Lecture 5 notes

Recall that what increases CPI above ideal is hazards. We have outline three
categories, structural hazards, data hazards (caused because of true or artificially
trigerred data dependencies) and control hazards (caused because of branches).

Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data Hazard Stalls + Control
Stalls

-Ideal pipeline CPI: measure of the maximum performance attainable by the
implementation

-Structural hazards: HW cannot support this combination of instructions

-Data hazards: Instruction depends on result of prior instruction still in the pipeline

-Control hazards: Caused by delay between the fetching of instructions and
decisions about changes in control flow (branches and jumps)

Theory of data dependencies

We have seen several ways to reduce stall cycles due to hazards. Some of these ways
can be implemented in software, others in hardware. One key technique is both
cases is the reordering of the execution of instructions, so that stall cycles are
replaced with useful instruction execution cycles. Any technique which reorders
instructions needs to make sure that reordering instructions does not violate the
original instruction execution order specified by the program. In other words, we do
not want instruction reordering to violate any dependencies which are imposed in
the original program execution order.

There are 2 approaches to exploiting ILP, one relying on hardware to discover ILP
dynamically and a second using software (more specifically the compiler) to
perform program transformations, including instruction reordering, which can
improve ILP.

Loop-level parallelization is a technique which verifies if the iterations of a loop are
independent. More specifically, we need to check for any pair of instructions in the
program order If 2 instructions are:

-parallel, i.e. they can execute simultaneously in a pipeline of arbitrary depth
without causing any stalls (assuming no structural hazards)

-dependent, they are not parallel and must be executed in order, although
they may often be partially overlapped

Instrjis data dependent (aka true dependence) on Instr.

1.Instry tries to read operand before Instr; writes it



2.or Instr; is data dependent on Instrk which is dependent on Instr;
I: add r1,r2,r3
J: subr4,r1,r3

If two instructions are data dependent, they cannot execute simultaneously or be
completely overlapped. Data dependence in instruction sequence, means data
dependence in source code, means that the effect of original data dependence must
be preserved. If data dependence is caused by a hazard in pipeline, it is called a
Read After Write (RAW) hazard.

The HW/SW must preserve program order: we need to execute instructions in the
order in which they would execute, if executed sequentially as determined by
original source program. Dependences are a property of programs. The presence of
dependence indicates potential for a hazard, but whether there is an actual hazard
and the number of stall cycles due to the hazard is a property of the pipeline.

Data dependencies are important because:

1) they indicate the possibility of a hazard

2) they determine order in which results must be calculated

3) they set an upper bound on how much parallelism can possibly be exploited

The goal of the HW/SW is to exploit parallelism by preserving program order only
where it affects the outcome of the program.

A name dependence is a dependence where 2 instructions use the same register or
memory location, called a name, but there is no actual flow of data between the
instructions associated with that name; there are 2 versions of name dependence:

If Instr; writes operand before Instrireads it, example:
I: subr4,r1,r3

J:add r1,r2,r3

K: mul ré6,r1,r7

This dependence is called an “anti-dependence” by compiler writers. Note that this
dependence is not “caused” by the program, but by potential reordering of the
instructions during their executions. In the original program, the two instructions
just reuse the register “r1”. The situation could be easily resolved, if the second
instructions could just use another unused register, e.g. register “r8”. This is called
register renaming, i.e. ] “renames” “r1”to “r8”.If an anti-dependence, it is caused by
a hazard in the pipeline, called a Write After Read (WAR) hazard



If Instr; writes operand before Instr; writes it, we have an “output dependence” (in
compiler terminology).Example

I: subri,r4,r3
J:add r1,r2,r3
K: mul ré6,r1,r7

Output dependence also result because instructions reuse the name of register (“r1”
in the example). If in this example we assume that the intention of the programmer
is not to store r4+r2 in r1, then the add instruction could use a different target
register, by renaming “r1” to, say “r8”. If the output dependence is caused a hazard
in the pipeline, called a Write After Write (WAW) hazard. In principle, instructions
involved in a name dependence can execute simultaneously if name used in
instructions is changed so instructions do not conflict. This can be done either by the
hardware, or by the compiler.

We move on to describe control dependence: An insturction in a program may be
control dependent on some set of branches, and, in general, these control
dependencies must be preserved to preserve program correctness. Here is an
example:

ifpl{

S1;
b
ifp2{

S2;

}

In this example, S1 is control dependent on p1, and S2 is control dependent on p2
but not on p1. In practice, we often allow hardware to violate control dependences
and execute useless instructions, provided that we can later somehow undo the
error, by preventing the wrong instructions from modifying architectural state.

Exceptions, in addition to data dependences, impose constraints in program
execution order. The execution of instructions in the processor should not change
how exceptions are raised in the program and should not raise new exceptions.
Example:

DADDU R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)
L1:



Assume in this examples that there is no branch delay slot. The LW may raise an
exception if it accesses invalid memory. If we move the load before the branch to
eliminate a potential stall between the DADDU and the BEQZ, we may throw an
exception at a point where we are not supposed to throw an exception.

Loop unrolling

If the iterations of a loop are independent, we can exploit instruction-level
parallelism by unrolling the loop. The key idea is to transform the loop, so that each
iteration through the transformed loop executes several iterations of the original
loop. We discuss a concrete example of unrolling and the required transformations
of the code in class.

To apply unrolling, we need to understand how each instruction depends on
another and how the instructions can be changed or reordered given the
dependences. The process is as follows:

1.Determine if loop unrolling could be useful by finding that loop iterations were
independent

2.Use different registers for each “iteration” in the body of the unrolled loop to avoid
unnecessary constraints forced by using same registers for different computations

3.Eliminate the extra test and branch instructions and adjust the loop termination
and iteration code. In particular, if we unroll a loop k times (i.e. put k iterations of
the loop in the body), we need to execute the unrolled loop floor(n/k) times and
pre-execute n mod Kk iterations, so that the loop is complete.

4.Determine that loads and stores in unrolled loop can be interchanged by
observing that loads and stores from different iterations are independent A tricky
aspect of unrolling is that the transformation requires analyzing memory accesses
to find that they do not refer to the same address

5. Schedule the code, preserving any dependences needed to yield the same result as
the original code

Unrolling, like most optimizations, does not come for free and has limitations.
Unrolling reduces branch overhead, but the relative improvement it achieves
diminishes as we unroll more. Further, unrolling creates register pressure, therefore
the unrolling factor may be capped at a very low value by the limit of available
registers.

Branch prediction is a technique used to reduce the impact of branches on the
pipeline. Unrolling serves the same purpose specifically for loops. Branch prediction
is a more general technique.

Branch prediction works because underlying programs have regularities.
Regularities, repeatability most importantly, are to be found often in both the cde
paths executed by a program and the data accessed by a program. Think loops in



scientific codes as an example. We have discussed some schemes for static branch
prediction (e.g. predict always taken, or always not-taken) in class. Contrary to
static branch prediction, dynamic branch prediction uses information about the
dynamic behavior of branches, that is, the outcomes (Taken/NotTaken) of any given
branch, as the program executes, to make predictions. Conventional wisdom is that
dynamic branch prediction is better than static branch prediction.

The performance of a branch predictor is a function of the accuracy and the cost of
misprediction. The performance is also affected if the introduction of the branch
predictor affects the clock cycle.

A very simple predictor can be implemented with a Branch History Table (BHT). We
are using some LSBs of the PC to index a table, with one entry for each group of
branches that have the same LSBs in their PC. The entry says if the branch was taken
or not taken last time. The problem with this scheme is that for a very simple loop, it
can cause up to two mispredictions (one at the exit of the last iteration, and one in
the first iteration, if the loop is traversed more than once in the code).

A solution hear is to track more history per branch and use hysteresis before
changing the prediction from T to NT and vice versa. A history of the last two
outcomes of the branch, and changing the prediction after two same outcomes (T-T,
or NT-NT), solves the aforementioned problem with the loop. We implement these
schemes using saturating counters.

There are two reasons of misprediction in the BHT. One is that the history that we
are using may just not predict the right outcome of the branch (wrong guess). The
other is that since multiple branches with the same LSBs in the PC can map to the
same entry in the BHT, the BHT may give us a prediction for the wrong branch (not
the one we are executing, but some other with the same LSBs).

Can we improve branch prediction?

Yes, if we exploit the idea of correlation. Instead of recording the history of each
branch in isolation, we record the history of the m most recently executed branch
instructions (can be the same or different branch instructions). We use the pattern
of the recent branches to index the BHT. Each entry in the BHT uses a number of bits
(say n) and the BHT uses an automaton to derive the prediction. This general
scheme is called a (m,n) predictor (record last m branches, select between 2m
history tables, each with n-bit counters, use the n-bit counter to derive the
prediction). We have explained (0,1) and (0,2) predictors. We show examples of
(2,2) predictors in class. Correlation tends to improve significantly the performance
of branch predictors.

Tournament predictors, use saturating counters to decide what predictor to use
for prediction. Notice the difference with correlation predictors: In correlation
predictors, the history of the branches serves as the index to the BHT. In
tournament predictors, the history of the branch (and more specifically the
correctness of predictions) selects a predictor. A common example, is the use of two



predictors, one with global history and one with local history. We can use a 2-bit
saturating counter to switch between predictors upon two misprediction.

Figuring out the branch target: The branch involves both the decision and the
calculation of the target address if the branch is taken. Branch target calculations
needs resource in the pipeline and at least one cycle. [t makes no sense to do
predictions, unless we can also have the target of the branch during the IF stage,
otherwise, we will stall for one cycle anyway. Solution: We use a Branch Target
Buffer (BTB), which keeps the target addresses of branches already seen in the code.
If a branch executes and its PC address is stored in the BTB, and if the predictor says
the branch is taken, we use the BTB to retrieve directly the target of the branch.

Unfortunately, the BTB is a finite structure, and there may be conflicts between
branches mapping to the same entries in the BTB.

Dynamic Scheduling

Dynamic instruction scheduling is a technique used by the hardware to rearrange
the instruction execution to reduce stalls while maintaining data flow and exception
behavior. Dynamic instruction scheduling is a powerful technique, because it
handles cases when dependences are not known statically (e.g. at compile time).

Dynamic scheduling allows the processor to tolerate unpredictable delays such as
cache misses, by executing other code while waiting for the miss to resolve. Further,
it allows code compiled for one pipeline to run efficiently on a different pipeline. The
technique also relieves the compiler from the burden of static dependence analysis.

Hardware speculation, a technique which attempts to predict future hardware
events and improve the degree of instruction-level parallelism, builds on dynamic
scheduling.

The key idea of dynamic scheduling is to allow instructions following a stall to
proceed, assuming no dependencies are violated. For example:

DIVD FO,F2,F4
ADDD F10,FO,F8
SUBD F12,F8,F14

Dynamic scheduling enables out-of-order execution and allows out-of-order
completion of instructions (e.g.,, SUBD). In a dynamically scheduled pipeline, all
instructions still pass through the issue stage in order (in-order issue). Beyond the
issue stage, instructions can be reordered. Dynamic instruction scheduling may
introduce WAR and WAW hazards (name dependencies), because of instruction
reordering. This complicates hazard resolution in the processor. Further, instruction
reordering may violate correct execution with respect to exceptions.



The first step to dynamic instruction scheduling is to identify as soon as we issue
the instruction whether there is a structural hazard or not. We check whether the
instruction has a free execution unit (e.g. adder, multiplier, etc.) to accommodate it.

The second step to dynamic instruction scheduling is to check whether the
instruction has any pending unresolved data dependencies. We check if the
operands of the instruction are “ready” (presumably produced earlier by functional
units of the processor) or “not ready”. In the latter case, the instruction needs to stall
and wait for its operands.

We study Tomasulo’s algorithm in class. The basic elements of the algorithm are:

- Functional units, called reservation stations, which are producing results for
registers and memory. These results are also used to resolve pending data
dependencies. Loads and stores have their own functional units.

- Registers used by instructions, which are replaced by “pointers” to
reservation stations during instruction execution. The algorithm renames the
registers used by the instruction to the execution units that will produce the
input operands and store the result of the instruction.

- Results are forwarded between instructions not through registers, but
through the reservation stations using a bus (called a “common data bus”)

- Integer instructions can execute past branches, effectively implementing a
“predict taken” scheme, which enables overlapping of iterations in loop.

Tomasulo’s algorithm achieves performance improvement thanks to instruction
overlap and out-of-order (000)execution, which reduces stalls. The key technique
for 000 execution is register renaming. Instructions can issue past pending control
flow operations and proceed up to the point where the pending dependence needs
to be resolved. The algorithm distributes the hazard detection and resolution logic
between functional units. The common data bus helps, in the sense that it can be
used to trigger multiple instructions waiting for results simultaneously. The
algorithm effectively eliminates stalls for WAW and WAR hazards. Unfortunately,
there are also downsides: The algorithm has increased hardware complexity and
needs many associative searches in tables to detect hazards between FUs.
Furthermore, the CDB is a bottleneck. Lastly, the algorithm as is may introduce
inopportune exceptions.



