with dynamic scheduling.
More specifically, dynamic branch prediction can help fetching instructions from
multiple basic blocks in the processor, by looking beyond one or several branches at
a time. These instructions can then be executed with dynamic scheduling to exploit
parallel execution units and OO0 execution. Note that speculation needs an “undo”
mechanism, in case the prediction is wrong.

How would we implement speculation in Tomasulo’s algorithm? The key idea is to
separate the execution stage of an instruction from the commit of results. We save
the results of the instruction in some storage on chip, and we allow an instruction to
commit results only when we make sure that the instruction is no longer
speculative. To accomplish this, we are using a buffer to hold the results of
instructions, called the reorder buffer (ROB). Besides holding the results of
speculative instructions, the ROB also serves the purpose of passing data between
instructions and resolving dependencies.

In Tomasulo’s algorithm, once an instruction writes its result, any subsequently
issued instructions will find result in the register file. With speculation, the register
file is not updated until the instruction commits, i.e. until we know definitively that
the instruction should execute. Thus, the ROB supplies operands in the interval
between completion of instruction execution and instruction commit. The ROB is a
source of operands for instructions, just as reservation stations (RS) provide
operands in the original Tomasulo’s algorithm. ROB also extends the set of registers
in the architecture and instructions can use ROB entries to rename their registers.

The presence of a reorder buffer may give rise to RAW and WAW hazards between
loads and stores (i.e. dependencies due to reordering of writes to memory
locations). In principle, we need to resolve the addresses of target memory locations
to check whether there are hazards or not in these situations.

WAW and WAR hazards through memory are eliminated with speculation because
actual updating of memory occurs in order, when a store is at head of the ROB, and
hence, no earlier loads or stores can still be pending .RAW hazards through memory
are maintained by two restrictions: not allowing a load to initiate the second step of



its execution if any active ROB entry occupied by a store has a Destination field that
matches the value of the A field of the load, and maintaining the program order for
the computation of an effective address of a load with respect to all earlier stores.
These restrictions ensure that any load that accesses a memory location written to
by an earlier store cannot perform the memory access until the store has written the
data

Tomasulo’s algorithm ignores precise interrupts. Recall that with precise interrupt
handling, if an interrupt is triggered by an instruction we want the machine to
operate as if it executed all instructions before the one that caused the interrupt and
no instruction after the one that caused the interrupt. If the interrupt is processed
and resolved, we need to restart the program at the interrupting instruction.
Similarly, with an external interrupt, we need to restart the program at a specific
interrupted instruction, with the machine in a consistent state.

Fortunately, interrupt processing resembles speculation. In both cases, we need to
roll back the program to a consistent state of execution. The trick is to ensure that
the instructions commit in order (i.e. they update processor state in order). We use
a ROB and we do not let an instruction commit, unless the instruction is at the head
of the ROB and the hardware is sure that the instruction is non-speculative and the
instruction has not triggered an exception. If the instruction triggers an exception
we record it in the ROB.

Can we get CP1 < 1?

This means that we need to be able to issue more than one instructions per cycle
and commit the results of more than one instructions per cycle (over the execution
of the program). A processor issuing more than one instructions per cycle is called a
multi-issue processor. These come in 3 flavors:

1.statically-scheduled superscalar processors,
2.dynamically-scheduled superscalar processors, and
3.VLIW (very long instruction word) processors

The 2 types of superscalar processors issue varying numbers of instructions per
clock. If they are statically scheduled they issue the instructions in order and
execute them in order. If they are dynamically scheduled, they issue the instructions
in order, execute them out of order and commit them in order. VLIW processors, in
contrast, issue a fixed number of instructions formatted either as one large
instruction or as a fixed instruction packet with the parallelism among instructions
explicitly indicated by the instruction (Intel/HP Itanium). This means that the
compiler is responsible for finding parallelism in the instruction and creating these
instruction packets to utilize

VLIW processors



In VLIW processors, each “long instruction” has explicit coding for multiple
operations (called a “packet” or a “molecule” in various implementations).
Obviously, long instruction words have room for many operations (primitive
instructions, e.g. loads, stores, adds, etc.). There is a trade-off between instruction
space and simplicity of instruction decoding, when deciding on the size of the very
long word. By definition, all the operations the compiler puts in the long instruction
word are independent, meaning they are guaranteed that they can execute in
parallel. To accomplish this, we need really advanced compiler techniques. In
particular, we need compiler techniques that can fetch and schedule instructions
across several branches.

What are the potential problems with VLIW?

First, code size may increase, because the compiler can not always use all the
instruction slots in the very long word. If slots are left empty, instruction space is
wasted. We also need very aggressive and hard compiler optimizations to generate
enough instructions in a straight-line code fragment. In particular, we need
aggressive loop unrolling. Unused instruction slots also mean unused functional
units, aka wasted resources. Instructions operate in a lock-step and there is no
hazard detection in HW (the software bears all the responsibility here). A stall in
any functional unit pipeline causes the entire processor to stall, since all the
functional units must be kept synchronized. The compiler may predict easily the
stalls in functional units, but not the stalls in caches, to schedule further down the
program easily. VLIW creates also binary incompatibility issues: Different
generations of a VLIW processor may need different versions of the binary code
(contrary to most other processor families...).

What are other mechanisms to increase instruction fetch bandwidth (more
instruction to fetch per cycle)?

eIntegrated branch prediction: branch predictor is part of instruction fetch unit and
is constantly predicting branches

eInstruction prefetching: Instruction fetch units prefetch to deliver multiple
instructions per clock, integrating it with branch prediction

To achieve prefetching, we typically buffer instructions in an instruction queue.
Prefetching typically requires fetching multiple cache blocks, and needs to be
effective (i.e. accurate, timely, and non-intrusive) to effectively improve instruction
fetch bandwidth.

An alternative to using a ROB is to use more physical registers, combined with
renaming. Instruction issue now maps names of architectural registers to physical
register numbers in extended register set. On issue, the processor allocates a new
unused register for the destination (which avoids WAW and WAR hazards)
Speculation recovery in this case is easy because a physical register holding an
instruction destination does not become the architectural register until the



instruction commits. Most current Out-of-Order processors today use extended
registers with renaming.

Lastly, we discuss some more aggressive speculation techniques in class, most
notably value prediction and memory address dependence prediction.



